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This paper presents the use of linear and nonlinear multivariable models as tools to support training process of race walkers. These
models are calculated using data collected from race walkers’ training events and they are used to predict the result over a 3 km race
based on training loads. The material consists of 122 training plans for 21 athletes. In order to choose the best model leave-one-out
cross-validation method is used.Themain contribution of the paper is to propose the nonlinear modifications for linear models in
order to achieve smaller prediction error. It is shown that the best model is a modified LASSO regression with quadratic terms in
the nonlinear part. This model has the smallest prediction error and simplified structure by eliminating some of the predictors.

1. Introduction

The level of today’s high-performance sport is very high and
very even. Both coaches and competitors are forced to search
for and use newer and sometimes innovative solutions in
the process of sports training [1]. A solution supporting this
process may be the application of various types of regression
models.

Prediction in sport concerns many aspects including
the prediction of performance results [2, 3] or predicting
sporting talent [4, 5]. Models predicting results in sport,
taking into account the seasonal statistics of each team, were
also constructed [6]. The application of predictive models
in athletics was described by Maszczyk et al. [2], where the
regressionwas used to predict results in a javelin throw.These
models were applied to support the choice and selection of
prospective javelin throwers.

Prediction of sports results using linear regression was
also presented in the work by Przednowek and Wiktorow-
icz [7]. A linear predictive model, implemented by ridge
regression, was applied to predict the outcomes of a walking
race after the immediate preparation phase. As input for the
model, the basic somatic features (height and weight) and
training loads (training components) for each day of training

were provided, and the output was the result expected over
a distance of 5 km. In addition to linear models, artificial
neural networks, whose parameters were specified in cross-
validation, were also used to implement this task.

In the paper by Drake and James [8], the regressions
estimating the results over distances of 5, 10, 20, and 50 km
and the levels of the selected physiological parameters (e.g.,
VO2max) were presented. The regressions applied were the
classical linear models, and the 𝑅

2 criterion was chosen for
the quality evaluation. This study included 23 women and 45
men. The amount of collected data was different depending
on the task and ranged from 21 to 68 records.

A nonlinear regression equation to predict the maximum
aerobic capacity of footballers was proposed by Chatterjee et
al. [9]. The data came from 35 young players aged from 14
to 16. The experiment was to verify the use of the 20m MST
(Multistage Shuttle Run Test) in evaluating the performance
of VO2max.The talent of young hockey players was identified
by Roczniok et al. [5] using a regression equation. The
research involved 60 boys aged between 15 and 16, who
attended selection camps. The applied regression model
classified candidates for future training, based on selected
parameters of the players. The logistic regression was used in
the model as the classification method.
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The nonlinear predictive models used in sport are also
based on the selected methods of “data mining” [10]. Among
them, an important role is played by fuzzy logic expert
systems. Papić et al. [4] described practical application of such
a system. The proposed system was based on knowledge of
experts in the field of sport, as well as the data obtained as a
result of motor tests. The model suggested the most suitable
sport and it was designed to search for prospective sports
talents.

The application of fuzzy modeling techniques in sports
prediction was also presented by Mężyk and Unold [11]. The
goal of their paper was to find the rules that can express
swimmer’s feelings the day after in-water training. The data
was collected for two months among competitors practicing
swimming.The swimmers were characterized by a good level
of sports attainment (2nd sport class). The material obtained
consisted of 12 attributes, and the total number of models
was 480, out of which 136 were used in the final stage.
The authors proved that their method was characterized
by better predictive ability than the traditional methods of
classification.

Other papers also concern the use of artificial neural
networks in sports prediction [6]. Neural models are used
to analyze the effectiveness of the training of swimmers, to
identify handball players’ tactics, or to predict sporting talent
[12]. Many studies present the application of neural networks
in various aspects of sports training [13–15]. These models
support the planning of training loads, practice control, or
the selection of sports.

An approach developed by the authors is the construction
of models performing the task of predicting the results
achieved by a competitor in the proposed sports training.
This allows for the proper selection of training components
and thus supports the achievement of the desired result. The
aim of this study is to determine the effectiveness of selected
linear and nonlinear models in predicting the outcome in
a 3-kilometer walking race for the proposed training. The
research hypothesis of the paper is stated as follows: the
prediction error of 3 kilometers’ result in race walking for
nonlinear models can be smaller than for linear models.

