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There is significant interest in inferring the structure of subcellular networks of interaction. Here we consider supervised interactive
network inference in which a reference set of known network links and nonlinks is used to train a classifier for predicting new links.
Many types of data are relevant to inferring functional links between genes, motivating the use of data integration. We use pairwise
kernels to predict novel links, along with multiple kernel learning to integrate distinct sources of data into a decision function. We
evaluate various pairwise kernels to establish which aremost informative and compare individual kernel accuracies with accuracies
for weighted combinations. By associating a probability measure with classifier predictions, we enable cautious classification, which
can increase accuracy by restricting predictions to high-confidence instances, and data cleaning that can mitigate the influence of
mislabeled training instances. Although one pairwise kernel (the tensor product pairwise kernel) appears to work best, different
kernels may contribute complimentary information about interactions: experiments in S. cerevisiae (yeast) reveal that a weighted
combination of pairwise kernels applied to different types of data yields the highest predictive accuracy. Combined with cautious
classification and data cleaning, we can achieve predictive accuracies of up to 99.6%.

1. Introduction

There is a significant interest in determining subcellular
network structures, from metabolic and protein-protein
interaction networks, through to signalling pathways. Two
broad interactive inference approaches are unsupervised and
supervised network inference. With unsupervised inference,
no prior knowledge of network linkage is assumed. Super-
vised inference is a more tractable alternative in which there
is a training set of links and nonlinks, believed to be reliably
known, and the task is to train a classifier using this informa-
tion. We then make predictions for additional possible links
where interactive network structure is less clearly resolved.
One advantage of supervised inference is that there are a
variety of pathways where the structure is fairly reliably
determined and thus this prior structural knowledge could
give a viable training set. A further advantage of supervised
inference is that different types of data are informative about
whether a functional link may exist, allowing practitioners to

integrate data from diverse sources [1]. Furthermore we can
weight these different data sources according to their relative
significance. With unsupervised learning, it is much more
difficult integrating different types of data into a predictive
model, though various schemes have been suggested.

In this paper we will consider supervised network infer-
ence and we evaluate a variety of strategies to improve
predictive performance. First we consider multiple kernel
learning (MKL) in which different types of data are encoded
into different pairwise base kernels. Using a weighted combi-
nation of base kernels, we construct a composite kernel that
is used in a kernel-based classifier, for example, a Support
Vector Machine (SVM) [2]. In Section 3 we show that this
integrative approach gives better performance over a uniform
weighting of kernels or classifiers constructed using only one
type of data. Secondly, we discuss both established and a
novel pairwise kernel for use with MKL. In this study we are
interested in functional links between pairs of nodes in an
interactive network, so the kernels we use encode similarity
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between pairs. Our goal is to investigate which pairwise
kernel is best and whether a variety of such pairwise kernels
should be used in combinationwithMKL.Nextwe associate a
probabilitymeasure with the predicted class assignment.This
facilitates cautious classification and motivates a novel data
cleaning method. We demonstrate dramatic improvements
in accuracy via cautious classification, in which test accuracy
is improved at the expense of making predictions for only a
subset of possible links or nonlinks.This probability measure
alsomotivates amethod for data cleaning: we train a classifier
incrementally and predict a new link-label prior to adding
it to our training set. If, with a high confidence prediction,
the predicted link-label disagrees with the actual label then
this may indicate an outlier (a wrong link-label) and the
datapoint should not be learnt. We investigate a method of
incremental data cleaning for SVMs in which we sequentially
add training data to the training set by selecting the next
example closest to the current separating hyperplane: these
are necessarily low confidence predictions and, by thismeans,
we defer encounter with potential outliers toward the end of
the sequential learning process. For the data set considered
we show that this strategy leads to a small improvement in
test accuracy.

2. Methods

2.1. Pairwise Kernels. Kernels [2, 3] encode the similarity of
data objects and they can be constructed for a variety of
different types of data, from continuously valued to sequence
or graph information [2, 4]. For network inference, we will
use a label 𝑦

𝑖
1
,𝑖
2

= +1 for a functional interaction between a
pair of nodes (e.g., genes), labelled 𝑖

1
and 𝑖
2
. 𝑦
𝑖
1
,𝑖
2

= −1 will
label a noninteracting pair. Thus, with supervised inference,
we have an adjacencymatrix with components+1 and−1 and
a number of unknown elements which we wish to estimate.

