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The relations between 𝐷𝑝-operators and multidimensional binary Bell polynomials are explored and applied to construct the
bilinear forms with𝐷𝑝-operators of nonlinear equations directly and quickly. Exact periodic wave solution of a (3+1)-dimensional
generalized shallow water equation is obtained with the help of the 𝐷𝑝-operators and a general Riemann theta function in terms
of the Hirota method, which illustrate that bilinear 𝐷𝑝-operators can provide a method for seeking exact periodic solutions of
nonlinear integrable equations. Furthermore, the asymptotic properties of the periodic wave solutions indicate that the soliton
solutions can be derived from the periodic wave solutions.

1. Introduction

The studies of exact solutions of nonlinear partial differential
equations (NPDEs) have received considerable attention
in connection with the important problems that arise in
scientific applications. Many powerful methods have been
proposed to obtain exact solutions of (NPDEs); a series
of methods have been proposed, such as Painléve test [1],
Bäcklund transformation method [2, 3], Darboux transfor-
mation [4], inverse scattering transformationmethod [5], Lie
group method [6, 7], Hamiltonian method [8, 9], and the
Hirota method [10, 11].

In order to seek the periodic solutions of nonlinear evo-
lution equations, Porubov and Parker proposed Weierstrass
elliptic function expansion method [12]; Liu et al. proposed
Jacobi elliptic sine function expansion methods [13, 14] and
obtained some exact periodic solutions of some nonlinear
evolution equations. They pointed out that their method
can be applied to solve the nonlinear evolution equations in
which the odd- and even-order derivative terms do not coex-
ist. Zhang [15] developed Jacobi elliptic function expansion
method to solve somenonlinear evolution equations inwhich
the odd- and even-order derivative term coexist and obtained
some exact periodic solutions of the equations. The bilinear

method developed by Hirota have proved to be particularly
powerful in obtaining the soliton solutions, quasiperiodic
wave solutions, and periodic wave solutions [16, 17]. As we
all know, once the bilinear forms of nonlinear differential
equations are obtained, the multisoliton solutions, the bilin-
ear Bäcklund transformation, and Lax pairs of NPDEs can
be constructed easily. It is clear that the key of Hirota direct
method is finding the bilinear forms of the given differential
equations by the Hirota differential 𝐷-operators. However,
Hirota bilinear equations are special and there aremany other
bilinear differential equations which are not written in the
Hirota bilinear form.

In fact, solving nonlinear equations (especially nonlinear
partial differential equations) is very difficult, and there
is no unified method. The present methods can only be
applied to a certain equation or some equations. So the
work of continuing to find some effective method of solving
nonlinear equations is important and meaningful. Recently,
Ma put forward generalized bilinear differential operators
named𝐷𝑝-operators in [18], which are used to create bilinear
differential equations. Furthermore, different symbols are
also used to furnish relations with Bell polynomials in [19]
and even for trilinear equations in [20]. In this paper, we
would like to explore how to construct the bilinear forms
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with 𝐷𝑝-operators and how to obtain the exact solutions of
nonlinear equation with the help of 𝐷𝑝 bilinear operators
method.

The paper is structured as follows. In Section 2, we will
give a brief introduction about the bilinear 𝐷𝑝-operators.
In Section 3, we explore the relations between multivariate
binary Bell polynomials and the 𝐷𝑝-operators. The 𝐷𝑝

bilinear forms of some nonlinear evolutions are given quickly
and easily from the relations. In Section 4, we will use the
relation in Section 2 to seek the bilinear form with 𝐷𝑝-
operators of the (3+1)-dimensional generalized shallowwater
equation and then take advantage of the𝐷𝑝-operators and the
Riemann theta function [21, 22] to obtain its exact periodic
wave solution which can be reduced to the soliton solution
via asymptotic analysis.

2. Bilinear 𝐷𝑝-Operators

It is known to us that Hirota bilinear 𝐷-operators play a
significant role in Hirota direct method.The𝐷-operators are
defined as follows:

𝐷
𝑚

𝑥
𝐷
𝑘

𝑦
𝑓 ⋅ 𝑔 = (

𝜕

𝜕𝑥1

−
𝜕

𝜕𝑥2

)

𝑚

(
𝜕

𝜕𝑦1

−
𝜕

𝜕𝑦2

)

𝑘

⋅ [𝑓 (𝑥1, 𝑦1) 𝑔 (𝑥2, 𝑦2)] ,

(1)

where the right-hand side is computed in

𝑥1 = 𝑥2 = 𝑥,

𝑦1 = 𝑦2 = 𝑦.

(2)

According to the definition of Hirota bilinear 𝐷-operators,
we have

𝐷𝑥𝑓 ⋅ 𝑔 = 𝑓𝑥𝑔 − 𝑓𝑔𝑥,

𝐷
2

𝑥
𝑓 ⋅ 𝑔 = 𝑓𝑥𝑥𝑔 − 2𝑓𝑥𝑔𝑥 + 𝑓𝑔𝑥𝑥,

𝐷𝑥𝐷𝑡𝑓 ⋅ 𝑔 = 𝑓𝑥𝑡𝑔 − 𝑓𝑥𝑔𝑡 − 𝑓𝑡𝑔𝑥 + 𝑓𝑔𝑥𝑡,

𝐷
3

𝑥
𝑓 ⋅ 𝑔 = 𝑓𝑥𝑥𝑥𝑔 − 3𝑓𝑥𝑥𝑔𝑥 + 3𝑓𝑥𝑔𝑥𝑥 − 𝑓𝑔𝑥𝑥𝑥,

𝐷𝑡𝐷
3

𝑥
𝑓 ⋅ 𝑔 = 𝑓3𝑥𝑡𝑔 − 𝑓3𝑥𝑔𝑡 − 3𝑓2𝑥𝑡𝑔𝑥 + 3𝑓2𝑥𝑔𝑥𝑡

+ 3𝑓𝑥𝑡𝑔2𝑥 − 3𝑓𝑥𝑔2𝑥𝑡 − 𝑓𝑡𝑔3𝑥 + 𝑓𝑔3𝑥𝑡.

