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A shrinkage curve optimization is proposed for weighted nuclear norm minimization and is adapted to image denoising. The
proposed optimization method employs a penalty function utilizing the difference between a latent matrix and its observation and
uses odd polynomials to shrink the singular values of the observationmatrix. As a result, the coefficients of polynomial characterize
the shrinkage operator fully. Furthermore, the Frobenius norm of the penalty function is converted into the corresponding spectral
norm, and thus the parameter optimization problem can be easily solved by using off-and-shelf plain least-squares. In the practical
application, the proposed denoising method does not work on the whole image at once, but rather a series of matrix termed Rank-
Ordered SimilarMatrix (ROSM). Simulation results on 256 noisy images demonstrate the effectiveness of the proposed algorithms.

1. Introduction

Low rank matrix approximation has been attracting signif-
icant research interest in recent years. This approach aims
to reconstruct the latent data from its degraded observation
matrix and is frequently applied in many fields, such as
machine learning [1], computer version [2], recommendation
system [3], and image processing [4]. As a branch of this
research, a regularized nuclear norm minimization problem
is widely considered over matrices,

min
X∈R𝑛×𝑚

(𝑓 (X) + 𝜇 ‖X‖∗) , (1)

where X denotes a matrix, scalar 𝜇 > 0 is a parameter,
and 𝑓(X) and ‖X‖∗ are the data fidelity term and the data
regularization term, respectively. In this formula, ‖X‖∗ =∑min(𝑚,𝑛)
𝑖=1 𝜎𝑖(X) is called the nuclear norm of X, where 𝜎𝑖(X)

denotes the 𝑖th largest singular value of X.
If 𝑓(X) is convex, then 𝑓(X)+𝜇‖X‖∗ is a convex function

because nuclear norm ‖X‖∗ is also convex. Thus, problem
(1) is a convex optimization problem and can be treated
by using various classic iterative optimization algorithms

including steepest-descent, conjugate-gradient, and interior-
point algorithms.When the data fidelity term𝑓(X) = 1/2‖X−
Y‖2𝐹, where Y is an observation matrix and ‖ ⋅ ‖𝐹 denotes
the Frobenius norm operator, this is the well-known nuclear
norm minimization (NNM) [5]. The NNM problem was
proved that it can be solved by applying a soft threshold
operation on the singular values of Y, and the solution
can be achieved using a Singular Value Thresholding (SVT)
algorithm [6].

Despite the success of NNM, it is not flexible enough to
handle more complex issues. To pursue the convex property,
NNM treats each singular value equally. As a result, the
soft-thresholding operator shrinks each singular value by the
same amount [6]. In principal component analysis however,
different principal directions quantify different information.
For example, the large singular value delivers the major
feature information such as edges and texture. This implies
that, in image denoising, the larger the singular value is, the
lesser the amount shrinks. Obviously, the NNM model and
the corresponding solver cannot handle this issue.

To overcome this limitation, a regularized nuclear norm
minimization with weights was put forward. These weights
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may enhance the representation capability of the original
nuclear norm. Its form is as follows:

min
X∈R𝑛×𝑚

(𝑓 (X) + min(𝑚,𝑛)∑
𝑖=1

𝑔 [𝑖] 𝜎𝑖 (X)) , (2)

where 𝑔[𝑖] is the weight designed to 𝜎𝑖(X).
Problem (2) is a nonconvex nonsmooth low rank min-

imization problem. Of course, if 𝑔[𝑖] is replaced with 𝜇,
problem (2) reverts to problem (1). Solving problem (2)
is challenging, or even NP-hard. To solve this problem,
researchers presented some assumption to handle it. Gu et
al. [7] assumed that 𝑔 is nondescending on [0,∞), 0 ≤𝑔[1] ≤ ⋅ ⋅ ⋅ ≤ 𝑔[min(𝑚, 𝑛)], and thus problem (2) becomes
convex and can be solved by a soft-thresholding operation.
Moreover, the authors devised a solver in which 𝑔[𝑖] is
inversely proportional to 𝜎𝑖(X). Gasso et al. [8] argued that
if both 𝑓 and −𝑔 are convex, problem (2) can be solved by
DC (Difference of Convex functions) programming. Lu et
al. [9] assumed that 𝑔 is concave increasing monotonically
on [0,∞) and 𝑓 satisfies Lipschitz continuous condition;
the weights are achieved at the super gradient point of the
concave function 𝑔. Based on this assumption, the authors
proposed Iteratively Reweighted Nuclear Norm (IRNN)
method. In addition, Hu et al. [10] reported their Truncated
Nuclear Norm Regularization (TNNR)method, based on the
same assumptions as in [9].

By applying these low rank matrix approximation theo-
ries, different image denoising methods have been reported.
For example, a method of coupling sparse denoising and
unmixing with low rank constraint is proposed for hyper-
spectral image in [11]; a scheme of incorporating iterative
support detection into TNNR is presented to reduce white
Gaussian noise in [12]; the eigenvectors of the Laplacian are
considered to suppress Gaussian noise in [13]; a weighted
nuclear norm minimization model is presented [14] and is
used in three applications, that is, image denoising, back-
ground subtraction, and image completion. These methods
achieve high quality results. A main reason is that all of them
employ a powerful patch-based technique.

Inspired by weighted nuclear norm minimization and
patch-based technique, a parameter optimization method is
proposed in this paper. The proposed method utilizes the
difference between a latent matrix and its observation to
design a penalty function and employs odd polynomials to
shrink the singular values of the observation matrix. As a
result, the coefficients of polynomial fully characterize the
shrinkage operator. Furthermore, for the penalty function, its
Frobenius norm is converted into a spectral norm. Thereby,
the parameter optimization can be easily solved by using plain
least-squares.

To validate the effectiveness, the optimization theory is
applied in image denoising. Since the proposed method is to
optimize shrinkage curves, it is called OSC method. In the
practical application, the OSC method does not work on the
whole image at once, but rather a series of matrix termed
Rank-Ordered Similar Matrix (ROSM, see Definition 2).
Thirty-two images were tested. Experimental results show
that theOSCmethod achieves better results than the Bilateral

Filter; when the noisy standard deviation is less than 20, the
results achieved by OSC are better than those by BM3D, and
when the noisy standard deviation varies from 20 to 40, the
results by OSC are weaker than by BM3D.