Our data is in the form x
𝑖
(where 𝑖 = 1, . . . , 𝑚). Linkage

patterns in the data are classified in terms of pairings of nodes
and appropriate kernels quantify a similarity between pairs.
Thus, a comparison between a pair (x
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Subsequently, we will use the loose convention that the
arguments of the pairwise kernel can be data vectors, x

𝑖
, or

derived kernel matrices, 𝐾(x
𝑖
, x
𝑗
). Ben-Hur and Noble [5]

proposed kernel �̂�
𝑃1

and called it the tensor product pairwise
kernel (TPPK). This pairwise kernel can be viewed as the
weighted adjacency matrix of a Kronecker product graph of
two graphs associated with the constituent kernels [6].

The second pairwise kernel we consider is [7]
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Assuming𝐾(x
𝑖
, x
𝑗
) is a positive semidefinite (PSD) kernel

then the sum or the product of two such PSD kernels is also
a PSD kernel, hence establishing �̂�

𝑃1
and �̂�

𝑃2
as allowable

PSD kernels. Our third pairwise kernel is called the metric
learning pairwise kernel (MLPK) [8]:
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Thus, for this kernel, the pair (x
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inner product between these mapped vectors (subsequently
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For �̂�
𝑃1
, wementioned the relation between this pairwise

kernel and a Kronecker product graph. This motivates con-
sideration of other types of product graphs and one based on
a Cartesian product graph (CSPK) has been proposed by [6].
This kernel is defined by
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where the (𝑖, 𝑗)th component of a kernelmatrix [𝐾] quantifies
the similarity between the 𝑖’th and 𝑗’th nodes and where
𝐼(𝛾) is an indicator function (1 if its argument is true and 0
otherwise). We include this kernel for completeness, since it
will be included in our usage of MKL later. The information
encapsulated in these product graphs can overlap substan-
tially depending on the nature of the base kernels. The tensor
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product 𝐺 × 𝐺 and the Cartesian product 𝐺◻𝐺 of a graph
𝐺(𝑉
𝐺
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𝐺
}).

However, their edge sets are defined as follows [9]:
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A base kernel with nonzero diagonal elements corre-
sponds to a graph with self-edges (i.e., 𝑔𝑔 ∈ 𝐸

𝐺
). In

these cases a tensor product kernel will subsume a Cartesian
product kernel over the same graph.

It is possible to further combine these types of pairwise
kernels with other standard kernels, for example, Gaussian
kernels or kernels based on polynomials; for example,
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However, these types of kernels also require the use
and determination of a kernel parameter, for example, 𝑟 in
(9), via a further cross-validation study, and so we will not
consider them further in this study. There are further non-
PSD (infinite) symmetric pairwise kernels which have been
considered [7]. Though it is possible to project these to the
cone of positive semidefinite kernels and use a proxy kernel
[10], we investigated these and did not find consistently good
performance, so they are not considered further in this study.

To give equal weight to different types of data we can
further normalize the base kernels. Thus, viewing the kernel
as a mapped inner product [2], we used the mapping x →

Φ(x)/‖Φ(x)‖
2
; then,

�̂� (x
𝑖
, x
𝑗
) =

Φ (x
𝑖
) ⋅ Φ (x

𝑗
)

√Φ (x
𝑖
) ⋅ Φ (x

𝑖
)√Φ (x

𝑗
) ⋅ Φ (x

𝑗
)

=
𝐾 (x
𝑖
, x
𝑗
)

√𝐾 (x
𝑖
, x
𝑖
)𝐾 (x

𝑗
, x
𝑗
)

.

(10)

2.2. Multiple Kernel Learning. Different sources of data can
be encoded into different types of data kernel [2], which
we denote by 𝐾(x

𝑖
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, x
𝑖
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). Examples include diffusion kernels
or standard kernels such as linear or Gaussian kernels [2]
for encoding the similarity between data objects x

𝑖
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and x
𝑖
2

.
These data kernels are, in turn, embedded in pairwise kernels,
as described in the previous section. The resultant pairwise
kernels will be denoted by �̂�

ℓ
(x
𝑖
, x
𝑗
) (where ℓ = 1, . . . , 𝑝)

and are the base kernels used to construct a composite kernel,
denoted by 𝐾, for MKL learning. Two distinct base kernels
may be different pairwise kernels representing the same
source of data (i.e., the same data kernel) or they could be the
same type of pairwise kernel applied to two different sources
of data.