(3)

Based on the Hirota 𝐷-operators, Professor Ma put
forward a kind of bilinear𝐷𝑝-operators in [18]:

𝐷
𝑚

𝑝,𝑥
𝐷
𝑘

𝑝,𝑦
[𝑓 (𝑥1, 𝑦1) 𝑔 (𝑥2, 𝑦2)]

= (
𝜕

𝜕𝑥1

+ 𝛼
𝜕

𝜕𝑥2

)

𝑚

(
𝜕

𝜕𝑦1

+ 𝛼
𝜕

𝜕𝑦2

)

𝑘𝑥
1
=𝑥
2
=𝑥, 𝑦

1
=𝑦
2
=𝑦

,

(4)

where the powers of 𝛼 are determined by

𝛼
𝑖
= (−1)

𝑟(𝑖)
, (5)

where 𝑖 = 𝑟(𝑖) mod 𝑝 with 0 ≤ 𝑟(𝑖) < 𝑝; 𝑖 ≥ 0.

Obviously, the case of 𝑝 = 1 gives the normal derivatives,
and the cases of 𝑝 = 2𝑘, 𝑘 ∈ 𝑁, reduce to Hirota bilinear
operators.

In particular, when𝑚 = 0, we have

𝐷
𝑛

𝑝,𝑥
(𝑓 ⋅ 𝑔) (𝑥) = (𝜕𝑥 + 𝛼𝜕𝑥)

𝑛
𝑓 (𝑥) 𝑔 (𝑥


)
𝑥=𝑥

=

𝑛

∑

𝑖=0

𝛼
𝑖
𝐶
𝑖

𝑛
𝜕
𝑛−𝑖

𝑥
𝑓𝜕
𝑖

𝑥
𝑔.

(6)

According to the definition of 𝐷𝑝-operator, when 𝑝 = 3, we
have

𝛼
0
= 1,

𝛼 = −1,

𝛼
2
= 𝛼
3
= 1,

𝛼
4
= −1,

𝛼
5
= 𝛼
6
= 1,

𝛼
7
= −1,

𝛼
8
= 𝛼
9
= 1, . . . ,

𝐷
4

3,𝑥
𝑓 ⋅ 𝑔 =

4

∑

𝑖=0

𝛼
𝑖
𝐶
𝑖

4
𝜕
4−𝑖

𝑥
𝑓𝜕
𝑖

𝑥
𝑔

= 𝑓4𝑥𝑔 − 4𝑓3𝑥𝑔𝑥 + 6𝑓2𝑥𝑔2𝑥 + 4𝑓𝑥𝑔3𝑥

− 𝑓𝑔4𝑥;

(7)

when 𝑝 = 5, we have

𝛼
0
= 1,

𝛼
1
= −1,

𝛼
2
= 1,

𝛼
3
= −1,

𝛼
4
= 𝛼
5
= 1,

𝛼
6
= −1,

𝛼
7
= 1,

𝛼
8
= −1, . . . ,

𝐷5,𝑥𝑓 ⋅ 𝑔 = 𝑓𝑥𝑔 − 𝑓𝑔𝑥, 𝐷5,𝑡𝐷5,𝑥𝑓 ⋅ 𝑔

= 𝐷5,𝑡 (𝑓𝑥𝑔 − 𝑓𝑔𝑥)

= 𝑓𝑥𝑡𝑔 − 𝑓𝑥𝑔𝑡 − 𝑓𝑡𝑔𝑥 + 𝑓𝑔𝑥𝑡,

𝐷
2

5,𝑥
𝑓 ⋅ 𝑔 =

2

∑

𝑖=0

𝛼
𝑖
𝐶
𝑖

2
𝜕
2−𝑖

𝑥
𝑓𝜕
𝑖

𝑥
𝑔 = 𝑓𝑥𝑥𝑔 − 2𝑓𝑥𝑔𝑥 + 𝑓𝑔𝑥𝑥,
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𝐷
4

5,𝑥
𝑓 ⋅ 𝑔 =

4

∑

𝑖=0

𝛼
𝑖
𝐶
𝑖

4
𝜕
4−𝑖

𝑥
𝑓𝜕
𝑖

𝑥
𝑔

= 𝑓4𝑥𝑔 − 4𝑓3𝑥𝑔𝑥 + 6𝑓𝑥𝑥𝑔𝑥𝑥 − 4𝑓𝑥𝑔𝑥𝑥

+ 𝑓𝑔4𝑥,

𝐷
5

5𝑥
𝑓 ⋅ 𝑔 =

5

∑

𝑖=0

𝛼
𝑖
𝐶
𝑖

5
𝜕
5−𝑖

𝑥
𝑓𝜕
𝑖

𝑥
𝑔

= 𝑓5𝑥𝑔 − 5𝑓4𝑥𝑔𝑥 + 10𝑓3𝑥𝑔2𝑥 − 10𝑓2𝑥𝑔3𝑥

+ 5𝑓𝑥𝑔4𝑥 + 𝑓𝑔5𝑥.

(8)

Now, under 𝑢 = 2(ln𝑓)𝑥𝑥, for Kdv equation,

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0, (9)

we have

𝜕

𝜕𝑥
[

(𝑓𝑥𝑡𝑓 − 𝑓𝑥𝑓𝑡 + 𝑓4𝑥𝑓 − 4𝑓3𝑥𝑓𝑥 + 3𝑓
2

2𝑥
)

𝑓2
] = 0; (10)

we can get its bilinear form with𝐷𝑝-operators:

(𝐷5,𝑥𝐷5,𝑡 + 𝐷
4

5𝑥
) 𝑓 ⋅ 𝑓 = 0. (11)

In fact, if we seek the bilinear form with 𝐷𝑝-operators
of nonlinear integrable differential equations according to
the definition of 𝐷𝑝-operators, this needs some special skills
and complex computations. So we would like to explore
the relations between 𝐷𝑝-operators and multivariate binary
Bell polynomials. The bilinear forms with 𝐷𝑝-operators
of nonlinear integrable differential equations are obtained
quickly and easily by applying the relations.

