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A nonautonomous discrete predator-prey-mutualist system is proposed and studied in this paper. Sufficient conditions which
ensure the permanence and existence of a unique globally stable periodic solution are obtained. We also investigate the extinction
property of the predator species; our results indicate that if the cooperative effect between the prey and mutualist species is large
enough, then the predator species will be driven to extinction due to the lack of enough food. Two examples together with numerical
simulations show the feasibility of the main results.

1. Introduction

Aswas pointed out by Berryman [1], the dynamic relationship
between predator and prey has long been andwill continue to
be one of the dominant themes in both ecology and mathe-
matical ecology due to its universal existence and importance.
Recently, predator-prey models have been studied widely
[2–7]. It brings to our attention that all the works of [2–
7] are dealing with the relationship between two species,
while, in the real world, the relationship among species is
very complicated and it needs to consider the three-species
models. Many scholars [8–13] studied the dynamic behaviors
of the three-species models.

Moreover, mutualism is one of the most important rela-
tionships in the theory of ecology. Mutualism is a symbiotic
association between any two species and the interaction
between the two species is beneficial to both of the species
[14]. Already, many scholars [15–21] studied the dynamic
behaviors of cooperative models. It brings to our attention
that although predator-prey and mutualism can be recog-
nized as major issues in both applied mathematics and the-
oretical ecology, few scholars have considered predator-prey
system with cooperation in three species. But this phenome-
non really exists in nature. For example, while aphids are

preyed by natural enemies, they are protected by some
natural friends like ants; there ants eat the honeydew that
aphids excrete and help to overcome the resource scarcity of
offspring [22, 23].

In 2009, Rai and Krawcewicz [24] proposed the following
predator-prey-mutualist system:

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 (1 −

𝑥

𝐾
) −

𝛽𝑥𝑧

1 + 𝑚𝑦
,

𝑑𝑦

𝑑𝑡
= 𝛾𝑦(1 −

𝑦

𝑙𝑥 + 𝐿
0

) ,

𝑑𝑧

𝑑𝑡
= 𝑧(−𝑠 +

𝑐𝛽𝑥

1 + 𝑚𝑦
) ,

(1)

where 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡) denote the densities of prey,
mutualist, and predator population at any time 𝑡, respectively;
they applied the equivariant degree method to study Hopf
bifurcations phenomenon of the system.

Recently, Yang et al. [25] argued that, due to seasonal
effects of weather, temperature, food supply, mating habits,
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and so forth, a more appropriate system should be a nonau-
tonomous one, and they proposed and studied the following
system:

𝑥̇ = 𝑥 (𝑎
1 (𝑡) − 𝑏

1 (𝑡) 𝑥 −
𝑐
1
(𝑡) 𝑧

𝑑
1
(𝑡) + 𝑑

2
(𝑡) 𝑦

) ,

̇𝑦 = 𝑦(𝑎
2
(𝑡) −

𝑦

𝑑
3 (𝑡) + 𝑑

4 (𝑡) 𝑥
) ,

𝑧̇ = 𝑧 (−𝑎
3 (𝑡) +

𝑘
1
(𝑡) 𝑐
1
(𝑡) 𝑥

𝑑
1
(𝑡) + 𝑑

2
(𝑡) 𝑦

− 𝑏
2 (𝑡) 𝑧) .

(2)

By using theBrouwer fixed pointed theoremand constructing
a suitable Lyapunov function, the authors obtained a set of
sufficient conditions for the existence of a globally asymptot-
ically stable periodic solution in system (2). It is well known
that the discrete time models are more appropriate than the
continuous ones when the size of the population is rarely
small or the population has nonoverlapping generations. It
has been found that the dynamic behaviors of the discrete
system are rather complex and contain more rich dynam-
ics than the continuous ones. To the best of the authors
knowledge, still no scholar proposes and studies the discrete
predator-prey-mutualist system; this motivated us to study
the following system:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛) exp{𝑎

1
(𝑛) − 𝑏

1
(𝑛) 𝑥
1
(𝑛)

−
𝑐
1 (𝑛) 𝑥3 (𝑛)

𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)

} ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp{𝑎

2
(𝑛)

−
𝑥
2
(𝑛)

𝑑
3
(𝑛) + 𝑑

4
(𝑛) 𝑥
1
(𝑛)

} ,

𝑥
3 (𝑛 + 1) = 𝑥

3 (𝑛) exp{−𝑎3 (𝑛)

+
𝑘
1
(𝑛) 𝑐
1
(𝑛) 𝑥
1
(𝑛)