With multiple kernel learning [3, 11, 12], we can derive a
composite kernel, 𝐾, as a linear combination of these base
kernels:
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where 𝜆
ℓ
are the kernel weights that are restricted to lie on the
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The kernel weight 𝜆
ℓ
indicates the relative informative-

ness of data source ℓ. Aside from these weights, we must find
the values of the learning parameters 𝛼

𝑖,𝑗
during the training

process. These learning parameters are the same learning
parameters as for a standard Support Vector Machine [3].
However, in this case, rather than a single sample index, we
use two indices, denoting the link between node 𝑖 and 𝑗,
since a data vector is attached to a link between two nodes
and carries information about a possible interaction between
these nodes. Here, we are interested in binary classification
(link or nonlink) so 𝑦
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and the constraints in (12). This optimisation problem for
MKL [3] can be tackled via quadratically constrained linear
programming [13] and other methods [11, 12]. If {𝛼⋆
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which is an adapted version of the decision function and bias,
𝑏, of a Support VectorMachine [3], appropriate to the context
presented here.
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Table 1: Kernel weights for the pairwise kernels used in this study.The weights selected for each kernel were those at the highest𝐶-value that
had two or more nonzero weights.

Kernel Kernel weights for individual models
�̂�
𝑀

�̂�
𝑃

�̂�
𝑆

�̂�GI �̂�YH �̂�MS

𝐾
𝑃1

0 0.449 0.099 0.033 0 0.419
𝐾
𝑃2

0.362 0.198 0 0.096 0.308 0.035
𝐾
𝑃3

0 0.258 0 0.200 0 0.542
𝐾
𝑃4

0 0.170 0.176 0.211 0.191 0.252
𝐾
𝑃5

0 0.266 0 0 0 0.734

2.3. Introduction of a Probability Measure. In later experi-
ments, we will introduce a confidence measure associated
with linkage prediction.MostMKLmethods have an intrinsic
measure of confidence, namely, the margin measure 𝜙(z)
given in (15). The larger the absolute value of 𝜙(z) the greater
the degree of confidence in the predicted label. We can relate
𝜙(z) to a probabilitymeasure by fitting a posterior probability
distribution [14]. For binary classification, we use the sigmoid
𝑝(𝑦 = +1 | 𝜙) = [1 + exp(𝐴𝜙 + 𝐵)]

−1. With binary
labels for link 𝑙, 𝑦

𝑙
∈ {−1, 1}, we define 𝑡

𝑙
= 0.5(𝑦

𝑙
+ 1) ∈

{0, 1}. The parameters𝐴 and 𝐵 are then found by minimizing
the negative log likelihood of the training data via the cross
entropy error function:

min
𝐴,𝐵

[−∑

𝑙

𝑡
𝑙
log (𝑝

𝑙
) + (1 − 𝑡

𝑙
) log (1 − 𝑝

𝑙
)] , (17)

where 𝑝
𝑙
is the sigmoid probability function evaluated from

𝜙(z) for the link considered. To minimize this function, we
used the Levenberg-Marquardt algorithm [15].

3. Results

In this paper, we set out to investigate the following questions.
Firstly, which pairwise kernel is the most accurate. As a
second objective, we considered MKL and the gain to be
made by using a weighted combination of different types
of data over using a uniform combination. Combined with
our first objective, a further objective was to understand if
one type of pairwise kernel is the best or if higher accuracy
is achieved by using a weighted combination of pairwise
kernels. Our results are reported in Section 3.1. We then
place a probability measure on 𝜙(z

𝑖
1

, z
𝑖
2

) in (15) and briefly
consider prediction restricted to high confidence inference
(Section 3.2) and strategies for removing possibly wrongly
labelled datapoints in the training data (Section 3.3).