3. Relations with Bell Exponential Polynomials

3.1. Relations with Bell Exponential Polynomials. As we all
know, Bell proposed three kinds of exponent form polynomi-
als. Later, Wang and Chen generalized the third type of Bell
polynomials in [23, 24] which is used mainly in this paper.
Themultidimensional binary Bell polynomials which we will
use are defined as follows:

𝑌𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝑦) = 𝑌𝑛
1
,...,𝑛
𝑙

(𝑦𝑟
1
𝑥
1

, . . . , 𝑦𝑟
𝑙
𝑥
𝑙

)

= 𝑒
−𝑦
𝜕
𝑛
1

𝑥
1

⋅ ⋅ ⋅ 𝜕
𝑛
𝑙

𝑥
𝑙

𝑒
𝑦

(𝑛1, . . . , 𝑛𝑙 ≥ 0) ,

(12)

with 𝑦𝑟
1
𝑥
1
,...,𝑟
𝑙
𝑥
𝑙

= 𝜕
𝑛
1

𝑥
1

⋅ ⋅ ⋅ 𝜕
𝑛
𝑙

𝑥
𝑙

, 𝑟1 = 0, . . . , 𝑛1, . . . , 𝑟𝑙 = 0, . . . , 𝑛𝑙.

For example,

𝑌𝑥 = 𝑦𝑥,

𝑌2𝑥 = 𝑦
2

𝑥
+ 𝑦2𝑥,

𝑌3𝑥 = 𝑦
3

𝑥
+ 3𝑦𝑥𝑦2𝑥 + 𝑦3𝑥,

𝑌4𝑥 = 𝑦
4

𝑥
+ 4𝑦𝑥𝑦3𝑥 + 6𝑦

2

𝑥
𝑦2𝑥 + 3𝑦

2

2𝑥
+ 𝑦4𝑥,

𝑌5𝑥 = 𝑦
5

𝑥
+ 5𝑦𝑥𝑦4𝑥 + 15𝑦𝑥𝑦

2

2𝑥
+ 10𝑦

2

𝑥
𝑦3𝑥 + 10𝑦2𝑥𝑦3𝑥

+ 10𝑦
3

𝑥
𝑦𝑥𝑥 + 𝑦5𝑥,

𝑌6𝑥 = (𝑦
5

𝑥
+ 5𝑦𝑥𝑦4𝑥 + 15𝑦𝑥𝑦

2

2𝑥
+ 10𝑦

2

𝑥
𝑦3𝑥 + 10𝑦2𝑥𝑦3𝑥

+ 10𝑦
3

𝑥
𝑦𝑥𝑥 + 𝑦5𝑥)𝑥

+ (𝑦
5

𝑥
+ 5𝑦𝑥𝑦4𝑥 + 15𝑦𝑥𝑦

2

2𝑥

+ 10𝑦
2

𝑥
𝑦3𝑥 + 10𝑦2𝑥𝑦3𝑥 + 10𝑦

3

𝑥
𝑦𝑥𝑥 + 𝑦5𝑥)𝑥

𝑦𝑥;

𝑌𝑥,𝑡 = 𝑦
2

𝑥
+ 𝑦𝑥𝑡,

𝑌2𝑥,𝑡 = 2𝑦𝑥𝑦𝑥𝑡 + 𝑦2𝑥,𝑡 + 𝑦
2

𝑥
𝑦𝑡 + 𝑦2𝑥𝑦𝑡,

𝑌3𝑥,𝑡 = 3𝑦
2

𝑥
𝑦𝑡 + 3𝑦𝑥𝑡𝑦2𝑥 + 3𝑦𝑥𝑦2𝑥,𝑡 + 𝑦3𝑥,𝑡 + (𝑦

3

𝑥

+ 3𝑦𝑥𝑦2𝑥 + 𝑦3𝑥) 𝑦𝑡.

(13)

For the sake of computational convenience, we assume that

𝑓 = 𝑒
𝜉(𝑥
1
,...,𝑥
𝑙
)
,

𝑔 = 𝑒
𝜂(𝑥
1
,...,𝑥
𝑙
)
;

(14)

we have

(𝑓𝑔)
−1
𝐷
𝑛
1

𝑝,𝑥
1

, . . . , 𝐷
𝑛
𝑙

𝑝,𝑥
𝑙

𝑓 ⋅ 𝑔

=

𝑛
1

∑

𝑘
1
=0

⋅ ⋅ ⋅

𝑛
1

∑

𝑘
𝑙
=0

𝑙

∏

𝑖=1

𝛼
𝑘
𝑖 (

𝑛𝑖

𝑘𝑖

)(𝑒
−𝜉
𝜕
𝑛
1
−𝑘
1

𝑥
1

⋅ ⋅ ⋅ 𝜕
𝑛
𝑙
−𝑘
𝑙

𝑥
𝑙

𝑒
𝜉
)

⋅ (𝑒
−𝜂
𝜕
𝑛
1
−𝑘
1

𝑥
1

⋅ ⋅ ⋅ 𝜕
𝑛
𝑙
−𝑘
𝑙

𝑥
𝑙

𝑒
𝜂
)

=

𝑛
1

∑

𝑘
1
=0

⋅ ⋅ ⋅

𝑛
1

∑

𝑘
𝑙
=0

𝑙

∏

𝑖=1

𝛼
𝑘
𝑖 (

𝑛𝑖

𝑘𝑖

)𝑌(𝑛
1
−𝑘
1
)𝑥
1
,...,(𝑛
𝑙
−𝑘
𝑙
)𝑥
𝑙
(𝜉)