𝑑
1 (𝑛) + 𝑑

2 (𝑛) 𝑥2 (𝑛)
− 𝑏
2
(𝑛) 𝑥
3
(𝑛)} ,

(3)

where 𝑥
1
(𝑛), 𝑥
2
(𝑛), and 𝑥

3
(𝑛) are the population sizes of the

prey, mutualist, and predator at 𝑛th generation, respectively,
𝑎
1
(𝑛) and 𝑎

2
(𝑛) are the intrinsic growth rate of prey and

mutualist at 𝑛th generation, 𝑎
3
(𝑛) is the death rate of the

predator at 𝑛th generation, 𝑘
1
(𝑛) is called the conversion rate

at 𝑛th generation, which denotes the fraction of the prey
biomass being converted to predator biomass, and 𝑐

1
(𝑛) is

the capture rate of the prey at 𝑛th generation. The sequences
of 𝑑
4
(𝑛), 𝑑

2
(𝑛) are the mutualism sequences. We mention

here that, in system (3), we consider the density restriction
term of predator species (𝑏

2
(𝑛)𝑧); such a consideration is

needed since the density of any species is restricted by the
environment [10]. Here, we assume that 𝑎

𝑖
(𝑛) (𝑖 = 1, 2, 3),

𝑏
𝑗
(𝑛), 𝑐
𝑗
(𝑛) (𝑗 = 1, 2) 𝑘

1
(𝑛), and 𝑑

𝑟
(𝑛) (𝑟 = 1, 2, 3, 4) are all

bounded nonnegative sequences. 𝑎
𝑖
(𝑛) (𝑖 = 1, 2, 3), 𝑏

𝑗
(𝑛) (𝑗 =

1, 2) are strictly positive sequences. Note that

𝑥
1
(𝑛) = 𝑥

1
(0) exp

𝑛−1

∑

𝑘=1

[𝑎
1
(𝑘) − 𝑏

1
(𝑘) 𝑥
1
(𝑘)

−
𝑐
1
(𝑘) 𝑥
3
(𝑘)

𝑑
1
(𝑘) + 𝑑

2
(𝑘) 𝑥
2
(𝑘)

] ,

𝑥
2
(𝑛) = 𝑥

2
(0) exp

𝑛−1

∑

𝑘=1

[𝑎
2
(𝑘) −

𝑥
2 (𝑘)

𝑑
3
(𝑘) + 𝑑

4
(𝑘) 𝑥
1
(𝑘)

] ,

𝑥
3
(𝑛) = 𝑥

3
(0) exp

𝑛−1

∑

𝑘=1

[−𝑎
3
(𝑘) +

𝑘
1
(𝑘) 𝑐
1
(𝑘) 𝑥
1
(𝑘)

𝑑
1
(𝑘) + 𝑑

2
(𝑘) 𝑥
2
(𝑘)

− 𝑏
2 (𝑘) 𝑥3 (𝑘)] .

(4)

From the point of view of biology, in the sequence, we
assume that 𝑥

1
(0) > 0, 𝑥

2
(0) > 0, 𝑥

3
(0) > 0, and then from

(4), we know that the solutions of system (3) are positive. We
use the following notations for any bounded sequence 𝑥(𝑛):

𝑥
𝑢
= sup
𝑛∈𝑁

𝑥 (𝑛) ,

𝑥
𝑙
= inf
𝑛∈𝑁

𝑥 (𝑛) .

(5)

We arrange the rest of the paper as follows. In Section 2,
we establish a permanence result for (3). In Section 3,
the sufficient conditions about the uniqueness and global
attractivity of the periodic solution of (3) are obtained. In
Section 4, the sufficient conditions about the extinction of
predator species and the stability of prey-mutualist species are
obtained. Finally, two suitable examples are given to illustrate
that the conditions of the main theorem are feasible. We end
this paper by a brief discussion.

2. Permanence

Theorem 1. Assume the inequalities 𝑘𝑢
1
𝑐
𝑢

1
𝐵
1
/𝑑
𝑙

1
− 𝑎
𝑙

3
> 0,

and every positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑥
3
(𝑛)) of system (3)

satisfies

lim sup
𝑛→∞

𝑥
1 (𝑛) ≤ 𝐵

1
,

lim sup
𝑛→∞

𝑥
2 (𝑛) ≤ 𝐵

2
,

lim sup
𝑛→∞

𝑥
3 (𝑛) ≤ 𝐵

3
,

(6)

where

𝐵
1
=
exp {𝑎𝑢

1
− 1}

𝑏𝑙
1

,

𝐵
2
= (𝑑
𝑢

3
+ 𝑑
𝑢

4
𝐵
1
) exp {𝑎𝑢

2
− 1} ,

𝐵
3
=

1

𝑏𝑙
2

exp{−𝑎𝑙
3
+
𝑘
𝑢

1
𝑐
𝑢

1
𝐵
1

𝑑𝑙
1

− 1} .