The contribution of this paper is twofold. Firstly, in
the penalty function devised for weighted nuclear norm
minimization, the weight representation is replaced by odd
polynomials. So, the coefficients of polynomial characterize
the role of the weights fully. Furthermore, the Frobenius
norm of the penalty function is converted into a spec-
tral norm. Secondly, the proposed optimization method is
adapted to image denoising. Experimental results show that
the proposed OSC method outperforms the Bilateral Filter
and also is superior to the BM3D method on the case of low
noise.

The rest of paper is organized as follows. In Section 2,
the shrinkage curve optimization is formulated. Section 3
describes the image denoising algorithm, and the corre-
sponding analysis is followed in Section 4. Section 5 reports
the experimental results, and conclusions are drawn in
Section 6.

2. Optimizing Shrinkage Curves

In this section, the problem to be discussed is formulated, and
the method of optimizing shrinkage curves is followed.

2.1. Problem Formulation. LetX be a unknown squarematrix
in R𝑛×𝑛, and let Y be its observation. The observed matrix is
corrupted by white Gaussian noise N with deviation 𝜎2. This
is expressed as

Y = X +N. (3)

To reconstruct the original squarematrixX from its noisy
version, the following weighted nuclear norm minimization
with a constraint is considered:

min ‖X‖∗,w ,
subject to ‖Y − X‖2𝐹 < 𝜀, (4)

where 𝜀 is a threshold, ‖X‖∗,w = ∑𝑖 |𝑤𝑖𝜎𝑖(X)|1, and ‖Y −
X‖2𝐹 = ∑𝑖∑𝑗(𝑦𝑖𝑗 − 𝑥𝑖𝑗)2. In this formula, 𝜎𝑖(X) denotes the𝑖th largest singular value of X, and ‖X‖∗,w and ‖Y − X‖𝐹 are
the weighted nuclear norm of X and the Frobenius norm of(Y−X), respectively. Our aim is to use polynomial coefficients
to characterize the weights and obtain the solution of the
problem.

2.2. Optimization Method. As in [7], it is proven that the
weighted nuclear norm minimization (4) can be solved by
imposing a soft threshold operation on the singular values of
observation matrix. The form is as follows:

X=U𝑆 (Σ)V𝑇, (5)

where Y = UΣV𝑇 is the Singular Value Decomposition
(SVD) of Y and 𝑆 is the soft-thresholding operator. This
operator with weight vector w shrinks the singular values;
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𝑆(Σ)𝑖𝑖 = max(Σ𝑖𝑖−𝑤𝑖, 0). To obtain the thresholds, the follow-
ing penalty function is employed:𝑓 (𝑆) = 󵄩󵄩󵄩󵄩󵄩X − U𝑆 (Σ)V𝑇󵄩󵄩󵄩󵄩󵄩2𝐹 . (6)

Assuming that shrinkage operation is applied differently
to every singular value in matrix Σ, and thus it can be broken
into

𝑆 (Σ) = [[[[[[[
𝑠1 (Σ [1]) 0 ⋅ ⋅ ⋅ 00 𝑠2 (Σ [2]) ⋅ ⋅ ⋅ 0... ... d

...0 0 ⋅ ⋅ ⋅ 𝑠𝑛 (Σ [𝑛])
]]]]]]]
, (7)

where Σ[𝑖] is the 𝑖th largest singular value of Y and 𝑆𝑖 denotes
the 𝑖th shrinkage operator. In our work, odd polynomials
are taken to represent these shrinkage operators, where
the coefficients of polynomial characterize the shrinkage
operator fully. Thus, the shrinkage operator is expressed
as

𝑠𝑖 (Σ) = 𝐽∑
𝑗=1

𝑐𝑖 [𝑗] Σ2×𝑗−1, for 𝑖 = 1, 2, . . . , 𝑛. (8)

Substituting (8) into (7), the shrinkage operator can be
rewritten as

𝑆c (Σ) =
[[[[[[[[[[[[[[[[

𝐽∑
𝑗=1

𝑐1 [𝑗] Σ [1]2×𝑗−1 0 ⋅ ⋅ ⋅ 0
0 𝐽∑

𝑗=1

𝑐2 [𝑗] Σ [2]2×𝑗−1 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 𝐽∑

𝑗=1

𝑐𝑛 [𝑗] Σ [𝑛]2×𝑗−1

]]]]]]]]]]]]]]]]
. (9)

Substituting (9) into (6) and considering V is a unitary
matrix, the penalty function can be rewritten as

𝑓 (𝑐1, 𝑐2, . . . , 𝑐𝑛) = 󵄩󵄩󵄩󵄩XV − U𝑆c (Σ)󵄩󵄩󵄩󵄩2𝐹 . (10)

The focus now shifts to optimization of the penalty
function. To obtain the optimal solution by using plain least-
squares, the Frobenius norm in (10) is converted into a
spectral norm. For ease of formulation, a vector c ∈ R𝑛𝐽 is
defined that contains all the coefficients series: {𝑐𝑖[𝑗] : 𝑗 =1, . . . , 𝐽}, for 𝑖 = 1, 2, . . . , 𝑛; that is,
c𝑇 = [𝑐1 [1] , 𝑐1 [2] , . . . , 𝑐1 [𝐽] , 𝑐2 [1] , . . . , 𝑐𝑛 [1] , 𝑐𝑛 [2] , . . . ,𝑐𝑛 [𝐽]] . (11)

A matrix Z ∈ R𝑛
2×𝑛𝐽 is also defined that is a block-

diagonal matrix with 𝑛 blocks,
Z = [[[[[[

z [1]
z [2]

d

z [𝑛]
]]]]]]
, (12)

where each of the blocks z[𝑖] is size of 𝑛 × 𝐽, with the content

z [𝑖] = [[[[[[[
11...1
]]]]]]]
∗ [Σ [𝑖]1 Σ [𝑖]3 ⋅ ⋅ ⋅ Σ [𝑖]2×𝐽−1] ,

for 𝑖 = 1, 2, . . . , 𝑛.
(13)

In addition, two operators, vec and diag, are introduced.
The vec operator returns a vector by concatenating the
columns in a matrix; the diag operator returns a diagonal
matrix by putting the elements of a vector on the main
diagonal. For example, if M = [𝑚11, 𝑚12; 𝑚21, 𝑚22] is a
matrix, vec (M) returns the vectorm = (𝑚11, 𝑚21, 𝑚12, 𝑚22)𝑇;
if m = (𝑚1, 𝑚2, 𝑚3, 𝑚4)𝑇 is a vector, diag (m) returns the
diagonal matrix where the main diagonal is (𝑚1, 𝑚2, 𝑚3, 𝑚4).