The paper is organized as follows. In Section 2, the train-
ing data of the race walkers recorded during annual training
cycle is described. Section 3 contains the methods used to
build the linear and nonlinear predictive models, including
ordinary least squares regression, regularized methods, that
is, ridge, LASSO, and elastic net regressions, nonlinear
least squares regression, and artificial neural networks as
multilayer perceptron and radial basis function network. In
Section 3, the criterion used to evaluate the performance of
themodels, calculated usingmean square error in the process
of cross-validation, is also defined. Section 4 describes the
procedures used for building models and their evaluation in
𝑅 language and STATISTICA software. The obtained results
are analyzed and discussed in Section 5. Finally, in Section 6,
the performed work is concluded.

2. Material

The predictive models were built using the training data
of athletes practising race walking. The analysis involved

a group of colts and juniors from Poland. Among the
competitors were the finalists in the Polish Junior Indoor
Championships and the Polish Junior Championships. The
data of race walkers was recorded during the 2011-2012 season
in the form of trainingmeans and training loads.The training
mean is the type of work performed while the training load is
the amount ofwork at a particular intensity done by an athlete
during exercise [1]. In the material, which has been collected,
11 means of training were distinguished. The material was
drawn from the annual training cycle for the following four
phases: transition, general preparation, special preparation,
and starting phase. The training data has the form of sums of
training loads completed in onemonth of the chosen training
phase.Thematerial included 122 training patternsmade by 21
race walkers.

Control of the training process in race walking requires
different tests of physical fitness at every training level.
Because this research concerns the competitors in colt and
junior categories, thus in order to determine a unified
criterion of the level of training, a result for 3000m race
walking was used. The choice of the distance of 3000m is
valid because this is the indoor walking competition.

The description of the variables under consideration and
their basic statistics are presented in Table 1. The variables
are as follows: arithmetic mean of 𝑥, minimum value 𝑥min,
maximum value 𝑥max, standard deviation SD, and coefficient
of variation 𝑉 = SD/𝑥 ⋅ 100%. The qualitative variables
are 𝑋1, 𝑋2, 𝑋3, 𝑋4, which take their values from the set
{0, 1}.Theother variables, that is,𝑋5, . . . , 𝑋18, are quantitative
variables. If the value at inputs 𝑋1, 𝑋2, 𝑋3 is 0, it means
that the transitional period is considered. Setting the value
1 on one of the inputs 𝑋1, 𝑋2, 𝑋3, it means the training
period is selected. The variable 𝑋4 represents the gender of
the competitor, where the value 0 denotes a female, while the
value 1 denotes amale, and the age is represented by𝑋5. Basic
somatic features of race walkers such as weight and height are
presented in the form of BMI (𝑋6) expressed by the formula

BMI = 𝑀

𝐻2 [kg/m2
] , (1)

where 𝑀 is the body weight [kg] and 𝐻 is the body height
[m]. The variable 𝑋7 denotes the current result over 3 km in
seconds. Training loads are characterized by the following
variables: running exercises (𝑋8), walking with different
levels of intensity (𝑋9, 𝑋10, 𝑋11), exercises forming differ-
ent types of endurance (𝑋12, 𝑋13, 𝑋14), exercises forming
techniques (𝑋15), exercises forming muscle strength (𝑋16),
exercises forming general fitness (𝑋17), and warming up
exercises (𝑋18).

An example of data used for building the model has the
form

x5 = [0, 1, 0, 0,

23, 22.09, 800, 32, 400, 112, 20, 16, 32.4, 48, 8,

280, 640, 400] ,

𝑦
5
= 800.

(2)
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Table 1: The variables and their basic statistics.

Variable Description 𝑥 𝑥min 𝑥max SD 𝑉 [%]
𝑌 Result over 3 km [s] 936.9 780 1155 78.4 8.4

𝑋1
General preparation
phase

— — — — —

𝑋2
Special preparation
phase

— — — — —

𝑋3 Starting phase — — — — —
𝑋4 Competitor’s gender — — — — —

𝑋5
Competitor’s age
[years]

18.9 14 24 3.0 15.6

𝑋6
BMI (body mass
index) [kg/m2]

19.3 16.4 22.1 1.7 8.7

𝑋7
Current result over 3
km [s]

962.6 795 1210 87.7 9.1

𝑋8
Overall running
endurance [km]

30.9 0 56 10.6 34.4

𝑋9

Overall walking
endurance in the 1st
intensity range [km]

224.6 57 440 96.1 42.8

𝑋10

Overall walking
endurance in the 2nd
intensity range [km]