⋅ 𝑌𝑘
1
𝑥
1
,...,𝑘
𝑙
𝑥
𝑙

(𝜂) =

𝑛
1

∑

𝑘
1
=0

⋅ ⋅ ⋅

𝑛
1

∑

𝑘
𝑙
=0

𝑙

∏

𝑖=1

𝛼
𝑘
𝑖 (

𝑛𝑖

𝑘𝑖

)

⋅ 𝑌(𝑛
1
−𝑘
1
)𝑥
1
,...,(𝑛
𝑙
−𝑘
𝑙
)𝑥
𝑙

(𝜉𝑟
1
,...,𝑟
𝑙

)

⋅ 𝑌𝑘
1
𝑥
1
,...,𝑘
𝑙
𝑥
𝑙

(𝛼
𝑟
1
+⋅⋅⋅+𝑟

𝑙𝜂𝑟
1
,...,𝑟
𝑙

) = 𝑌𝑛
1
,...,𝑛
𝑙

(𝑦𝑟
1
,...,𝑟
𝑙

= 𝜉𝑟
1
,...,𝑟
𝑙

+ 𝛼
𝑟
1
+⋅⋅⋅+𝑟

𝑙𝜂𝑟
1
,...,𝑟
𝑙

) = 𝑌𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙
(V, 𝑤) ,

(15)

where

𝑤 = 𝜉 + 𝜂,

V = 𝜉 − 𝜂.
(16)
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We find that the link between 𝑌-polynomials and the 𝐷𝑝-
operator can be given in the following through the above
deduction:

(𝑓𝑔)
−1
𝐷
𝑛
1

𝑝,𝑥
1

, . . . , 𝐷
𝑛
𝑙

𝑝,𝑥
𝑙

𝑓 ⋅ 𝑔

= 𝑌𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(V = ln
𝑓

𝑔
,𝑤 = ln𝑓𝑔)

= 𝑌𝑛
1
,...,𝑛
𝑙

(𝑦𝑟
1
,...,𝑟
𝑙

= 𝜉𝑟
1
,...,𝑟
𝑙

+ 𝛼
𝑟
1
+⋅⋅⋅+𝑟

𝑙𝜂𝑟
1
,...,𝑟
𝑙

) .

(17)

In particular, when 𝑓 = 𝑔, (17) becomes

𝑓
−2
𝐷
𝑛
1

𝑝,𝑥
1

, . . . , 𝐷
𝑛
𝑙

𝑝,𝑥
𝑙

𝑓 ⋅ 𝑓 = 𝑃𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝑞)

= 𝑌𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(V = 0, 𝑤 = 2 ln𝑓 = 𝑞) .
(18)

Equation (18) give the relations between 𝐷𝑝-operators and
multivariate binary Bell polynomials.

Then we have

𝐷
𝑛
1

𝑝,𝑥
1

, . . . , 𝐷
𝑛
𝑙

𝑝,𝑥
𝑙

𝑓 ⋅ 𝑓 = 𝑓
2
𝑃𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(𝑞)

= 𝑓
2
𝑌𝑝;𝑛
1
𝑥
1
,...,𝑛
𝑙
𝑥
𝑙

(V = 0, 𝑤 = 2 ln𝑓 = 𝑞) .
(19)

From (13) and (18), we have

𝑃3;2𝑥 = 𝑃5;2𝑥 = 𝑃7;2𝑥 = 𝑞𝑥𝑥,

𝑃3;4𝑥 = 3𝑞
2

2𝑥
,

𝑃3;𝑥,𝑡 = 𝑃5;𝑥,𝑡 = 𝑃7;𝑥,𝑡 = 𝑞𝑥𝑡,

𝑃5;4𝑥 = 𝑃7;4𝑥 = 𝑞4𝑥 + 3𝑞
2

2𝑥
,

𝑃5;3𝑥,𝑦 = 𝑃7;3𝑥,𝑦 = 𝑞3𝑥,𝑦 + 3𝑞𝑥𝑥𝑞𝑥𝑦,

𝑃5;2𝑥,𝑡 = 0,

𝑃5;6𝑥 = 15𝑞
3

2𝑥
+ 15𝑞2𝑥𝑞4𝑥,

𝑃7;6𝑥 = 15𝑞
3

2𝑥
+ 15𝑞2𝑥𝑞4𝑥 + 𝑞6𝑥.

(20)

3.2. Bilinear Form with 𝐷𝑝-Operators. In this section, we
will construct the bilinear forms for Kdv equation, (2+1)-
dimensional Kdv equation, and (2+1)-dimensional Sawada-
Kotera equation with the 𝐷𝑝-operators quickly and easily
by utilizing the relations between 𝐷𝑝-operators and multidi-
mensional bilinear Bell polynomials.

Example 1 (Kdv equation). Consider

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (21)

Setting 𝑢 = 𝑞2𝑥, substituting it into (21), and integrating with
respect to 𝑥 yield

𝑞𝑥𝑡 + 3𝑞
2

2𝑥
+ 𝑞4𝑥 − 𝜆1 = 0, (22)

where 𝜆1 is an arbitrary function of 𝑡.

Based on (20) and (22), (21) can be written as follows:

𝑃5,𝑥,𝑡 (𝑞) + 𝑃5,4𝑥 (𝑞) − 𝜆1 = 0. (23)

From (19) and (23), we get the bilinear form with 𝐷𝑝-
operators of (21)

(𝐷5,𝑥𝐷5,𝑡 + 𝐷
4

5,𝑥
) 𝑓 ⋅ 𝑓 − 𝜆1𝑓

2
= 0. (24)

Example 2 ((2+1)-dimensional Kdv equation). Consider

𝑢𝑡 + 3𝑢𝑢𝑦 + 𝑢𝑥𝑥𝑦 + 3𝑢𝑥 ∫𝑢𝑦𝑑𝑥 = 0. (25)

Setting 𝑢 = 𝑞2𝑥, substituting it into (25), and integrating with
respect to 𝑥 yield