Using these notations and operators, the penalty function
(10) can be rewritten as𝑓 (c) = 󵄩󵄩󵄩󵄩vec (XV) − diag (vec (U))Zc󵄩󵄩󵄩󵄩22= ‖b − AZc‖22 , (14)

where b = vec (XV) and A = diag (vec (U)).
The optimal set of parameters that define the shrinkage

curves is 𝜕𝑓 (c)𝜕c = 0 = AZ𝑇 (AZc − b) , (15)
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which leads to

copt = [Z𝑇A𝑇AZ]−1 [Z𝑇A𝑇b] . (16)

3. Application in Image Denoising

In this section, the OSC method is introduced for image
denoising, containing denoising modeling data and the
denoising algorithm.

3.1. Denoising Modeling Data. The proposed OSC method
does not work on the whole image at once, but rather a
matrix-set in which each matrix contains a fixed number of
similar patches extracted from the original noisy images. A
patch is first defined as follows.

Definition 1. Y denotes an image, sized 𝑁1 × 𝑁2 pixels. Let𝑦𝑟 = Y(𝑖, 𝑗) be a reference pixel. A block of size √𝑛 × √𝑛 is
extracted from Y, where 𝑦𝑟 resides at the top-left corner. By
applying vec to the block, the√𝑛×√𝑛 block is identifiedwith
a vector in R𝑛. The corresponding patch is defined by

p𝑟

= vec( Y (𝑖, 𝑗) ⋅ ⋅ ⋅ Y (𝑖, 𝑗 + √𝑛 − 1)... d
...

Y (𝑖 + √𝑛 − 1, 𝑗) ⋅ ⋅ ⋅ Y (𝑖 + √𝑛 − 1, 𝑗 + √𝑛 − 1))
=( 𝑦𝑟...𝑦𝑟+𝑛−1),

(17)

where 𝑖 ∈ {1, 2, . . . , 𝑁1−√𝑛+1} and 𝑗 ∈ {1, 2, . . . , 𝑁2−√𝑛+1}.
When all pixels are complete, a patch-set in R𝑛 can be built,
denoted byP = {p𝑟 : 𝑟 = 1, 2, . . . , (𝑁1 −√𝑛+1)× (𝑁2 −√𝑛+1)}.
Definition 2. Let p𝑟 ∈ P be a reference patch and ‖ ⋅ ‖ denote
the Euclidean norm; the distance between p𝑟 and p𝑗 can be
calculated, using the metric𝑑𝑟𝑗 = 󵄩󵄩󵄩󵄩󵄩p𝑟 − p𝑗

󵄩󵄩󵄩󵄩󵄩2 , for p𝑗 ∈ P. (18)

These scalar distances are then sorted and the patches in
P are correspondingly ordered,𝑑𝑟(1) ≤ 𝑑𝑟(2) ≤ ⋅ ⋅ ⋅ ≤ 𝑑𝑟(𝑀) 󳨀→ p(1) ≺ p(2) ≺ ⋅ ⋅ ⋅≺ p(𝑀), (19)

where 𝑑𝑟(𝑗) denotes the 𝑗th smallest distance value, ≺ denotes
the order relation between patches, and𝑀 = |P| = (𝑁1 −√𝑛+ 1) × (𝑁2 −√𝑛+ 1) denotes the number of patches inP.
The denoising modeling data, termed Rank-Ordered Similar
Matrix (ROSM), are defined as

Y𝑟 = ROSM (𝑟) = (p(1), p(2), . . . , p(𝑛)) . (20)

Obviously, ROSM is a squarematrix of size 𝑛×𝑛 andp(1) =
p𝑟. When all patches inP are complete, a matrix-set inR𝑛×𝑛

can be built, denoted by M̃ = {Y𝑟 : 𝑟 = 1, 2, . . . ,𝑀}.

3.2. Denoising Algorithm. The proposed denoising algorithm
consists of Algorithms 1 and 2.The former trains the polyno-
mial coefficients copt, and the latter reduces noise.

SupposeY is a noisy image andX is its noise-free version.
Based on Definition 2, the matrix-set M̃ of Y is built, and the
corresponding noise-freematrix-set is also obtained, denoted
by M = {X𝑟 : 𝑟 = 1, . . . ,𝑀}. Thereby, there exist 𝑀
paired samples {(X𝑟,Y𝑟) : 𝑟 = 1, . . . ,𝑀} to train copt. The
corresponding penalty function is as follows:

𝑓 (c) = 𝑀∑
𝑟=1

󵄩󵄩󵄩󵄩X𝑟V𝑟 − U𝑟𝑆c (Σ𝑟)󵄩󵄩󵄩󵄩2𝐹 , (21)

where U𝑟Σ𝑟𝑉𝑇𝑟 =SVD (Y𝑟). The optimum parameters are

copt = [𝑀∑
𝑟=1

(Z𝑇𝑟A𝑇𝑟A𝑟Z𝑟)]−1 [𝑀∑
𝑟=1

(Z𝑇𝑟A𝑇𝑟 b𝑟)] , (22)

where b𝑟 = vec (X𝑟V𝑟), A𝑟 = diag (vec (U𝑟)), and Z𝑟 can be
obtained by using (12) and (13).