3.1. Multiple Kernel Learning. For our analysis, we used
kernels from six heterogeneous data sets that have been used
for supervised interactive network inference in a previous
study [1]: three based on protein sequence kernels and three
based on diffusion kernels. Borrowing notation from these
authors, we used three data kernels based on sets of amino
acid sequences (spectrum (𝐾

𝑆
) [4], motif (𝐾

𝑀
) [16], and

Pfam (𝐾
𝑃
)) [17] and three diffusion data kernels based

on interaction networks from the BioGRID database [18]

(yeast two-hybrid assay (𝐾YH), genetic interactions (𝐾GI),
and affinity capture-MS (𝐾MS)) [1].

In their original study,Qiu andNoble [1] used a uniformly
weighted combination of kernels: the average value of the
three sequence kernels was added to the average of the three
diffusion kernels (we omit using their RBF kernels, given the
latter contain a kernel parameter). A tensor product pairwise
kernel (TPPK or 𝑃1 in our classification) was applied as
follows:

𝐾 = �̂�
𝑃1

(
𝐾
𝑀

+ 𝐾
𝑆
+ 𝐾
𝑃

3
+

𝐾YH + 𝐾GI + 𝐾MS
3

) . (18)

Here, we use MKL to assign weights according to the
contribution of each data source for predicting edges in a
gene interaction network. Since uniformweighting is a subin-
stance of using variable kernel weights, MKL will inevitably
improve on (or equal) a uniform weighting scheme.The data
we are using provides information on individual proteins,
rather than protein pairs, and hence we use pairwise kernels,
as outlined above. Since we have kernel weights 𝜆

ℓ
and

sequence or diffusion kernels𝐾
ℓ
, for a given pairwise kernel,

�̂�
𝑃
, our composite kernel after MKL training will be
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ℓ
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𝑃
(𝐾
ℓ
) . (19)

We used the simple MKL Matlab package [19]. Training
is compute-intensive, even with an efficient implementation,
so we learned the kernel weights using relatively small sets
of 1,000 to 4,000 examples. We found that the kernel weights
for data sets larger than 4,000 examples were barely altered,
so we did not use larger data sets for this purpose. The
learnt weights for each individual pairwise kernel appear
in Table 1. Of the three sequence data kernels, the Pfam
kernel (𝐾

𝑃
) achieves the highest weight for the TPPK kernel

𝐾
𝑃1
. By contrast, the motif kernel (𝐾

𝑀
) was assigned zero

weight in all cases but 𝐾
𝑃2
. There is a greater difference in

the way these pairwise kernels apply information from the
diffusion kernels. The TPPK (𝐾

𝑃1
) and CSPK (𝐾

𝑃5
) kernels

rely almost entirely on the affinity capture-MS data, while the
𝐾
𝑃2

and 𝐾
𝑃4

kernels are able to leverage information from
the yeast two-hybrid assay and gene interaction data as well.
No pairwise kernel uses more than five of the component
data kernels. The 𝐾

𝑃1
kernel weights exhibit the highest

variation, while the 𝐾
𝑃4

kernel has a more even distribution
of weights. Once theMKL algorithmhad learned the weights,
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Figure 1: Comparison of average rankings for accuracy (a) and AUC (b) for 20 small data sets using unweighted pairwise kernels. The dot
for each kernel identifies its mean rank; horizontal bars depict the Nemenyi test critical region for 𝛼 = 0.05. The tensor product kernel (𝐾

𝑃1
)

consistently had the highest ranking while the symmetric direct sum kernel (𝐾
𝑃2
) had the lowest. The differences between the remaining

three kernels become clearer when we consider AUC as well as accuracy: the metric learning (𝐾
𝑃3
) kernel has higher rankings than the other

two on both measures.

we recomputed the kernels as described in (19) and compared
the kernels’ performance.

The S. cerevisiae data from [1] form a balanced set
consisting of 10,980 positive and 10,980 negative pairs of
interacting genes (21,960 total pairs). Given this relatively
large data set, we wished to see how well each kernel would
perform when trained on subsets of different size. Thus,
we ran three different experiments on these data. To assess
performance on small data sets, we split the original set into
20 subsets of 1,098 examples each, randomly assigning an
equal number of positive and negative examples to each
subset. We ran 5-fold cross-validation to obtain average
accuracy and AUC (area under the ROC curve) values for
each kernel on each subset. Following the recommendations
in [20] for comparing multiple classifiers on multiple
data sets, we ranked the kernels for each data set and used
nonparametric tests to assess differences between the kernels.
We used the Friedman test to determine the significance of
differences between all five kernels and then used the post
hoc Nemenyi test to assess pairwise differences [12, 20]. To
evaluate the kernels’ performance on medium and large data
sets, we used the same procedure, splitting the original data
set into 10 subsets of 2,196 examples (1,757 training/439 test
per fold) or 5 subsets of 4,392 examples (3,514 training/878
test per fold).