𝑞𝑥𝑡 + 3𝑞𝑥𝑦𝑞
2

2𝑥
+ 𝑞3𝑥,𝑦 − 𝜆2 = 0, (26)

where 𝜆2 is an arbitrary function of 𝑦, 𝑡. Based on (20) and
(26), (25) can be written as follows:

𝑃5,𝑥,𝑡 (𝑞) + 𝑃5,3𝑥,𝑦 (𝑞) − 𝜆2 = 0. (27)

From (19) and (27), we get the bilinear form with 𝐷𝑝-
operators of (25):

(𝐷5,𝑥𝐷5,𝑡 + 𝐷
3

5,𝑥
𝐷5,𝑦) 𝑓 ⋅ 𝑓 − 𝜆2𝑓

2
= 0. (28)

Example 3 ((2+1)-dimensional Sawada-Kotera equation).
Consider

𝑢𝑡 − (𝑢4𝑥 + 5𝑢𝑢2𝑥 +
5

3
𝑢
3
+ 5𝑢𝑥𝑦)

𝑥

+ 5∫𝑢2𝑦𝑑𝑥

− 5𝑢𝑢𝑦 − 5𝑢𝑥 ∫𝑢𝑦𝑑𝑥 = 0.

(29)

Setting𝑢 = 3𝑞2𝑥, substituting it into (29), and integratingwith
respect to 𝑥 yield

𝑞𝑥𝑡 + 5𝑞2𝑦 − (𝑞6𝑥 + 15𝑞2𝑥𝑞4𝑥 + 15𝑞
3

2𝑥
)

− 5 (𝑞3𝑥𝑦 + 3𝑞2𝑥𝑞𝑥𝑦) − 𝜆3 = 0,

(30)

where 𝜆3 is an arbitrary function of 𝑦, 𝑡. Based on (20) and
(30), (29) can be written as follows:

𝑃7,𝑥,𝑡 (𝑞) + 5𝑃7,2𝑦 (𝑞) − 5𝑃7,3𝑥,𝑦 (𝑞) − 𝑃7,6𝑥 (𝑞) − 𝜆3

= 0.

(31)

From (19) and (31), we get the bilinear form with 𝐷𝑝-
operators of (29):

(𝐷7,𝑥𝐷7,𝑡 + 5𝐷
2

7,𝑦
− 5𝐷
3

7,𝑥
𝐷7,𝑦 − 𝐷

6

7,𝑥
) 𝑓 ⋅ 𝑓 − 𝜆3𝑓

2

= 0.

(32)

From the above computation process for seeking the
bilinear forms of three nonlinear equation, we can find that
the bilinear forms with 𝐷𝑝-operators of nonlinear integrable
differential equations are obtained quickly and easily by
appling the relations between𝐷𝑝-operators andmultidimen-
sional bilinear Bell polynomials.
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4. Periodic Wave Solution of
the (3+1)-Dimensional Generalized
Shallow Water Equation

In this section, firstly, we will give the bilinear form of a
(3+1)-dimensional generalized shallow water equation with
the help of 𝑃-polynomials and the 𝐷𝑝-operators. And then,
we construct the exact periodic wave solution of the (3+1)-
dimensional generalized shallow water equation with the aid
of the Riemann theta function,𝐷𝑝-operators, and the special
property of the 𝐷𝑝-operators when acting on exponential
functions.

The following is (3+1)-dimensional generalized shallow
water equation:

𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑥𝑥𝑢𝑦 + 3𝑢𝑥𝑢𝑥𝑦 − 𝑢𝑦𝑡 − 𝑢𝑥𝑧 = 0. (33)

Setting 𝑢 = 𝑞𝑥, inserting it into (33), and integrating with
respect to 𝑥 yield

𝑞3𝑥,𝑦 + 3𝑞2𝑥𝑞𝑥,𝑦 − 𝑞𝑦,𝑡 − 𝑞𝑥,𝑧 − 𝜆 = 0, (34)

where 𝜆 is an arbitrary function of 𝑦, 𝑧, 𝑡. Based on (20) and
(34), (33) can be expressed as

−𝑃5;𝑦,𝑡 − 𝑃5;𝑥,𝑧 + 𝑃5;3𝑥,𝑦 − 𝜆 = 0. (35)

From the above, we can get the bilinear form of (33):

(−𝐷5;𝑦𝐷5;𝑡 − 𝐷5;𝑥𝐷5;𝑧 + 𝐷
3

5;𝑥
𝐷5;𝑦) 𝑓 ⋅ 𝑓 − 𝜆 ⋅ 𝑓

2
= 0 (36)

with 𝑞 = 2 ln𝑓. When acting on exponential functions, we
find that𝐷𝑝-operators have a good property:

𝐺(𝐷𝑝,𝑥
1

, . . . , 𝐷𝑝,𝑥
𝑙

) 𝑒
𝜉
1 ⋅ 𝑒
𝜉
2

= 𝐺 (𝑘1 + 𝛼𝑘2, 𝑙1 + 𝛼𝑙2, ℎ1 + 𝛼ℎ2, 𝜔1 + 𝛼𝜔2) 𝑒
𝜉
1
+𝜉
2 ,

(37)

𝜉𝑖 = 𝑘𝑖𝑥 + 𝑙𝑖𝑦 + ℎ𝑖𝑧 + 𝜔𝑖𝑡 + 𝜉
(0)

𝑖
, 𝑖 = 1, 2, . . . (38)

In order to construct periodic wave solutions of (33), we study
the multidimensional Riemann theta function with genus𝑁
given by

𝑓 (𝜉) = 𝑓 (𝜉, 𝜏) = ∑

𝑛∈𝑧𝑁

𝑒
−𝜋𝑖⟨𝜏𝑛,𝑛⟩+2𝜋𝑖⟨𝜉,𝑛⟩

(39)

in which 𝑛 = (𝑛1, 𝑛2, . . . , 𝑛𝑁)
𝑇
∈ 𝑧
𝑁 denotes the integer value

vector and 𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑁) is complex phase variable. In
addition, for the given two vectors ℎ = (ℎ1, ℎ2, . . . , ℎ𝑁) and
𝑔 = (𝑔1, 𝑔2, . . . , 𝑔𝑁) their inner product can be written by

⟨ℎ, 𝑔⟩ = ℎ1𝑔1 + ℎ2𝑔2 + ⋅ ⋅ ⋅ + ℎ𝑁𝑔𝑁. (40)

−𝑖𝜏 = (−𝑖𝜏𝑖𝑗) in (39) is a positive definite and real-valued
symmetric 𝑁 × 𝑁 matrix, which can be called the period
matrix of the theta function. The entries 𝜏𝑖𝑗 of 𝜏 are free
parameters of the theta function (39); we consider that
Riemann’s (39) converges to a real-valued function with an
arbitrary vector 𝜉 ∈ 𝐶𝑁.