Next, the two-iteration denoising algorithm is intro-
duced. Suppose Y is a noisy image to be processed, of size𝑁1 × 𝑁2. Employing Definition 2, the matrix-set M̃ of Y is
built. For any ROSM Y𝑟 in M̃, the estimate of its noise-free
version can be obtained by

X̂𝑟 = U𝑟𝑆c (Σ𝑟)V𝑇𝑟 , (23)

where Y𝑟 = U𝑟Σ𝑟VT
𝑟 is the SVD of Y𝑟 and 𝑆c(Σ𝑘) is expressed

as (10). When all ROSMs in M̃ are complete, an estimated-
set can be built, denoted by M̂ = {X̂𝑟 : 𝑟 = 1, 2, . . . ,𝑀}.
Every estimate X̂𝑟 is put back into the original image canvas,
then intensities of pixels falling in the same position in the
canvas are averaged. And thus, the first-estimate of the noise-
free image is obtained, denoted by X̂(𝑡 = 1). Repeating the
above operations again, the second-estimate X̂(𝑡 = 2) is also
yielded.

In addition, a scaled version of the residual error, the dif-
ference between the noisy and estimated image, is considered.
Let 𝑅𝑟 denote the operation putting the 𝑟th estimate X̂𝑟 back
into the original image canvas; the denoising method can be
expressed as the following tuples formula:

X̂ (𝑡) = (𝑀∑
𝑟=1

𝑅𝑟 (U𝑟𝑆c(𝑡) (Σ𝑟)V𝑇𝑟 )) ⊘D

Ŷ (𝑡) = X̂ (𝑡) + 𝛾 (Y − X̂ (𝑡)) ,
for 𝑡 = 1, 2,

(24)

where X̂(𝑡) is the 𝑡th image estimate, Ŷ(𝑡) is the 𝑡th adjust-
ment, 𝛾 is the scaled factor of residual error, ⊘ denotes entry-
wise division, andD denotes the matrix with the same size as
the noisy image, in which each entry records the number that
the pixel on the same location is processed.
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Input:𝑁 paired images, {(X(𝑖),Y(𝑖)) | 𝑖 = 1, 2, . . . , 𝑁}
(1) Initialize the tableW = 0;
(2) for 𝑡 = 1 : 2
(3) Initialize a parameter 𝑐opt(𝑡) = [0]; // of size 𝑛𝐽 × 1.
(4) for 𝑖 = 1 : 𝑁
(5) Initialize S1 = [0];
(6) Initialize s2 = [0];
(7) Get a paired images, (X,Y) ← (X(𝑖),Y(𝑖));
(8) Based on Definition 1, extract all patches from image Y and build the patch-setP = {p𝑟}
(9) for each patch p𝑟 inP do
(10) Based on Definition 2, obtain a ROSM Y𝑟;
(11) Obtain the matrix X𝑟 corresponding to Y𝑟;
(12) Singular value decomposition, [U𝑟Σ𝑟V𝑇𝑟 ] = SVD (Y𝑟);
(13) Map X𝑟V𝑟 to a vector, b𝑟 = vec (X𝑟V𝑟);
(14) Map U𝑟 to a diagonal matrix, A𝑟 = diag (vec (U𝑟));
(15) Map Σ𝑟 to a diagonal block matrix Z𝑟, according to Eq. (12) and (13);
(16) Accumulation, S1 = S1+Z𝑇𝑟A𝑇𝑟A𝑟Z𝑟;
(17) Accumulation, s2 = s2+Z𝑇𝑟A𝑇𝑟 b𝑟;
(18) end for
(19) Obtain a optimized parameter, 𝑐opt(𝑡) = [S1]−1[s2];
(20) if 𝑡 = 1 do
(21) for each patch p𝑟 in Y do
(22) Obtain the estimation Ŷ𝑟 = U𝑟𝑆c(Σ𝑟)V𝑇𝑟 ;
(23) Plug Ŷ𝑟 into the image canvas of the noisy image Y;
(24) end for
(25) Obtain a new Y(𝑖) ← Average the pixels for fixed position in the image canvas;
(26) end if
(27) Save the copt(𝑡) to TableW;
(28) end for
(29) end for
Output: TableW that containing the parameters copt.

Algorithm 1: Training the coefficients copt.

Input: Noisy image Y and the shrinkage parameters c(𝑡)
(1) Initialize the intermediate image X̂(0) = (Y−127)/128 and adjusted image Ŷ(0) = (Y−127)/128;
(2) MIN = mix ((Y−127)/128);
(3) MAN = max ((Y−127)/128);
(4) for 𝑡 = 1 : 3
(5) Set a counter to zeros,D = [0];
(6) Obtain an adjusted estimate, Ŷ(𝑡) = X̂(𝑡 − 1) + 𝛾(Y − X̂(𝑡 − 1));
(7) According to Definition 1, build the patch-setP = {𝑝𝑟}, associated with image Y;
(8) for each patch 𝑝𝑟 inP do
(9) According to Definition 2, obtain a ROSM Y𝑟;
(10) Singular value decomposition, [U𝑟Σ𝑟V𝑇𝑟 ] = SVD (Y𝑟);
(11) Find the parameter c(𝑡) corresponding to Y𝑟 from TableW;
(12) Obtain the estimation Ŷ𝑟 = U𝑟𝑆c(Σ𝑟)V𝑇𝑟 ;
(13) if (Ŷ𝑟 < MIN), then Ŷ𝑟 = Y𝑟;
(14) if (Ŷ𝑟 > MAN), then Ŷ𝑟 = Y𝑟;
(15) Put Ŷ𝑟 back into the image canvas;
(16) In counter D, the entries associated with pixels in Ŷ𝑟 is added by 1;
(17) end for
(18) Obtain an estimated image, X̂(𝑡) ← obtained canvas image is entry-wisely divided by D;
(19) end for
Output: The final estimated image Ŷ(3) × 128 + 127.

Algorithm 2: Optimizing shrinkage curves based denoising algorithm.
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4. Algorithm Analysis

In this section, the influence of different levels of noise for the
singular vectors is first discussed; then the shrunken scales of
singular values are analyzed.