We expect this experimental design to yield realistic
results for the data used in our study [21], but to extend
this work to general-purpose classifiers, we recommend
separating test data into separate classes as outlined in [22].

3.1.1. Comparison of Different Pairwise Kernels. For small
data sets, the tensor product kernel (𝐾

𝑃1
) consistently yields

the highest accuracy ranking of any pairwise kernel (mean
1.0) while the symmetric direct sum kernel (𝐾

𝑃2
) con-

sistently yields the lowest (Figure 1). The metric learning
(𝐾
𝑃3
), cosine-like (𝐾

𝑃4
), and Cartesian graph product (𝐾

𝑃5
)

pairwise kernels yield intermediate rankings, though the𝐾
𝑃3

kernel (mean 2.0) was consistently ranked higher than the
other two. When we rank the kernels based on AUC score as
well as accuracy, we again see that the𝐾

𝑃3
kernel yields higher

performance than 𝐾
𝑃4

or 𝐾
𝑃5
, but here the 𝐾

𝑃4
ranking is

higher than that for 𝐾
𝑃5
, making it difficult to identify a

clear winner between them. The 𝐾
𝑃1

kernel’s high accuracy
and AUC rankings are statistically significant (𝛼 = 0.01)
when compared to all but the𝐾

𝑃3
kernels, but the differences

between 𝐾
𝑃1

and 𝐾
𝑃3

are not statistically significant at 𝛼 =

0.05. Results for medium and large data sets (not shown) are
nearly identical, but the smaller data size yields less statistical
power.

3.1.2. Performance of Individual PairwiseKernels withMultiple
Types of Input Data. We compared the performance of each
individual pairwise kernel with and without MKL weights
using the same cross-validation procedure outlined above. To
determine whether MKL yields significant improvements for
any of the kernels, we use a Wilcoxon signed rank test for
𝑁 = 10 and 𝑁 = 20 files and a paired 𝑡-test for 𝑁 = 5

data files (there are no critical values for theWilcoxon test for
𝛼 ≤ 0.05 and𝑁 = 5). Table 2 shows the relative performance
of the weighted and averaged kernels. In many cases we find
a statistically significant increase in performance if we use
weighted kernels (weighted over the 6 constituent kernels);
even if the difference is not significant, it is rare that weighted
kernels limit performance. In particular, the weighted version
of the 𝐾

𝑃3
kernel exhibits significantly higher accuracy than

the unweighted version in all of our experiments. On large
training sets, we see a significant improvement with the
weighted versions of the𝐾

𝑃2
,𝐾
𝑃3
, and𝐾

𝑃4
kernels: increases

in accuracy range from 2.2% to 3.6%. We note that the
weighted version of the 𝐾

𝑃5
kernel yields slightly lower

accuracy on average than the unweighted version, but these
differences are not statistically significant.

Secondly, we compared the relative performance of these
composite MKL kernels with their corresponding base ker-
nels. We ran the same experiment outlined above on the
individual base kernels. In general, we see a significant
difference between the MKL-weighted kernels and their
individual base kernels. For example, the top-performing
combined kernel𝐾

𝑃1
yields accuracy that is at least 4%higher

than the nearest corresponding base kernel (Figure 2). We
note that the weights used for the constituent kernels roughly
track the relative performance of the kernels: for example,
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Table 2: Cross-validation results for the pairwise kernels using unweighted (U) and weighted (W) combinations of the six unpaired kernels
for data sets of different sizes. Shown is test accuracy averaged over 𝑁 = 20, 𝑁 = 10, or 𝑁 = 5 data sets (1,098, 2,196, or 4,392 examples,
respectively, split into 80% training and 20% test sets). In many cases, the MKL weights yield a significant improvement while in other cases
there is no significant change. Significant values are denoted as follows: ∗∗Wilcoxon signed rank 𝛼 = 0.01 or ∗𝛼 = 0.05, and †paired 𝑡-test
𝛼 < 0.01. Statistically significant values are marked in bold type.