53.2 0 120 34.6 65.1

𝑋11

Overall walking
endurance in the 3rd
intensity range [km]

7.9 0 30 9.4 119.7

𝑋12
Short tempo
endurance [km]

8.9 0 24 5 56.0

𝑋13
Medium tempo
endurance [km]

8.3 0 32.4 8.6 103.2

𝑋14
Long tempo
endurance [km]

12.9 0 56 16.1 125.0

𝑋15

Exercises forming
technique (rhythm) of
walking [km]

4.4 0 12 4.2 96.0

𝑋16
Exercises forming
muscle strength [min]

90.2 0 360 104.8 116.3

𝑋17
Exercises forming
general fitness [min]

522.0 120 720 109.9 21.0

𝑋18
Universal exercises
(warm up) [min]

317.3 150 420 72.5 22.8

The vector x5 represents a 23-year-old race walker with
BMI = 22.09 kg/m2, who completes training in the special
preparation phase. The result both before and after the
training was the same and is equal to 800 s.

3. Methods

In this study, two approaches were considered. The first
approach was based on white boxmodels realized bymodern
regularized methods.These models are interpretable because
their structure and parameters are known. The second
approach was based on black boxmodels realized by artificial
neural networks.

X1

.

.

.

Xp

Y
Y = f(X1, . . . , Xp)

Figure 1: A diagram of a system with multiple inputs and one
output.

3.1. Constructing Regression Models. Consider a multivari-
able regression model with the inputs (predictors or regres-
sors) 𝑋

𝑗
, 𝑗 = 1, . . . , 𝑝, and one output (response) 𝑌 shown in

Figure 1. We assume that the model is linear and has the form

𝑌̂ = 𝑤0 +𝑋1𝑤1 + ⋅ ⋅ ⋅ +𝑋
𝑝
𝑤
𝑝

= 𝑤0 +

𝑝

∑

𝑗=1
𝑋
𝑗
𝑤
𝑗
,

(3)

where 𝑌̂ is the estimated response and 𝑤0, 𝑤𝑗 are unknown
weights of the model. The weight 𝑤0 is called constant
term or intercept. Furthermore, we assume that the data is
standardized and centered and the model can be simplified
to the form (see, e.g., [16])

𝑌̂ = 𝑋1𝑤1 + ⋅ ⋅ ⋅ +𝑋
𝑝
𝑤
𝑝

=

𝑝

∑

𝑗=1
𝑋
𝑗
𝑤
𝑗
.

(4)

Observations are written as pairs (x
𝑖
, 𝑦
𝑖
), where x

𝑖
=

[𝑥
𝑖1, . . . , 𝑥𝑖𝑝], 𝑖 = 1, . . . , 𝑛, 𝑥

𝑖𝑗
is the value of the 𝑗th predictor

in the 𝑖th observation, and 𝑦
𝑖
is the value of the response in

the 𝑖th observation. Based on formula (4), the 𝑖th observation
can be expressed as

𝑦
𝑖
= 𝑥
𝑖1𝑤1 + ⋅ ⋅ ⋅ + 𝑥

𝑖𝑝
𝑤
𝑝

=

𝑝

∑

𝑗=1
𝑥
𝑖𝑗
𝑤
𝑗
= x
𝑖
w,

(5)

where w = [𝑤1, . . . , 𝑤𝑝]
𝑇. Introducing matrix X in the form

of

X =

[
[
[
[
[
[
[

[

𝑥11 𝑥12 ⋅ ⋅ ⋅ 𝑥1𝑝

𝑥21 𝑥22 ⋅ ⋅ ⋅ 𝑥2𝑝

.

.

.
.
.
. d

.

.

.

𝑥
𝑛1 𝑥
𝑛2 ⋅ ⋅ ⋅ 𝑥

𝑛𝑝

]
]
]
]
]
]
]

]

(6)

formula (5) can be written as

ŷ = Xw, (7)

where ŷ = [𝑦1, . . . , 𝑦𝑛]
𝑇.
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In order to construct regression models, an error (resid-
ual) is introduced as the difference between the real value 𝑦

𝑖

and the estimated value 𝑦
𝑖
in the form of

𝑒
𝑖
= 𝑦
𝑖
−𝑦
𝑖
= 𝑦
𝑖
−

𝑝

∑

𝑗=1
𝑥
𝑖𝑗
𝑤
𝑗
= 𝑦
𝑖
− x
𝑖
w. (8)