4.1. Influence of Different Levels of Noise for Singular Vectors.
Two matrices, Y𝛼 and Y𝛽, are chosen arbitrarily from the
noisymatrix-setM̃, and y(𝛼) = vec (Y𝛼) and y(𝛽) = vec (Y𝛽).
Thus, y(𝛼) = x(𝛼) + n(𝛼) and y(𝛽) = x(𝛽) + n(𝛽), where
x denotes the noise-free vector and n is white noise. The
squared Euclidean distance between the two vectors y(𝛼) and
y(𝛽) is󵄩󵄩󵄩󵄩y (𝛼) − y (𝛽)󵄩󵄩󵄩󵄩22 = 󵄩󵄩󵄩󵄩x (𝛼) − x (𝛽)󵄩󵄩󵄩󵄩22+ 2 ⟨x (𝛼) − x (𝛽) ,n (𝛼) − n (𝛽)⟩+ 󵄩󵄩󵄩󵄩n (𝛼) − n (𝛽)󵄩󵄩󵄩󵄩22 , (25)

where the symbol ⟨⋅⟩ is the inner-product operator.
The vector difference, n(𝛼)−n(𝛽), is the Gaussian noise

with covariancematrix 2𝜎2𝑛2I, where symbol I denotes iden-
titymatrix. Based on the argument in [15], if the dimension of
y is large, the norm squared, ‖n(𝛼) − n(𝛽)‖22, is concentrated
around its mean 2𝜎2𝑛2, with high probability. Similarly, the
projection ⟨x(𝛼) − x(𝛽),n(𝛼) − n(𝛽)⟩ of the noise on the
deterministic vector x(𝛼) − x(𝛽) is concentrated around 0
with high probability. Therefore, (17) can be interpreted as a
translation-invariant procedure.

On the other hand, as the noise level increases, the
singular vectors of Y𝑟 ∈ M̃ are no longer aligned with
the original singular vectors of noise-free matrix X𝑟. As a
result, the number of reliable singular vectors of Y𝑟 becomes
smaller. For example, whenX𝑟 is corrupted byGaussian noise
at very small magnitude, all the singular vectors of Y𝑟 track
the noise; when corrupted at a large magnitude, the number
of the singular vectors tracking the noise becomes smaller.
Therefore, at increasing noise level, the singular vectors of
Y𝑟 become more and more unreliable and result in worse
restored feature.

4.2. Shrunken Scales of Different Singular Values. Let (Y𝑟,X𝑟)
be a paired samples andΣ[𝑖] be the 𝑖th largest singular value of
Y𝑟 ∈ R𝑛×𝑛.The coefficients vector copt, of size 𝑛𝐽×1, is trained
on the paired samples and then is divided into 𝑛 parts; (𝑐𝑖)𝑇 =[𝑐𝑖[1], 𝑐𝑖[2], . . . , 𝑐𝑖[𝐽]] for 𝑖 = 1, 2, . . . , 𝑛, where 𝑐𝑖 corresponds
to the 𝑖th largest singular value of Y𝑟. And thus, the estimate
of the 𝑖th largest singular value of Y𝑟 is as follows:Σ̂ [𝑖] = 𝐽∑

𝑗=1

𝑐𝑖 [𝑗] (Σ [𝑖])2∗𝑗−1 , for 𝑖 = 1, 2, . . . , 𝑛. (26)

To observe the shrunken scales of the different Σ[𝑖]
visually, the shrinkage curves are shown in Figure 1. Test
results show that (i) different singular values Σ[𝑖] have
different shrunk scales; (ii) the larger the singular value, the
smaller the shrunk scales; (iii) the shrunken scales for fixed
index singular value are almost the same although Y𝑟 is
corrupted by different levels of noise.

5. Experiments

In this section, the OSC denoising performance is evaluated.
In Section 5.1, setting parameters are formulated. Section 5.2
introduces two metrics, the Peak Signal-to-Noise-Ratio
(PSNR) and the Mean Structural Similarity Index Measure
(MSSIM). Section 5.3 reports the experimental results, and
the comparisons with other methods are discussed.

5.1. Setting Parameters. A total of three parameters are set
in the proposed method, a scale factor 𝛾 of residual error,
an integer 𝐽 regulating odd polynomial order, and a patch-
size √𝑛 × √𝑛. The large 𝛾 may lead to oscillatory effects.
For all noise levels, it is desirable for 𝛾 to be set to 0.1.
To study the effect of parameters (𝐽, √𝑛) on denoising, the
coefficients vector copt was trained on the Lena image, and
the trained copt is used to reduce noise for the Barbara image.
The influences of 𝐽 and√𝑛 for PSNR results are shown in the
left and right insets in Figure 2, respectively. By experience,
these parameter values used in our experiments are shown in
Table 1. During implementation process, because the behav-
ior of coefficients copt on large entries may be completely
distorted, thereby an input value outside the training range
may be violently magnified. For this case, the algorithm
checks whether the input is within the learning data range,
and if not, it is not modified at all.

5.2. Two Metrics. The PSNR measurement is based on pixel
intensity errors between the noise-free and the restored
images, given in decibels (dB). Higher PSNR means better
denoising capability. Let X and X̂ be the noise-free and the
restored image, respectively, |X| denote the cardinality of X,
and ‖⋅‖𝐹 denote the Frobenius norm; the calculation of PSNR
is as follows:

PSNR = 20 log10( 255|X|−1∑3𝑞=1 󵄩󵄩󵄩󵄩󵄩X𝑞 − X̂𝑞󵄩󵄩󵄩󵄩󵄩2𝐹) . (27)

The MSSIM measurement is the mean SSIM that yields
mean value of structural similarities. MSSIM values are
bounded in the range [0, 1], and the closer the value is to 1,
the better the denoising scheme is implied. The calculation
of SSIM involves paired blocks extracted from the noise-free
imageX and the restored X̂, respectively. Let𝑦1 and𝑦2 denote
paired blocks, 𝜇𝑦1 and 𝜇𝑦2 be the mean values of 𝑦1 and 𝑦2,
respectively, 𝜎𝑦1 and 𝜎𝑦2 be respective variances, and 𝜎𝑦1𝑦2
be their covariance. Assuming 𝑐1 and 𝑐2 are two stabilization
variables, the SSIM value can be calculated by

SSIM (𝑦1, 𝑦2) = (2𝜇𝑦1𝜇𝑦2 + 𝑐1) (2𝜎𝑦1𝑦2 + 𝑐2)(𝜇2𝑦1 + 𝜇2𝑦2 + 𝑐1) (𝜎2𝑦1 + 𝜎2𝑦2 + 𝑐2) . (28)