Kernel 𝑁 = 20 𝑁 = 10 𝑁 = 5

U W U W U W
𝐾
𝑃1

0.826 0.836∗ 0.860 0.867 0.895 0.901
𝐾
𝑃2

0.667 0.662 0.663 0.681∗∗ 0.694 0.716†

𝐾
𝑃3

0.764 0.801∗∗ 0.802 0.837∗∗ 0.852 0.883†

𝐾
𝑃4

0.731 0.740 0.756 0.764 0.755 0.791†

𝐾
𝑃5

0.764 0.759 0.817 0.807 0.862 0.849
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Figure 2: Graphical depiction showing the typical improvement in
accuracywe seewhenusing aweighted sumof base kernels viaMKL.
Here, we compare the average performance of the best-performing
composite kernel, 𝐾

𝑃1
(solid grey bars), with the corresponding

base kernels (hashed bars) on data sets of three different sizes.
By leveraging information from multiple kernels, 𝐾

𝑃1
provides an

accuracy increase of 4% to 5% over the best of the base kernels.
When we use MKL over all 30 base kernels combined (𝐾All), we
achieve a further 1.2% to 1.4% increase (black bars). Differences
between 𝐾

𝑃1
and its base kernels are significant at 𝛼 < 0.001;

differences between 𝐾All and 𝐾
𝑃1

are significant at 𝛼 < 0.01.

𝐾
𝑃
and 𝐾MS yield the highest accuracy and also have the

largest weights for 𝐾
𝑃1

(see Table 1), while the two weakest
base kernels, 𝐾

𝑀
and 𝐾YH, have zero weights and do not

contribute to the final composite kernel.

3.1.3. Performance Using All Pairwise Kernels and All Types of
Input Data. Next we use MKL with all five pairwise kernels
and all six different types of input data to produce a compre-
hensive kernel,𝐾All. This gave 30 possible kernels but only 11
of these have nonzero kernel weights (Table 3). Notably, the
tensor product kernel (𝐾

𝑃1
) and the metric learning kernel

(𝐾
𝑃3
) contribute 4 and 3 base kernels, respectively. None of

the motif base kernels (𝐾
𝑀
) are included, nor are any of

the Cartesian product base kernels (𝐾
𝑃5
). The resulting 𝐾All

kernel yields accuracy that is 1.2% to 1.4% higher than the best
individual pairwise kernel (horizontal lines in Figure 2). For
all data set sizes tested, this difference is statistically signifi-
cant.The kernel weights and the improved performance both
indicate that there is complimentary information provided by
the different pairwise kernels. By contrast, the closely related
Cartesian product kernels and tensor product kernels likely
yield redundant information (Section 2.1), resulting in zero
weights for Cartesian product base kernels.

3.2. Cautious Classification. We now introduce the probabil-
ity measure considered in Section 2.3. A confidence measure
is of interest in its own right. However, our interest here is
in its use to further improve test accuracy for the pairwise-
kernel based MKL scheme already introduced. Specifically,
we consider cautious classification in which we decline to
make predictions if the confidence is sufficiently low but
make predictions of a link or nonlink in high confidence
instances. For the S. cerevisiae data set, we show that this
strategy can yield significant improvements in test accuracy,
though at the cost of a reduced set of predictions.

In Figure 3 we plot the test accuracy (as a fraction) versus
the 𝑝-value cutoff (a) when using all the above mentioned
pairwise and data kernels. The test accuracy increased up to
0.996 as we increased the 𝑝-value cutoff, while the number of
points predicted dropped to 246 (11.2%). If we used individual
pairwise kernels with all the available data (we illustrate with
𝐾
𝑃1

in this figure), then the test accuracy was lower (0.86 to
0.97 for 𝐾

𝑃1
), but, as illustrated, we also noticed a greater

sensitivity to outliers (incorrect link-labels) for high values
of the 𝑝-value cutoff. These numerical simulations are for
𝑚 = 2, 196 and so they correspond to the weighted values
for𝑁 = 10 in Table 2 when the cutoff is 𝑝 = 0.50.