Using matrix (6), the error can be written as

e = y − ŷ = y −Xw, (9)

where e = [𝑒1, . . . , 𝑒𝑛]
𝑇 and y = [𝑦1, . . . , 𝑦𝑛]

𝑇.
Denoting by 𝐽(w, ⋅) the cost function, the problem of find-

ing the optimal estimator can be formulated as to minimize
the function 𝐽(w, ⋅), which means solving the problem

ŵ = argmin
w

(𝐽 (w, ⋅)) , (10)

where ŵ is the vector of solutions.
Depending on the function 𝐽(w, ⋅), different regression

models can be obtained. In this paper, the following models
are considered: ordinary least squares regression (OLS), ridge
regression, LASSO (least absolute shrinkage and selection
operator), elastic net regression (ENET), and nonlinear least
squares regression (NLS).

3.2. Linear Regressions. In OLS regression (see, e.g., [16–18])
the model is calculated by minimizing the sum of squared
errors:

𝐽 (w) = e𝑇e

= (y −Xw)
𝑇

(y −Xw)

=
󵄩󵄩󵄩󵄩y −Xw󵄩󵄩󵄩󵄩

2
2 ,

(11)

where ‖ ⋅‖2 denotes the Euclidean norm (𝐿2). Minimizing the
cost function (11), which is the quadratic function ofw, we get
the following solution:

ŵ = (X𝑇X)
−1
X𝑇y. (12)

It should be noted that solution (12) does not exist if the
matrix X𝑇X is singular (due to correlated predictors or if
𝑝 > 𝑛). In this case, different methods of regularization,
including the previouslymentioned ridge, LASSO, and elastic
net regressions, can be used.

In ridge regression by Hoerl and Kennard [19], the cost
function includes a penalty and has the form

𝐽 (w, 𝜆) = e𝑇e+𝜆w𝑇w

= (y −Xw)
𝑇

(y −Xw) + 𝜆w𝑇w

=
󵄩󵄩󵄩󵄩y −Xw󵄩󵄩󵄩󵄩

2
2 +𝜆 ‖w‖

2
2 .

(13)

The parameter 𝜆 ≥ 0 determines the size of the penalty: for
𝜆 > 0, the model is penalized, for 𝜆 = 0, ridge regression

reduces to OLS regression. Solving problem (10) for ridge
regression, we get

ŵ = (X𝑇X+𝜆I)
−1
X𝑇y, (14)

where I is the identity matrix with the size of 𝑝 × 𝑝. Because
the diagonal of the matrix X𝑇X is increased by a positive
constant, the matrix X𝑇X + 𝜆I is invertible and the problem
becomes nonsingular.

In LASSO regression by Tibshirani [20], similarly to ridge
regression, the penalty is added to the cost function, where
the 𝐿1-norm (the sum of absolute values) is used:

𝐽 (w, 𝜆) = e𝑇e+𝜆z𝑇w

= (y −Xw)
𝑇

(y −Xw) + 𝜆z𝑇w

=
󵄩󵄩󵄩󵄩y −Xw󵄩󵄩󵄩󵄩

2
2 +𝜆 ‖w‖1 ,

(15)

where z = [𝑧1, . . . , 𝑧𝑝]
𝑇, 𝑧
𝑗
= sgn(𝑤

𝑗
), and ‖ ⋅ ‖1 denotes the

Manhattan norm (𝐿1). Because problem (10) is not linear in
relation to y (due to the use of 𝐿1-norm), the solution cannot
be obtained in the compact form as in ridge regression.
The most popular algorithm used in this case is the LARS
algorithm (least angle regression) by Efron et al. [21].

In elastic net regression by Zou and Hastie [22], the
features of ridge and LASSO regressions are combined. The
cost function in the so-called naive elastic net has the form of

𝐽 (w, 𝜆1, 𝜆2) = e𝑇e+𝜆1z
𝑇w +𝜆2w

𝑇w

= (y −Xw)
𝑇

(y −Xw) + 𝜆1z
𝑇w

+𝜆2w
𝑇w

=
󵄩󵄩󵄩󵄩y −Xw󵄩󵄩󵄩󵄩

2
2 +𝜆1 ‖w‖1 +𝜆2 ‖w‖

2
2 .

(16)

To solve the problem, Zou and Hastie [22] proposed the
LARS-EN algorithm, which was based on the LARS algo-
rithm developed for LASSO regression. They used the fact
that elastic net regression reduces to LASSO regression for
the augmented data set (X∗, y∗).