5.3. Experimental Results and Comparisons. A test set was
built to evaluate the OSC method, which was a combination
of two groups, denoted by Γ = {Γ1, Γ2}. Each group Γ𝑘
contained noisy images, with eight different levels of white
noise. The Γ1 group is associated with the sixteen noise-
free images widely used, shown in Figure 3; the Γ2 group
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Figure 1: Illustration of the shrinkage scale of the 𝑖th largest singular value. From left to right and top to bottom, the 𝑖th inset is associated
with the 𝑖th largest singular value. In each inset, the blue diagonal line is the ground singular value, and red line is its estimate.The parameters:
patch-size√𝑛 × √𝑛 = 9 × 9 and 𝐽 = 1.
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Table 1: Parameters used in training and denoising procedures.𝜎 5 10 15 20 25 30 35 40𝑡 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2𝛾 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1𝐽 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4√𝑛 6 5 7 6 8 6 9 6 10 7 11 7 12 8 12 9

Balloon Peppers Barbara Boat Couple Fringerprint Hill Man

Baboon Cameraman Einstein Elaine F16 House Lena Monarch

Figure 3: Sixteen widely used noise-free images associated with the group Γ1.
is associated with the sixteen noise-free biomedical images,
shown in Figure 5. These noise-free images were taken from
the CVG-Granada database.

The corresponding training set was also built, which was
a subset of the test Γ, denoted by Ψ = {Ψ1, Ψ2}. The group Ψ1
contained the noisy versions of the five noise-free images, the
Einstein, Elaine, Barbara, Fingerprint, and the Man image;
the group Ψ2 included the noisy versions of the six noise-
free images, the C05c, Celulas, Cromo2, Mr2, Mr032, and
the Mr034 image. The OSC method was applied to the test
set Γ. Using the parameter values shown in Algorithm 1, the
coefficients copt were trained by Algorithm 1. Algorithm 2
used the same parameter values and the trained copt. The
PSNR and MSSIM results associated with both groups are
reported in Tables 2 and 3, respectively. Moreover, the visual
results and zoom-in for three widely used images are shown
in Figure 4 and are shown in Figure 6 for three biomedical
images.

To augment the performance evaluations, the OSC
method was compared with Bilateral Filter [16] and BM3D
[17]. For the Bilateral Filter there are three parameters needed
to be set, containing a sliding window of size 𝑑 × 𝑑, a
geometric spread standard deviation 𝜎𝑑, and a photometric
spread standard deviation 𝜎𝑟. The three parameters, 𝑑, 𝜎𝑑,
and 𝜎𝑟, were set to 5, 5, and 0.1, respectively. The source
codes of BM3D were taken from the original authors, and
the parameter values used in the experiments were those
recommended by the authors. The PSNR and MSSIM results
from the two methods are reported in Table 2, and the visual
results for three images are shown in Figure 4.

In addition, the mean PSNR andmeanMSSIM results for
fixed noise are calculated for noisy images, the Bilateral Filter,

BM3D, and theOSCmethod, respectively.The corresponding
calculations are as follows:

PSNR𝜎 = 1󵄨󵄨󵄨󵄨Γ𝜎󵄨󵄨󵄨󵄨 ∑𝑘∈Γ𝜎PSNR𝜎 (𝑘) ,
MSSIM𝜎 = 1󵄨󵄨󵄨󵄨Γ𝜎󵄨󵄨󵄨󵄨 ∑𝑘∈Γ𝜎MSSIM𝜎 (𝑘) . (29)

In these two formulae, Γ𝜎 denotes all the images with
the same level noise 𝜎 in the test set Γ, and thus |Γ𝜎| =32; and PSNR𝜎(𝑘) and MSSIM𝜎(𝑘) denote the PSNR and
MSSIM values of the 𝑘th image with the noise 𝜎, respectively.
For example, if the OSC method employs formula (29) to
calculate, PSNR5 denotes the arithmetical mean PSNR for all
imageswith the noise𝜎 = 5, associatedwith theOSCmethod.
The mean PSNR and MSSIM values for fixed noise for the
four methods are plotted in Figure 7.

Some observations and conclusions can be drawn from
the quantitative measurements and visual results. Firstly,
the OSC method achieved the desirable results. The OSC
method achieved the same results as the BM3D method on
average and significantly outperformed the noisy method
and the Bilateral Filter by 8.49 dB and 5.26 dB on aver-
age, respectively, in the PSNR results. The OSC method
achieved the same results as the BM3D method on average
and significantly outperformed the noisy method and the
Bilateral Filter by 0.417 and 0.275 on average, respectively,
in the MSSIM results. Secondly, the OSC method has
a strong capability to preserve detail. The OSC method
reconstructed more image details from noisy images than
the Bilateral Filter and was almost the same as the BM3D.
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Figure 4: Visual results comparison. Rows are associated with denoised images and columns correspond to methods, where Columns 1–4
are the visual results and Columns 5–8 are their respective zoom-in.



10 Mathematical Problems in Engineering

algae c05c celulas crm04280 crm05210 cromo2 fluocel heart

mr2 mr030 mr031 mr032 mr033 mr034 muscle xray

Figure 5: Sixteen noise-free biomedical images associated with the group Γ2.
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Figure 6: Visual results for four biomedical images. Row 1 corresponds to noisy images corrupted by noise (𝜎 = 35). Row 2 corresponds to
denoised images. Row 3 corresponds to zoomed-in views. Columns correspond to different images.

As seen in Figure 4, the fine-details of the moustache for
the Baboon image were preserved, while the Bilateral Filter
introduced excessive smoothing and resulted in visual feature
blurring. Thirdly, in contrast to BM3D, the OSC method
achieved decreasing results at increasing levels noise, as in
Figure 7.

6. Conclusions

In this paper, a shrinkage curves optimization is proposed for
weighted nuclear norm minimization. Based on the theory

[7] that the weighted nuclear norm minimization can be
solved by imposing a soft threshold operation on the singular
values, the proposed optimization method designs a penalty
function using the difference between a latent matrix and
its observation and employs odd polynomials to shrink the
singular values of the observation matrix. As a result, the
coefficients of polynomial fully characterize the shrinkage
operator. Furthermore, the Frobenius norm of the penalty
function is converted into the corresponding spectral norm,
so the parameter optimization can be easily solved by off-and-
shelf plain least-squares.
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Table 2: PSNR/SSIM comparisons with bilateral filter and BM3D.