In what follows we construct the one-periodic wave
solutions of (33). For 𝑁 = 1, Riemann theta function (39)
reduces Fourier series in 𝑛 as follows:

𝑓 =

+∞

∑

𝑛=−∞

𝑒
𝜋𝑖𝑛
2
𝜏+2𝜋𝑖𝑛𝜂

, (41)

where 𝑛 ∈ 𝑍, 𝜏 ∈ 𝐶, Im 𝜏 > 0, and 𝜂 = 𝑘𝑥 + 𝑙𝑦 + ℎ𝑧 +𝜔𝑡, with
𝑘, 𝑙, ℎ, and 𝜔 being constants to be determined.

Riemann theta function (41) satisfying the bilinear equa-
tion (36) yields the sufficient conditions for obtaining peri-
odic waves. Substituting the theta function (41) into the left
of (36) and using the property (37), we have

𝐺(𝐷𝑝,𝑥, 𝐷𝑝,𝑦, 𝐷𝑝,𝑧, 𝐷𝑝,𝑡) 𝑓 ⋅ 𝑓 =

+∞

∑

𝑛=−∞

+∞

∑

𝑚=−∞

𝐺(𝐷𝑝,𝑥, 𝐷𝑝,𝑦, 𝐷𝑝,𝑧, 𝐷𝑝,𝑡) 𝑒
2𝜋𝑖𝑛𝜂+𝜋𝑖𝑛

2
𝜏
𝑒
2𝜋𝑖𝑚𝜂+𝜋𝑖𝑚

2
𝜏

=

+∞

∑

𝑛=−∞

+∞

∑

𝑚=−∞

𝐺 (2𝜋𝑖 (𝑛 + 𝛼𝑚) 𝑘, 2𝜋𝑖 (𝑛 + 𝛼𝑚) 𝑙, 2𝜋𝑖 (𝑛 + 𝛼𝑚) ℎ, 2𝜋𝑖 (𝑛 + 𝛼𝑚)𝜔) 𝑒
2𝜋𝑖(𝑛+𝑚)𝜂+𝜋𝑖(𝑛

2
+𝑚
2
)𝜏

=

+∞

∑

𝛿=−∞

{

+∞

∑

𝑛=−∞

𝐺((2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
𝛿)) 𝑘, (2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼

2
𝛿)) 𝑙, (2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼

2
𝛿)) ℎ, (2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼

2
𝛿)) 𝜔)

⋅ 𝑒
𝜋𝑖(𝑛
2
+(𝑛+𝛼𝛿)

2
)𝜏
} 𝑒
2𝜋𝑖(−𝛼𝛿)𝜂

=

+∞

∑

𝛿=−∞

𝐺 (𝛿) 𝑒
2𝜋𝑖(−𝛼𝛿)𝜂

,

(42)

where 𝛿 = −(1/𝛼)(𝑚 + 𝑛). To the bilinear form of (33), 𝐺(𝛿)
satisfies the period characters when 𝑝 = 5. The powers of 𝛼
obey rule (5), noting that

𝐺 (𝛿) =

+∞

∑

𝑛=−∞

𝐺((2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
𝛿))

⋅ 𝑘, (2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
𝛿))
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⋅ 𝑙, (2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
𝛿))

⋅ ℎ, (2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
𝛿)) 𝜔) 𝑒

𝜋𝑖(𝑛
2
+(𝑛+𝛼𝛿)

2
)𝜏

=

+∞

∑

𝑛=−∞

𝐺 (2𝜋𝑖 (2𝑛 − 𝛿) 𝑘, 2𝜋𝑖 (2𝑛 − 𝛿)

⋅ 𝑙, 2𝜋𝑖 (2𝑛 − 𝛿) ℎ, 2𝜋𝑖 (2𝑛 − 𝛿) 𝜔) 𝑒
𝜋𝑖(𝑛
2
+(𝛿−𝑛)

2
)𝜏

=

+∞

∑

𝑛=−∞

𝐺 (2𝜋𝑖 (2𝑠 − (𝛿 − 2)) 𝑘, 2𝜋𝑖 (2𝑠 − (𝛿 − 2))

⋅ 𝑙, 2𝜋𝑖 (2𝑠 − (𝛿 − 2)) ℎ, 2𝜋𝑖 (2𝑠 − (𝛿 − 2)) 𝜔)

⋅ 𝑒
𝜋𝑖(𝑠
2
+(𝛿−𝑠−2)

2
)𝜏
𝑒
2𝜋𝑖(𝛿−1)𝜏

= 𝐺 (𝛿 − 2) 𝑒
2𝜋𝑖(𝛿−1)𝜏

,

(43)

where 𝑠 = 𝑛 + 𝛼. From (43) we can infer that

𝐺 (𝛿) =

{

{

{

𝐺 (0) 𝑒
𝜋𝑖𝑛𝛿𝜏

, 𝛿 = 2𝑛;

𝐺 (1) 𝑒
𝜋𝑖(2𝑛+2𝑛

2
)(𝛿+1)𝜏

, 𝛿 = 2𝑛 + 1,

(44)