3.3. Nonlinear Regressions. To take into account the non-
linearity in the models, we can apply the transformation of
predictors or use nonlinear regression. In this paper, the latter
solution is applied.

In OLS regression, the model is described by formula (5),
while in more general nonlinear regression the relationship
between the output and the predictors is expressed by a
certain nonlinear function 𝑓(⋅) in the form of

𝑦
𝑖
= 𝑓 (x

𝑖
,w) . (17)

In this case, the cost function 𝐽(w) is formulated as

𝐽 (w) =

𝑛

∑

𝑖=1
𝑒
2
𝑖
=

𝑛

∑

𝑖=1
(𝑦
𝑖
−𝑦
𝑖
)
2

=

𝑛

∑

𝑖=1
(𝑦
𝑖
−𝑓 (x

𝑖
,w))

2
.

(18)



Computational Intelligence and Neuroscience 5

Since the minimization of function (18) is associated with
solving nonlinear equations, numerical optimization is used
in this case. The main problem connected with the construc-
tion of nonlinear models is the choice of the appropriate
function 𝑓(⋅).

3.4. Artificial Neural Networks. Artificial neural networks
(ANNs) were also used for building predictive models. Two
types of ANNs were implemented: a multilayer perceptron
(MLP) and networks with radial basis function (RBF) [18].

The MLP network is the most common type of neural
models. The calculation of the output in 3-layer multiple-
input-one-output network is performed in feed-forward
architecture. In the first step, 𝑚 linear combinations, or the
so-called activations, of the input variables are constructed as

𝑎
𝑘
=

𝑝

∑

𝑗=1
𝑥
𝑗
𝑤
(1)
𝑘𝑗

, (19)

where 𝑘 = 1, . . . , 𝑚 and 𝑤
(1)
𝑘𝑗

denotes the weights for the first
layer. From the activations 𝑎

𝑘
, using a nonlinear activation

function ℎ(⋅), hidden variables 𝑧
𝑘
are calculated as

𝑧
𝑘
= ℎ (𝑎

𝑘
) . (20)

The function ℎ(⋅) is usually chosen as logistic or “tanh”
function. The hidden variables are used next to calculate the
output activation

𝑎 =

𝑚

∑

𝑘=1
𝑧
𝑘
𝑤
(2)
𝑘

, (21)

where𝑤(2)
𝑘

are weights for the second layer. Finally, the output
of the network is calculated using an activation function 𝜎(⋅)

in the form of

𝑦 = 𝜎 (𝑎) . (22)

For regression problems, the function 𝜎(⋅) is chosen as
identity function, and so we obtain 𝑦 = 𝑎. The MLP network
utilizes iterative supervised learning known as error back-
propagation for training the weights.This method is based on
gradient descent applied to the sum of squares function. To
avoid the problemwith overtraining the network, the number
𝑚 of hidden neurons, which is a free parameter, should be
determined to give the best predictive performance.

In the RBF network, the concept of radial basis function is
used. Linear regression (5) is extended by linear combinations
of nonlinear functions of the inputs in the form of

𝑦
𝑖
=

𝑝

∑

𝑗=1
𝜙
𝑗
(𝑥
𝑖𝑗
)𝑤
𝑗
= 𝜑 (x

𝑖
)w, (23)

where 𝜑 = [𝜙1, . . . , 𝜙𝑝]
𝑇 is a vector of basis functions. Using

nonlinear basis functions, we get a nonlinear model, which
is, however, a linear function of parameters 𝑤

𝑗
. In the RBF

network, the hidden neurons perform a radial basis function
whose value depends on the distance from selected center 𝑐

𝑗
:

𝜑 (x
𝑖
, c) = 𝜑 (

󵄩󵄩󵄩󵄩x𝑖 − c󵄩󵄩󵄩󵄩) , (24)

where c = [𝑐1, . . . , 𝑐𝑝] and ‖ ⋅ ‖ is usually the Euclidean norm.
There are many possible choices for the basis functions, but
the most popular is Gaussian function. It is known that RBF
network can exactly interpolate any continuous function;
that is, the function passes exactly through every data point.
In this case, the number of hidden neurons is equal to the
number of observations and the values of coefficients 𝑤

𝑗

are found by simple standard inversion technique. Such a
network matches the data exactly, but it has poor predictive
ability because the network is overtrained.