3.3. Data Cleaning. To address the impact of outliers on our
classifiers, we investigated two data cleaning methods. In
each method, our goal was to train an SVM using as many
informative examples as possible while eliminating counter-
productive examples (outliers). In both cases, we initiated
training with a small subset of reliably labelled datapoints,
where the label of link (positive) or nonlink (negative) is
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Table 3: Kernel weights learned for a comprehensive kernel,𝐾All, that combines all base pairwise kernels. For each pairwise kernel, we show
the final weight assigned to each of its base kernels.The tensor product kernel (𝐾

𝑃1
) and the metric learning kernel (𝐾

𝑃3
) contribute the most

information to this comprehensive kernel. None of the motif base kernels (𝐾
𝑀
) contribute, nor do any of the Cartesian product base kernels

(𝐾
𝑃5
). The kernel weights sum to unity.

Kernel Kernel weights for combined model
𝐾
𝑀

𝐾
𝑃

𝐾
𝑆

𝐾GI 𝐾YH 𝐾MS

𝐾
𝑃1

0 0.193 0 0.103 0.075 0.372
𝐾
𝑃2

0 0.002 0 0.010 0 0
𝐾
𝑃3

0 0.044 0 0.023 0 0.153
𝐾
𝑃4

0 0.006 0 0.019 0 0
𝐾
𝑃5

0 0 0 0 0 0
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Figure 3: Plot of the test accuracy ((a) 𝑦-axis) and fraction of pairs predicted ((b) 𝑦-axis) as a function of the 𝑝-value cutoff (𝑥-axis) for (i)
using all available pairwise and data kernels (𝐾All, solid curve) and (ii) the top-performing pairwise kernel (𝐾

𝑃1
, dashed curve). By increasing

the 𝑝-value cutoff, we increase the accuracy in our predictions but decrease the fraction of pairs for which we can make predictions.

known. To obtain reliable representatives from both positive
and negative example classes, we estimated the centroids of
each class and chose the 10 datapoints in each class that were
closest to their centroids (alternatively, biological insight may
give a reliable starting set). We then learnt the remaining
datapoints sequentially and avoided potential outliers using
one of two strategies. Our first approach, introduced by [3],
is to predict the labels for all currently unlearnt links in the
training data and use the datapoint with the lowest associated
confidence for training in the next iteration. This procedure
tends to postpone learning potential outliers to the end of the
learning process but incurs a high computational cost as it
makes predictions for all unlearnt links at each iteration. A
second and less computationally costly approach is to select
the next training example randomly at each iteration and
predict its label using the current classifier. If the prediction
is high confidence but the actual label is of opposite sign, we
omit the datapoint since it may be an outlier.

For the data set considered [1], there appear to be few
anomalous links in the data, so there is at most a small gain
in test accuracy when we use these methods. In Figure 4,
we give the test error achieved on held-out data, averaged
over 10 distinct data sets from the experiments described in
Section 3.1. In this case, we are making predictions of link-
labels over all currently unlearnt datapoints and learning that
datapoint with the lowest associated confidence for the link-
label. The learning curve has a shallow minimum of the test
error with a fractional test error of 0.1380 at𝑚 = 1563, against
a final test error of 0.1490 at 𝑚 = 2000, having learnt all

the data in the training set. Of course, we can also lessen the
influence of outliers by using an 𝐿

1
or 𝐿
2
soft margin with

a margin-based classifier [2, 3]. However, when using a soft
margin, we need to pursue a validation study, using some
held-out data, to establish the most appropriate value for
the soft margin parameter. With the proposed data cleaning
method, there is no need to use validation data since there is a
suitable stopping criterion available. Specifically, we can stop
learning new datapoints when the equivalent of the margin
band is empty [3], that is, when |𝜙(x

𝑖
1

, x
𝑖
2

)| > 1 in (15). At this
point, wewould be learning two types of link-labels. Eitherwe
learn a link-label of the expected sign, that is, the predicted
link-label and actual label agree, or the predicted link-label
and actual label disagree. If the predicted and actual link-
labels agree then this potential link is the equivalent of a non-
support vector, with 𝛼

⋆

𝑖
1
,𝑖
2

= 0, and so it will not contribute to
the decision function stated in (15). We therefore do not need
to learn this datapoint. Alternatively, the new link will have
a label that is substantially out-of-alignment with the current
hypothesis (after having learnt a number of link-labels).With
|𝜙(x
𝑖
1