Methods Noise levels 𝜎
5 10 15 20 25 30 35 40

(1) Baboon 256 × 256
B. Filter 28.39/0.845 27.71/0.842 26.43/0.811 24.67/0.746 22.77/0.665 20.96/0.585 19.32/0.512 17.87/0.449
BM3D 34.74/0.964 29.62/0.899 26.91/0.830 25.13/0.761 23.84/0.693 22.89/0.633 22.16/0.580 21.56/0.530
OSC 37.84/0.942 33.95/0.846 32.49/0.762 31.26/0.695 30.41/0.650 29.72/0.627 29.09/0.621 28.59/0.639

(2) Cameraman 256 × 256
B. Filter 32.16/0.895 31.63/0.887 29.87/0.800 27.15/0.636 24.37/0.488 21.96/0.385 19.95/0.315 18.27/0.266
BM3D 38.29/0.962 34.18/0.932 31.91/0.901 30.48/0.875 29.45/0.854 28.64/0.837 27.93/0.822 27.18/0.806
OSC 37.02/0.963 31.94/0.892 29.72/0.831 27.88/0.785 26.62/0.748 25.59/0.720 24.81/0.690 24.16/0.654

(3) Einstein 256 × 256
B. Filter 31.48/0.802 31.19/0.804 29.73/0.739 27.17/0.598 24.45/0.452 22.05/0.340 20.04/0.261 18.36/0.206
BM3D 37.49/0.934 34.19/0.871 32.55/0.832 31.43/0.803 30.56/0.778 29.84/0.757 29.10/0.736 28.43/0.717
OSC 37.71/0.981 33.51/0.935 31.78/0.890 30.35/0.846 29.39/0.814 28.62/0.776 28.02/0.747 27.57/0.710

(4) Elaine 256 × 256
B. Filter 31.16/0.825 30.63/0.822 29.05/0.767 26.63/0.651 24.10/0.522 21.83/0.412 19.90/0.330 18.26/0.268
BM3D 36.32/0.940 32.60/0.858 31.03/0.810 30.05/0.782 29.30/0.761 28.69/0.743 28.10/0.726 27.51/0.710
OSC 37.32/0.991 32.77/0.952 30.70/0.910 29.05/0.867 27.83/0.820 26.96/0.781 26.32/0.750 25.71/0.715

(5) F16 256 × 256
B. Filter 32.23/0.906 31.39/0.894 29.42/0.810 26.71/0.656 24.05/0.513 21.74/0.411 19.81/0.339 18.18/0.287
BM3D 37.53/0.957 33.43/0.926 31.19/0.899 29.70/0.876 28.57/0.855 27.70/0.836 26.96/0.818 26.22/0.799
OSC 37.47/0.994 32.90/0.962 30.79/0.924 29.20/0.892 27.98/0.858 27.07/0.823 26.37/0.793 25.72/0.754

(6) Lena 256 × 256
B. Filter 31.98/0.893 31.03/0.878 29.06/0.800 26.48/0.661 23.93/0.526 21.68/0.421 19.78/0.345 18.17/0.288
BM3D 38.16/0.961 34.49/0.932 32.40/0.906 30.95/0.883 29.86/0.863 28.99/0.844 28.23/0.825 27.43/0.805
OSC 37.06/1.000 32.14/0.973 29.83/0.939 28.05/0.906 26.84/0.878 25.89/0.861 25.13/0.840 24.49/0.798

(7) Monarch 256 × 256
B. Filter 31.53/0.929 30.69/0.911 28.85/0.837 26.33/0.710 23.79/0.584 21.55/0.486 19.66/0.412 18.06/0.355
BM3D 38.21/0.975 34.12/0.956 31.86/0.936 30.35/0.918 29.25/0.900 28.36/0.882 27.58/0.865 26.72/0.845
OSC 37.06/0.998 31.97/0.997 29.60/0.980 27.69/0.961 26.29/0.939 25.21/0.916 24.33/0.890 23.65/0.859

(8) House 256 × 256
B. Filter 33.76/0.878 32.88/0.870 30.59/0.777 27.51/0.602 24.58/0.442 22.10/0.331 20.06/0.259 18.37/0.210
BM3D 39.83/0.957 36.71/0.922 34.94/0.891 33.77/0.873 32.86/0.859 32.09/0.848 31.38/0.837 30.65/0.826
OSC 39.04/0.950 35.25/0.868 33.44/0.790 31.87/0.713 30.78/0.660 29.95/0.619 29.27/0.585 28.67/0.555

(9) Balloon 256 × 256
B. Filter 35.11/0.918 34.12/0.897 31.46/0.780 28.02/0.579 24.90/0.402 22.32/0.283 20.21/0.209 18.48/0.160
BM3D 40.82/0.960 37.84/0.937 36.03/0.922 34.60/0.906 33.48/0.892 32.57/0.877 31.77/0.862 31.07/0.849
OSC 40.17/0.993 36.31/0.975 34.28/0.953 32.47/0.930 31.04/0.911 29.91/0.885 29.04/0.870 28.35/0.874

(10) Peppers 256 × 256
B. Filter 32.68/0.907 31.67/0.889 29.51/0.803 26.72/0.654 24.04/0.510 21.74/0.402 19.80/0.325 18.18/0.269
BM3D 38.12/0.956 34.68/0.928 32.70/0.907 31.29/0.887 30.16/0.868 29.28/0.850 28.52/0.834 27.70/0.816
OSC 37.43/0.970 32.81/0.904 30.74/0.838 29.05/0.786 27.84/0.734 26.91/0.700 26.19/0.664 25.57/0.625

(11) Barbara 512 × 512
B. Filter 31.28/0.886 30.29/0.872 28.47/0.799 26.12/0.667 23.75/0.537 21.62/0.436 19.78/0.361 18.20/0.304
BM3D 38.31/0.965 34.98/0.942 33.11/0.923 31.78/0.905 30.72/0.887 29.81/0.869 28.98/0.848 27.99/0.823
OSC 39.82/0.954 35.87/0.893 34.00/0.847 32.43/0.814 31.34/0.792 30.53/0.772 29.90/0.743 29.42/0.727

(12) Boat 512 × 512
B. Filter 31.06/0.819 30.61/0.820 29.11/0.759 26.72/0.629 24.18/0.494 21.90/0.388 19.97/0.311 18.32/0.255
BM3D 37.28/0.939 33.92/0.888 32.14/0.854 30.88/0.826 29.91/0.801 29.12/0.780 28.43/0.759 27.74/0.739
OSC 37.74/0.996 33.19/0.967 31.08/0.939 29.36/0.904 28.11/0.876 27.17/0.857 26.40/0.840 25.79/0.826
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Table 2: Continued.