3.5. Choosing the Model. In this paper, the best predic-
tive model is chosen using leave-one-out cross-validation
(LOOCV)method [23], in which the number of tests is equal
to the number of data 𝑛 and one pair (x

𝑖
, 𝑦
𝑖
) creates a testing

set. The quality of the model is evaluated by means of the
square root of the mean square error (RMSECV) defined as

MSECV =
1
𝑛

𝑛

∑

𝑖=1
(𝑦
𝑖
−𝑦
−𝑖
)
2
,

RMSECV = √MSECV,

(25)

where 𝑦
−𝑖
denotes the output of themodel built in the 𝑖th step

of validation process using a data set containing no testing
pair (x

𝑖
, 𝑦
𝑖
) and MSECV is the mean square error.

In order to describe the measure to which the model
fits the training data, the root mean square error of training
(RMSET) is considered. This error is defined as

MSET =
1
𝑛

𝑛

∑

𝑖=1
(𝑦
𝑖
−𝑦
𝑖
)
2
,

RMSET = √MSET,

(26)

where 𝑦
𝑖
denotes the output of the model built in the 𝑖th step

using the full data set and MSET is the mean square error of
training.

4. Implementation of the Predictive Models

All the regression models were calculated using 𝑅 language
with additional packages [24].

The lm.ridge function from “MASS” package [25] was
used for calculating OLS regression (where 𝜆 = 0) and ridge
regression (where 𝜆 > 0). With the function enet included
in the package “elastic net” [26], LASSO regression and elastic
net regression were calculated. The parameters of the enet
function are 𝑠 ∈ [0, 1] and 𝜆 ≥ 0, where 𝑠 is a fraction
of the 𝐿1 norm, whereas 𝜆 denotes 𝜆2 in formula (16). The
parameterization of elastic net regression using the pair (𝜆, 𝑠)
instead of (𝜆1, 𝜆2) in formula (16) is possible because elastic
net regression can be treated as LASSO regression for an
augmented data set (X∗, y∗) [22]. Assuming that 𝜆 = 0, we
get LASSO regression with one parameter 𝑠 for the original
data (X, y).

All the nonlinear regressionmodels were calculated using
the nls function coming from the “stats” package [27]. It
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calculates the parameters of the model using the nonlinear
least squares method. One of the parameters of the nls
function is a formula that specifies the function𝑓(⋅) in model
(18). To calculate the weights, Gauss-Newton’s algorithm was
used which was selected by default in the nls function. In all
the calculations, it was assumed that the initial values of the
weights are equal to zero.

For the implementation of artificial neural networks,
StatSoft STATISTICA [28] software was used.The learning of
MLP networks was implemented using the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) algorithm [18].While calculating
the RBF network, the parameters of the basis functions were
automatically set by the learning procedure.

The parameters in all models were selected using leave-
one-out cross-validation. In the case of regularized regres-
sions, the penalty coefficients were calculated, while, in the
case of neural networks, the number of neurons in the hidden
layer was calculated. The primary performance criterion of
the model was RMSECV error. Cross-validation functions in
the STATISTICA program were implemented using Visual
Basic language.

5. Results and Discussion

From a coach’s point of view, the prediction of results is very
important in the process of sport training. A coach using the
model, which was constructed earlier, can predict how the
training loadswill influence the sport outcome.Thepresented
models can be used for predictions based on the proposed
monthly training introduced as the sum of the training loads
of each type implemented in a given month.

The results of the research are presented in Table 2; the
description of the selected regressions will be presented in
the next paragraphs. Linear models such as OLS, ridge, and
LASSO regressions have been calculated by the authors in
work [3]. They will be briefly described here. The nonlinear
models implemented using nonlinear regression and artificial
neural networks will be discussed in greater detail. All the
methods will be compared taking into account the accuracy
of the prediction.

5.1. Linear Regressions. The regression model calculated by
the OLS method generated the prediction error RMSECV =

26.90 s and the training error RMSET = 22.70 s (Table 2).
In the second column of Table 2, the weights 𝑤0 and 𝑤

𝑗
are

presented.
The search for the ridge regression model is based on

finding the parameter 𝜆, for which the model achieves the
smallest prediction error. In this paper, ridge regression
models for 𝜆 changing from 0 to 2 with step of 0.1 were
analyzed. Based on the results, it was found that the best
ridge model is achieved for 𝜆opt = 1. The prediction error
RMSECV = 26.76 s was smaller than in the OLS model, while
the training error RMSET = 22.82 s was greater (Table 2).The
obtained ridge regression improved the predictive ability of
the model. It is seen from Table 2 that as in the case of OLS
regression, all weights are nonzero and all the input variables
are used in computing the output of the model.