𝐺 (0) =

∞

∑

𝑛=−∞

{− [2𝜋𝑖 (1 − 𝛼) 𝑛]
2
𝑙𝜔

− [2𝜋𝑖 (1 − 𝛼) 𝑛]
2
𝑘ℎ

+ [2𝜋𝑖 (1 − 𝛼) 𝑛𝑘]
3
2𝜋𝑖 (1 − 𝛼) 𝑛𝑙 − 𝜆} 𝑒

2𝜋𝑖𝑛
2
𝜏

=

∞

∑

𝑛=−∞

(16𝜋
2
𝑛
2
𝑙𝜔 + 16𝜋

2
𝑛
2
𝑘ℎ + 256𝜋

4
𝑛
4
𝑘
3
𝑙 − 𝜆)

⋅ 𝑒
2𝜋𝑖𝑛
2
𝜏
= 0,

(45)

𝐺 (1) =

∞

∑

𝑛=−∞

{−2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
) 𝑙

⋅ 2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
) 𝜔

− 2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
) 𝑘2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼

2
) ℎ

+ [2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
) 𝑘]
3

2𝜋𝑖 ((1 − 𝛼) 𝑛 − 𝛼
2
) 𝑙

− 𝜆} 𝑒
2𝜋𝑖(𝑛
2
−2𝑛+1)𝜏

=

∞

∑

𝑛=−∞

[4𝜋
2
(2𝑛 − 1)

2
𝑙𝜔

+ 4𝜋
2
(2𝑛 − 1)

2
𝑘ℎ + 16𝜋

4
(2𝑛 − 1)

4
𝑘
3
𝑙 − 𝜆]

⋅ 𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

= 0.

(46)

Also, the powers of 𝛼 obey rule (5). For the sake of computa-
tional convenience, we denote that

𝜌1 (𝑛) = 𝑒
2𝜋𝑖𝑛
2
𝜏
,

𝑎11 =

∞

∑

𝑛=−∞

16𝜋
2
𝑙𝑛
2
𝜌1 (𝑛) ,

𝑎12 =

∞

∑

𝑛=−∞

𝜌1 (𝑛) ,

𝑏1 = −

∞

∑

𝑛=−∞

{16𝜋
2
𝑛
2
𝑘ℎ + 256𝜋

4
𝑛
4
𝑘
3
𝑙} 𝜌1 (𝑛) ,

𝜌2 (𝑛) = 𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

,

𝑎21 =

∞

∑

𝑛=−∞

𝑛
2
4𝜋
2
(2𝑛 − 1)

2
𝑙𝜌2 (𝑛) ,

𝑎22 =

∞

∑

𝑛=−∞

𝜌2 (𝑛) ,

𝑏2 = −

∞

∑

𝑛=−∞

(4𝜋
2
(2𝑛 − 1)

2
𝑛
2
𝑘ℎ + 16𝜋

4
(2𝑛 − 1)

4
𝑘
3
𝑙)

⋅ 𝜌2 (𝑛) .

(47)

Then (45) and (46) can be written as

𝑎11𝜔 + 𝑎12𝜆 − 𝑏1 = 0,

𝑎21𝜔 + 𝑎22𝜆 − 𝑏2 = 0.

(48)

Solving this system, we get

𝜔 =
𝑏1𝑎22 − 𝑏2𝑎12

𝑎11𝑎22 − 𝑎12𝑎21

,

𝜆 =
𝑏2𝑎11 − 𝑏1𝑎21

𝑎11𝑎22 − 𝑎12𝑎21

.

(49)

Finally, we get one-periodic wave solution:

𝑢 = 2 (ln𝑓)
𝑥
, (50)

where 𝑓 is given by (41) and 𝜔, 𝜆 are satisfied with (49). And
if we assume that 𝑘 = 0.01, 𝑙 = 0.01, ℎ = 0.01, and 𝜏 = 𝑖 to
(50), the solution (50) of (33) can be shown in Figure 1.

To this end, the soliton solution of (33) can be obtained
when we consider limit of the periodic solution (50). Then,
assuming 𝑒𝜋𝑖𝜏 = 𝛾, we can obtain that

𝑎11 =

∞

∑

𝑛=−∞

16𝜋
2
𝑙𝑛
2
𝑒
2𝜋𝑖𝑛
2
𝜏
= 32𝜋

2
𝑙 (𝛾
2
+ 4𝛾
8
+ ⋅ ⋅ ⋅) ,

𝑎12 =

∞

∑

𝑛=−∞

𝑒
2𝜋𝑖𝑛
2
𝜏
= 1 + 2𝛾

2
+ 2𝛾
8
+ 2𝛾
18
+ ⋅ ⋅ ⋅ ,

𝑎21 =

∞

∑

𝑛=−∞

𝑛
2
4𝜋
2
(2𝑛 − 1)

2
𝑙𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

= 8𝜋
2
𝑙 (𝛾

+ 9𝛾
5
+ ⋅ ⋅ ⋅) ,

𝑎22 =

∞

∑

𝑛=−∞

𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

= 𝛾 + 𝛾
5
+ ⋅ ⋅ ⋅ ,
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Figure 1: A one-periodic wave (50) of the (3+1)-dimensional shallow water wave equation (33) with parameters 𝑘 = 0.01, 𝑙 = 0.01, ℎ = 0.01,
and 𝜏 = 𝑖. This figure shows that every one-periodic wave is one-dimensional, and it can be viewed as a superposition of overlapping solitary
waves, placed one period apart. (a) Perspective view of the periodic wave Abs(𝑢) on 𝑥𝑜𝑡-plane. (b) Perspective view of the periodic wave
Abs(𝑢) on 𝑦𝑜𝑡-plane. (c) Perspective view of the periodic wave Abs(𝑢) on 𝑧𝑜𝑡-plane. (d) Wave propagation pattern of the wave along the
𝑥-axis. (e) Wave propagation pattern of the wave along the 𝑦-axis. (f) Wave propagation pattern of the wave along the 𝑧-axis.
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𝑏1 = −