(7)
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Proof. Since 𝑥
1
(0) > 0, 𝑥

2
(0) > 0, and 𝑥

3
(0) > 0, then 𝑥

1
(𝑛) >

0, 𝑥
2
(𝑛) > 0, and 𝑥

3
(𝑛) > 0, for 𝑛 ≥ 0. We only need to prove

that
lim sup
𝑛→∞

𝑥
1 (𝑛) ≤ 𝐵

1
. (8)

Since similar result can be shown for 𝑥
2
(𝑛) and 𝑥

3
(𝑛), then

(6) follows obviously. We first assume that there exists 𝑙
0
∈ 𝑁

such that 𝑥
1
(𝑙
0
+ 1) ≥ 𝑥

1
(𝑙
0
). Then

𝑎
1
(𝑙
0
) − 𝑏
1
(𝑙
0
) 𝑥
1
(𝑙
0
) −

𝑐
1
(𝑙
0
) 𝑥
3
(𝑙
0
)

𝑑
1
(𝑙
0
) + 𝑑
2
(𝑙
0
) 𝑥
2
(𝑙
0
)
≥ 0. (9)

Hence,

𝑥
1
(𝑙
0
) ≤

𝑎
1
(𝑙
0
)

𝑏
1
(𝑙
0
)
≤
𝑎
𝑢

1

𝑏𝑙
1

. (10)

It follows that

𝑥
1
(𝑙
0
+ 1) = 𝑥

1
(𝑙
0
) exp{𝑎

1
(𝑙
0
) − 𝑏
1
(𝑙
0
) 𝑥
1
(𝑙
0
)

−
𝑐
1
(𝑙
0
) 𝑥
3
(𝑙
0
)

𝑑
1
(𝑙
0
) + 𝑑
2
(𝑙
0
) 𝑥
2
(𝑙
0
)
} ≤ 𝑥

1
(𝑙
0
) exp {𝑎

1
(𝑙
0
)

− 𝑏
1
(𝑙
0
) 𝑥
1
(𝑙
0
)} ≤ 𝑥

1
(𝑙
0
) exp {𝑎𝑢

1
− 𝑏
𝑙

1
𝑥
1
(𝑙
0
)}

≤
exp {𝑎𝑢

1
− 1}

𝑏𝑙
1

= 𝐵
1
;

(11)

here we used

max
𝑥∈𝑅

𝑥 exp (𝑎 − 𝑏𝑥) =
exp (𝑎 − 1)

𝑏
, for 𝑎, 𝑏 > 0. (12)

We claim that

𝑥
1
(𝑛) ≤ 𝐵

1
, 𝑛 ≥ 𝑙

0
. (13)

By way of contradiction, assume that there exists 𝑝
0
> 𝑙
0
such

that 𝑥
1
(𝑝
0
) > 𝐵
1
.Then𝑝

0
≥ 𝑙
0
+2. Let𝑝

0
≥ 𝑙
0
+2 be the small-

est integer such that 𝑥
1
(𝑝
0
) > 𝐵
1
.Then 𝑥

1
(𝑝
0
) > 𝐵
1
≥ 𝑥
1
(𝑝
0
−

1), which implies 𝑥
1
(𝑝
0
) > 𝑥

1
(𝑝
0
− 1). The above argument

produces that 𝑥
1
(𝑝
0
) ≤ 𝐵

1
, a contradiction. This proves the

claim. Now, we assume that 𝑥(𝑛 + 1) < 𝑥(𝑛) for all 𝑛 ∈ 𝑁. In
particular, lim

𝑛→∞
𝑥(𝑛) exists, denoted by 𝑥

1
. We claim that

𝑥
1
≤ 𝑎
𝑢

1
/𝑏
𝑙

1
. By way of contradiction, assume that 𝑥

1
> 𝑎
𝑢

1
/𝑏
𝑙

1
.

Taking limit in the first equation in system (3) gives

lim
𝑛→∞

(𝑎
1 (𝑛) − 𝑏

1 (𝑛) 𝑥1 (𝑛) −
𝑐
1 (𝑛) 𝑥3 (𝑛)

𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)

)

= 0,

(14)

which is a contradiction since

𝑎
1 (𝑛) − 𝑏

1 (𝑛) 𝑥1 (𝑛) −
𝑐
1 (𝑛) 𝑥3 (𝑛)

𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)

≤ 𝑎
1
(𝑛) − 𝑏

1
(𝑛) 𝑥
1
(𝑛) ≤ 𝑎

𝑢

1
− 𝑏
𝑙

1
𝑥
1
< 0

for 𝑛 ∈ 𝑁.