Table 2: Coefficients of linear models and linear part of nonlinear
model NLS1 and error results.

Regression OLS RIDGE LASSO, ENET NLS1
𝑤0 237.2 325.7 296.6 2005
𝑤1 45.67 34.67 32.75 41.24
𝑤2 90.61 74.84 71.91 77.12
𝑤3 39.70 27.49 24.45 −3.439
𝑤4 −2.838 2.424 15.45
𝑤5 −0.9755 −1.770 −1.416 −22.44
𝑤6 1.072 0.5391 −24.71
𝑤7 0.7331 0.6805 0.7069 −1.782
𝑤8 −0.2779 −0.3589 −0.3410 −1.500
𝑤9 −0.1428 −0.1420 −0.1364 −0.0966
𝑤10 −0.1579 −0.0948 −0.0200 0.7417
𝑤11 0.7472 0.4352 0.0618 0.6933
𝑤12 0.4845 0.3852 0.1793 −0.6726
𝑤13 0.1216 0.1454 0.1183 −0.0936
𝑤14 −0.1510 −0.0270 2.231
𝑤15 −0.5125 −0.3070 0.7349
𝑤16 −0.0601 −0.0571 −0.0652 −0.2685
𝑤17 −0.0153 −0.0071 0.0358
𝑤18 −0.0115 −0.0403 −0.0220 −0.0662
RMSECV [s] 26.90 26.76 26.20 28.83
RMSET [s] 22.70 22.82 22.89 20.21

The LASSO regression model was calculated using the
LARS-EN algorithm, in which the penalty is associated with
the parameter 𝑠 changing from 0 to 1 with step of 0.01. It
was found that the optimal LASSO regression is calculated
for 𝑠opt = 0.78. The best LASSO model generates the error
RMSECV = 26.20 s, which improves the results of OLS and
ridge models. However, it should be noted that this model is
characterized by the worst data fit with the greatest training
error RMSET = 22.89 s. The LASSO method is also used for
calculating an optimal set of input variables. It can be seen
in the fourth column of Table 2 that the LASSO regression
eliminated the five input variables (𝑋4, 𝑋6, 𝑋14, 𝑋15, and
𝑋17), which made the model simpler than for OLS and ridge
regression.

The use of elastic net regression model has not improved
the value of the prediction error.The bestmodel was obtained
for a pair of parameters 𝑠opt = 0.78 and 𝜆opt = 0. Because
the parameter 𝜆 is zero, the model is identical to the LASSO
regression (fourth column of Table 2).

5.2. Nonlinear Regressions. Nonlinear regression models
were obtained using various functions 𝑓(⋅) in formula (18).
It was assumed that the function 𝑓(⋅) consists of two com-
ponents: the linear part, in which the weights are calculated
as in OLS regression, and the nonlinear part containing
expressions of higher orders in the form of a quadratic
function of selected predictors:

𝑓 (x
𝑖
,w, k) =

𝑝

∑

𝑗=1
𝑥
𝑖𝑗
𝑤
𝑗
+

𝑝

∑

𝑗=1
𝑥
2
𝑖𝑗
V
𝑗
, (27)
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Table 3: Coefficients of nonlinear part of nonlinear models and
error results (all coefficients have to be multiplied by 10−2).

Regression NLS1 NLS2 NLS3 NLS4
V5 53.35 −0.3751 −0.3686 −0.6995
V6 59.43 −1.0454 −1.3869
V7 0.1218 0.0003 0.0004 0.0001
V8 1.880 0.0710 0.0372 −0.0172
V9 −0.0016 0.0093 0.0093 0.0085
V10 −0.6646 −0.0577 −0.0701 −0.1326
V11 −3.0394 −0.3608 0.0116 0.8915
V12 4.8741 0.3807 0.4170 1.0628
V13 0.4897 −0.2496 −0.2379 −0.1391
V14 −4.7399 −0.1141 −0.1362
V15 −13.6418 1.3387 0.8183
V16 0.0335 −0.0015 −0.0003 −0.0004
V17 −0.0033 −0.0006 −0.0006
V18 0.0054 0.0012 0.0013 −0.0002
RMSECV [s] 28.83 25.24 25.34 24.60
RMSET [s] 20.21 22.63 22.74 22.79

where w = [𝑤1, . . . , 𝑤𝑝]
𝑇 is the vector of the weights of the

linear part and k = [V1, . . . , V𝑝]
𝑇 is the vector of the weights

of the nonlinear part. The following cases of nonlinear
regression were considered (Table 3), wherein each of the
following models does not take into account the squares of
qualitative variables 𝑋1, 𝑋2, 𝑋3, and 𝑋4 (V1 = V2 = V3 =