, x
𝑖
2

)| > 1, it is being placed within the data space of the
oppositely labelled datapoints. Such a link could be correct,
but it does have a strong possibility of being an outlier. We
would not stop before the margin band is empty because
the newly learnt datapoints will have 𝛼

⋆

𝑖
1
,𝑖
2

> 0 and thus
will contribute to the decision criterion stated in (15). This
stopping criterion gave a termination point that is within 0.1%
of the empirically observed minimum error, with cessation
of learning after 1,642 samples, with a test error of 0.1323, as
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Figure 4: Mean test error as a fraction (𝑦-axis) versus the number
of patterns learnt (𝑥-axis) for the top-performing pairwise kernel,
𝐾
𝑃1
. Error bars depict a 95% confidence interval for 5-fold cross-

validation test error averaged over 10 distinct data subsets, each with
𝑚 = 2, 196.The upper curve gives the performance if we learn all the
data sequentially (from a common start set) in random order. The
lower curve gives the test accuracy if the next addition to the training
set is chosen based on having the lowest confidence predicted link-
label.

against the observed minimum test error of 0.1319 at 1,565
samples learnt. Beyond this stopping point, the test error can
rise as we may start learning links (or nonlinks) which are
anomalously labeled.

An additional advantage of using this sequential learning
method is that the prospects of achieving convergence with
a linear kernel are enhanced. Specifically, a mislabelled
datapoint can appear as a wrongly labelled datapoint within
a cluster of datapoints of the opposite sign. This would mean
the two classes of data can become nonseparable, requiring
the use of a nonlinear kernel (e.g., an RBF kernel), with an
associated validation study to find the appropriate value of
the kernel parameter.

4. Conclusion

In this paper, we have investigated supervised interactive net-
work inference using multiple kernel learning. Our objective
was to consider ways to improve prediction performance and
there are five main conclusions drawn from our study. Firstly,
we compared five different types of pairwise kernel, which did
not require adjustment of a kernel parameter, on six different
types of data for supervised network inference. Our conclu-
sion was that the pairwise kernel 𝑃1 (TPPK) worked best.
Next, we considered whether use of a weighted combination
of kernels (data sources) performed better than a uniformly
weighted combination (Table 2) and, as expected, we found
this was the case. Thirdly, for each pairwise kernel, we
established performance using MKL over these six different
data kernels and then compared this with the performance
of MKL, when using all five different types of pairwise kernel

and taken over all six different types of data; that is, the algo-
rithm could use a weighted combination of 30 different types
of kernel. At a statistically significant level, we found that
this 30-base kernel combination outperformed the best of the
individual pairwise kernels taken in isolation by between 1.2
and 1.4 percentage points.Thus, TPPKmay look like themost
effective pairwise kernel, but there must be complementary
information among these different types of pairwise kernels
and they are best used in combination with kernel-selection
being made by the algorithm. To further improve predictive
test accuracy, we next introduced a confidence measure
associated with the class assignment. We showed that there
are significant gains from using cautious classification, where
prediction is confined to a high confidence instance. Our fifth
study was to investigate the use of this probability measure
with data cleaning. The S. cerevisiae data set considered
appears clean, with only a few link-labels suggested as being
possibly mislabelings. Thus, this strategy only gave a gain of
1.7% in our study in Section 3.3.However, label noisemay be a
more substantial problem in the understanding of pathways
in more advanced organisms. This strategy would therefore
likely yield better gains in these contexts.

In short, each component strategy has delivered modest
through to more substantive improvements in predictive
accuracy. Taken together, though, they lead to a substantial
improvement in predictive accuracy over previous studies [1]
and a highly accurate predictor.

As a consequence of this investigation, we have identified
several potentially fruitful avenues for future work. We
selected the SimpleMKL method for its speed and relatively
sparse kernel weights, but other weighting methods con-
ceivably could provide better performance [12, 23]. Further,
recently proposed methods for predicting protein interac-
tions such as coevolutionary divergence [24] and remote
homology [25] could be used to extend our model. Finally,
we have enumerated several approaches to data cleaning that
could become increasingly effective as novel data sets become
available.
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