Methods Noise levels 𝜎
5 10 15 20 25 30 35 40

(13) Couple 512 × 512
B. Filter 30.67/0.825 30.16/0.823 28.70/0.763 26.44/0.641 24.02/0.512 21.81/0.408 19.91/0.330 18.29/0.272
BM3D 37.52/0.951 34.04/0.909 32.11/0.877 30.76/0.848 29.72/0.820 28.87/0.795 28.15/0.771 27.48/0.747
OSC 38.07/0.991 33.71/0.952 31.81/0.912 30.23/0.877 29.10/0.848 28.28/0.813 27.62/0.770 27.12/0.739

(14) Fingerprint 512 × 512
B. Filter 29.07/0.926 27.75/0.908 25.95/0.872 24.01/0.816 22.13/0.748 20.43/0.675 18.91/0.604 17.56/0.539
BM3D 36.51/0.988 32.46/0.969 30.28/0.949 28.81/0.930 27.70/0.911 26.83/0.894 26.09/0.877 25.30/0.858
OSC 38.05/0.998 33.27/0.998 31.00/0.989 29.16/0.974 27.83/0.961 26.79/0.943 25.95/0.928 25.26/0.912

(15) Hill 512 × 512
B. Filter 31.03/0.804 30.66/0.804 29.27/0.745 26.91/0.618 24.35/0.481 22.05/0.371 20.08/0.290 18.41/0.231
BM3D 37.13/0.943 33.62/0.883 31.86/0.839 30.72/0.804 29.85/0.775 29.16/0.750 28.56/0.728 27.99/0.707
OSC 37.79/0.964 33.66/0.888 31.97/0.817 30.60/0.758 29.68/0.712 29.00/0.689 28.46/0.661 27.98/0.653

(16) Man 512 × 512
B. Filter 31.40/0.843 30.93/0.836 29.38/0.765 26.91/0.626 24.31/0.485 21.99/0.376 20.02/0.298 18.37/0.241
BM3D 37.82/0.954 33.98/0.908 31.93/0.867 30.59/0.833 29.62/0.805 28.86/0.780 28.22/0.758 27.65/0.737
OSC 37.69/0.990 33.24/0.957 31.35/0.907 29.80/0.897 28.70/0.896 27.88/0.868 27.21/0.870 26.66/0.834

Table 3: PSNR/SSIM results for sixteen biomedical images.

Images 𝜎
5 10 15 20 25 30 35 40

Algae 39.37/0.898 36.66/0.818 35.61/0.776 34.47/0.741 33.50/0.703 32.68/0.660 32.01/0.620 31.49/0.586
c05c 39.31/0.944 36.11/0.876 34.71/0.822 33.43/0.790 32.43/0.760 31.60/0.734 30.93/0.714 30.38/0.697
celulas 38.19/0.978 34.40/0.926 32.88/0.880 31.62/0.835 30.72/0.802 30.01/0.771 29.41/0.755 28.91/0.726
crm04280 40.44/0.981 36.81/0.942 35.31/0.905 34.00/0.867 32.98/0.841 32.17/0.818 31.50/0.796 30.95/0.769
crm05210 39.49/0.984 35.36/0.940 33.48/0.904 31.98/0.871 30.85/0.845 30.01/0.822 29.30/0.800 28.74/0.776
cromo2 39.78/0.973 35.37/0.916 33.27/0.869 31.52/0.827 30.21/0.793 29.21/0.748 28.44/0.713 27.82/0.667
Fluocel 41.00/0.953 36.85/0.882 34.90/0.816 33.26/0.758 32.05/0.720 31.08/0.698 30.32/0.680 29.67/0.651
Heart 39.56/0.975 35.87/0.937 34.30/0.903 32.85/0.869 31.83/0.841 31.05/0.814 30.46/0.780 29.97/0.748
mr2 38.86/0.973 35.08/0.923 33.42/0.876 31.89/0.831 30.69/0.796 29.72/0.765 28.90/0.734 28.18/0.708
mr030 37.74/0.998 32.89/0.969 30.63/0.936 28.84/0.912 27.56/0.885 26.60/0.860 25.84/0.829 25.22/0.801
mr031 37.89/0.987 33.13/0.939 30.97/0.893 29.23/0.845 27.98/0.801 27.04/0.768 26.32/0.738 25.73/0.720
mr032 37.98/0.984 33.37/0.931 31.30/0.881 29.63/0.843 28.41/0.802 27.49/0.769 26.75/0.736 26.13/0.706
mr033 37.99/0.987 33.42/0.942 31.40/0.897 29.75/0.851 28.56/0.808 27.65/0.772 26.93/0.745 26.35/0.725
mr034 38.02/0.988 33.48/0.941 31.50/0.894 29.84/0.847 28.62/0.804 27.68/0.771 26.96/0.735 26.38/0.703
Muscle 38.02/0.966 33.55/0.905 31.48/0.851 29.71/0.807 28.40/0.768 27.41/0.738 26.60/0.723 25.91/0.698
X-ray 38.26/0.955 34.15/0.870 32.39/0.793 30.90/0.729 29.80/0.676 29.00/0.635 28.36/0.600 27.86/0.565

To validate the effectiveness, the proposed parameter
optimization method is adapted to image denoising. In our
experiments, a total of 256 noisy images were tested. They
contained the noisy version of thirty-two noise-free images,
corrupted by eight different levels of noise. Experimental
results show that the proposed denoising method is effective
in terms of the comparative results. The proposed method
achieves better results than the Bilateral Filter; when the
noisy standard deviation is less than 20, the proposedmethod
slightly outperforms the BM3D method and is weaker than
the BM3D method when the noisy standard deviation varies
from 20 to 40.
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