V4 = 0):

(i) NLS1: both the weights of the linear part and the
weights V5, . . . , V18 of the nonlinear part are calcu-
lated.

(ii) NLS2: the weights of the linear part are constant,
and their values come from the OLS regression (the
second column of Table 2); the weights V5, . . . , V18 of
the nonlinear part are calculated (the third column of
Table 3).

(iii) NLS3: the weights of the linear part are constant,
and their values come from the ridge regression (the
third column of Table 2); the weights V5, . . . , V18 of the
nonlinear part are calculated (the fourth column of
Table 3).

(iv) NLS4: the weights of the linear part are constant,
and their values come from the LASSO regres-
sion (the fourth column of Table 2); the weights
V5, V7, . . . , V13, V16, V18 of the nonlinear part are calcu-
lated (the fifth column of Table 3).

Based on the results shown in Table 3, the best nonlinear
regression model is the NLS4 model, that is, the modified
LASSO regression. This model is characterized by the small-
est prediction error and the reduced number of predictors.
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Figure 2: Cross-validation error (RMSECV) and training error
(RMSET) for MLP(tanh) neural network; vertical line drawn for
𝑚 = 1 signifies the number of hidden neurons chosen in cross-
validation.
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Figure 3: Cross-validation error (RMSECV) and training error
(RMSET) for MLP(exp) neural network; vertical line drawn for𝑚 =

1 signifies the number of hidden neurons chosen in cross-validation.

5.3. Neural Networks. In order to select the best structure
of a neural network, the number of neurons 𝑚 ∈ [1, 10]
in the hidden layer was analyzed. In Figures 2, 3, and
4, the relationships between cross-validation error and the
number of hidden neurons are presented.The smallest cross-
validation errors for the MLP(tanh) and MLP(exp) networks
were obtained for one hidden neuron (18-1-1 architecture)
and they were, respectively, 29.89 s and 30.02 s (Table 4). For
the RBF network, the best architecture was the one with
four neurons in the hidden layer (18-4-1) and cross-validation
error in this case was 55.71 s. Comparing the results, it is seen
that the best model is the MLP(tanh) network with the 18-1-
1 architecture. However, it is worse than the best regression
model NLS4 (Table 3) by more than 5 seconds.



8 Computational Intelligence and Neuroscience

1 2 3 4 5 6 7 8 9 10
0

50

100

150

Number of neurons in hidden layer

RMSECV
RMSET

RM
SE

CV
[s

], 
RM

SE
T

[s
]

Figure 4: Cross-validation error (RMSECV) and training error
(RMSET) for RBF neural network; vertical line drawn for 𝑚 = 4
signifies the number of hidden neurons chosen in cross-validation.

Table 4: The number of hidden neurons and error results for the
best neural nets.

ANN MLP(tanh) MLP(exp) RBF
m 1 1 4
RMSECV [s] 29.89 30.02 55.71
RMSET [s] 25.19 25.17 52.63

6. Conclusions

This paper presents linear and nonlinear models used to
predict sports results for race walkers. Introducing a monthly
training schedule for a selected phase in the annual cycle,
a decline in physical performance may be predicted based
on the generated results. Thanks to that, it is possible to
take into account earlier changes in the scheduled training.
The novelty of this research is the use of nonlinear models,
including modifications of linear regressions and artificial
neural networks, in order to reduce the prediction error
generated by linearmodels.The bestmodel was the nonlinear
modification of LASSO regression for which the error was
24.6 seconds. In addition, the method has simplified the
structure of the model by eliminating 9 out of 32 predictors.
The research hypothesis was confirmed. Comparing with
other results is difficult because there is a lack of publications
concerning predictive models in race walking.

Experts in the fields of sports theory and training were
consulted during the construction of the models in order
to maintain the theoretical and practical principles of sport
training. The importance of the work is that practitioners
(coaches) can use predictive models for planning of training
loads in race walking.
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