∞

∑

𝑛=−∞

{16𝜋
2
𝑛
2
𝑘ℎ + 256𝜋

4
𝑛
4
𝑘
3
𝑙} 𝑒
2𝜋𝑖𝑛
2
𝜏

= −32𝜋
2
𝑘 [(ℎ + 16𝜋

2
𝑘
2
𝑙) 𝛾
2
+ 4 (ℎ + 16𝜋

2
𝑘
2
𝑙) 𝛾
8

+ ⋅ ⋅ ⋅] ,

𝑏2 = −

∞

∑

𝑛=−∞

(4𝜋
2
(2𝑛 − 1)

2
𝑛
2
𝑘ℎ + 16𝜋

2
(2𝑛 − 1)

4
𝑘
3
𝑙)

⋅ 𝑒
𝜋𝑖(2𝑛
2
−2𝑛+1)𝜏

= −8𝜋
2
𝑘 [(ℎ + 4𝜋

2
𝑘
2
𝑙) 𝛾

+ 9 (ℎ + 4𝜋
2
𝑘
2
𝑙) 𝛾
5
+ ⋅ ⋅ ⋅] ,

(51)

which lead to

𝑎11𝑎22 − 𝑎12𝑎21 = 8𝜋
2
𝑙𝛾 + 𝑜 (𝛾) ,

𝑎22𝑏1 − 𝑎12𝑏2 = 8𝜋
2
𝑘 (ℎ + 4𝜋

2
𝑘
2
𝑙) 𝛾 + 𝑜 (𝛾) .

(52)

So, we have 𝜔 → (ℎ𝑘 + 4𝜋
2
𝑘
3
𝑙)/𝑙 as Im 𝜏 → +∞(𝛾 → 0).

And we can write 𝑓 as

𝑓 =

+∞

∑

𝑛=−∞

𝑒
𝜋𝑖𝑛
2
𝜏+2𝜋𝑖𝑛𝜂

=

+∞

∑

𝑛=−∞

𝑒
𝜋𝑖𝑛
2
𝜏
𝑒
2𝜋𝑖𝑛𝜂

= 1 +

+∞

∑

𝑛=1

𝑒
𝜋𝑖𝑛
2
𝜏
(𝑒
2𝜋𝑖𝑛𝜂

+ 𝑒
−2𝜋𝑖𝑛𝜂

)

= 1 + 𝑒
𝜋𝑖𝜏
(𝑒
2𝜋𝑖𝜂

+ 𝑒
−2𝜋𝑖𝜂

) + 𝑒
4𝜋𝑖𝑛𝜏

(𝑒
4𝜋𝑖𝜂

+ 𝑒
−4𝜋𝑖𝜂

)

+ 𝑒
9𝜋𝑖𝑛𝜏

(𝑒
6𝜋𝑖𝜂

+ 𝑒
−6𝜋𝑖𝜂

) + ⋅ ⋅ ⋅

= 1 + 𝑒
𝜋𝑖𝜏
𝑒
2𝜋𝑖𝜂

+ (𝑒
𝜋𝑖𝜏
𝑒
−2𝜋𝑖𝜂

+ 𝑒
4𝜋𝑖𝑛𝜏

𝑒
4𝜋𝑖𝜂

)

+ (𝑒
4𝜋𝑖𝑛𝜏

𝑒
−4𝜋𝑖𝜂

+ 𝑒
9𝜋𝑖𝑛𝜏

𝑒
6𝜋𝑖𝜂

) + ⋅ ⋅ ⋅

= 1 + 𝑒
2𝜋𝑖𝜂+𝜋𝑖𝜏

+ 𝑒
2𝜋𝑖𝜏

(𝑒
−2𝜋𝑖𝜂−𝜋𝑖𝜏

+ 𝑒
4𝜋𝑖𝜂+2𝜋𝑖𝑛𝜏

)

+ 𝑒
6𝜋𝑖𝑛𝜏

(𝑒
−4𝜋𝑖𝜂−2𝜋𝑖𝜏

+ 𝑒
6𝜋𝑖𝜂+3𝜋𝑖𝜏

) + ⋅ ⋅ ⋅

(53)

It is interesting that if we set 𝜂 = 2𝜋𝑖𝜂 + 𝜋𝑖𝜏, (53) can be
rewritten as

𝑓 = 1 + 𝑒
𝜂


+ 𝛾
2
(𝑒
−𝜂


+ 𝑒
2𝜂


) + 𝛾
6
(𝑒
−2𝜂


+ 𝑒
3𝜂


)

+ ⋅ ⋅ ⋅ ,

(54)

From (54), we have 𝑓 → 1 + 𝑒
𝜂


as

Im 𝜏 → +∞(𝛾 → 0) . (55)

Then the periodic wave solution (50) of (33) turns to the
soliton

𝑢 = 2 (ln𝑓)
𝑥
,

𝑓 = 1 + 𝑒
𝜂


= 1 + 𝑒
𝜋𝑖(2𝑘𝑡+2𝑙𝑦+2ℎ𝑧+2𝜔𝑡+𝜏)

.

(56)

5. Conclusions and Remarks

In this paper, we investigate a (3+1)-dimensional generalized
shallow water wave equation (33). Its bilinear form is given
by applying the relations 𝐷𝑝-operators and binary Bell poly-
nomials, which has proved to be a quick and direct method.
Then, we successfully get the exact periodic wave solution
with the help of𝐷𝑝-operators and Riemann theta function in
terms of Hirota direct method. Furthermore, we obtain the
corresponding soliton solutions via asymptotic analysis for
their periodic wave solutions.

There are many other interesting questions on bilinear
differential equations; for example, can the approach be
generalized to solve trilinear equations with trilinear differ-
ential operators? How to apply the 𝐷𝑝-operators into the
discrete equations? Besides, we will try to explore how to
construct more nonlinear evolution equations with other
operators simply and directly. We will continue to explore
these problems in the near future.
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