(15)

This proves the claim. Note that

exp (𝑥 − 1) > 𝑥 (𝑥 > 0) .

exp (𝑎𝑢
1
− 1)

𝑏𝑙
1

=
𝑎
𝑢

1

𝑏𝑙
1

exp (𝑎𝑢
1
− 1)

𝑎𝑢
1

>
𝑎
𝑢

1

𝑏𝑙
1

.

(16)

It follows that (8) holds.This completes the proof of the main
result.

Theorem 2. Assume the inequalities

𝑘
𝑙

1
𝑐
𝑙

1
𝐷
1

𝑑𝑢
1
+ 𝑑𝑢
2
𝐵
2

− 𝑎
𝑢

3
> 0,

𝑎
𝑙

1
−

𝑐
𝑢

1
𝐵
3

𝑑𝑙
1
+ 𝑑𝑙
2
𝐷
2

> 0,

(𝐻
1
)

where 𝐵
2
and 𝐵

3
are the same as in Theorem 1. Then

lim inf
𝑛→∞

𝑥
1
(𝑛) ≥ 𝐷

1
,

lim inf
𝑛→∞

𝑥
2
(𝑛) ≥ 𝐷

2
,

lim inf
𝑛→∞

𝑥
3
(𝑛) ≥ 𝐷

3
,

(17)

where

𝐷
1
=
𝑎
𝑙

1
(𝑑
𝑙

1
+ 𝑑
𝑙

2
𝐷
2
) − 𝑐
𝑢

1
𝐵
3

𝑏𝑢
1
(𝑑𝑙
1
+ 𝑑𝑙
2
𝐷
2
)

⋅ exp{𝑎𝑙
1
− 𝑏
𝑢

1
𝐵
1
−

𝑐
𝑢

1
𝐵
3

𝑑𝑙
1
+ 𝑑𝑙
2
𝐷
2

} ,

𝐷
2
= 𝑎
𝑙

2
𝑑
𝑙

3
exp{𝑎𝑙

2
−
𝐵
2

𝑑𝑙
3

} ,

𝐷
3
=
𝑘
𝑙

1
𝑐
𝑙

1
𝐷
1
− 𝑎
𝑢

3
(𝑑
𝑢

1
+ 𝑑
𝑢

2
𝐵
2
)

(𝑑𝑢
1
+ 𝑑𝑢
2
𝐵
2
) 𝑏𝑢
2

⋅ exp{−𝑎𝑢
3
+

𝑘
𝑙

1
𝑐
𝑙

1
𝐷
1

𝑑𝑢
1
+ 𝑑𝑢
2
𝐵
2

− 𝑏
𝑢

2
𝐵
3
} .

(18)

Proof. We first show that

lim inf
𝑛→∞

𝑥
2 (𝑛) ≥ 𝐷

2
. (19)

For any 𝜀 > 0, there exists 𝑛∗ ∈ 𝑁 such that

𝑥
1
(𝑛) ≤ 𝐵

1
+ 𝜀,

𝑥
2
(𝑛) ≤ 𝐵

2
+ 𝜀,

𝑥
3 (𝑛) ≤ 𝐵

3
+ 𝜀,

for 𝑛 ≥ 𝑛
∗
.

(20)
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First, we assume that there exists 𝑙
0
≥ 𝑛
∗ such that 𝑥

2
(𝑙
0
+1) ≤

𝑥
2
(𝑙
0
). Note that, for 𝑛 ≥ 𝑙

0
,

𝑥
2
(𝑛 + 1)

= 𝑥
2
(𝑛) exp{𝑎

2
(𝑛) −

𝑥
2
(𝑛)

𝑑
3 (𝑛) + 𝑑

4 (𝑛) 𝑥1 (𝑛)
}

≥ 𝑥
2
(𝑛) exp{𝑎

2
(𝑛) −

𝑥
2 (𝑛)

𝑑
3
(𝑛)

}

≥ 𝑥
2
(𝑛) exp{𝑎𝑙

2
−
𝑥
2 (𝑛)

𝑑𝑙
3

} .

(21)

In particular, with 𝑛 = 𝑙
0
, we get

𝑎
𝑙

2
−
𝑥
2
(𝑙
0
)

𝑑𝑙
3

≤ 0, (22)

which implies that 𝑥
2
(𝑙
0
) ≥ 𝑎
𝑙

2
𝑑
𝑙

3
. Then

𝑥
2
(𝑙
0
+ 1)

= 𝑥
2
(𝑙
0
) exp{𝑎

2
(𝑙
0
) −

𝑥
2
(𝑙
0
)

𝑑
3
(𝑙
0
) + 𝑑
4
(𝑙
0
) 𝑥
1
(𝑙
0
)
}

≥ 𝑥
2
(𝑙
0
) exp{𝑎𝑙

2
−
𝐵
2
+ 𝜀

𝑑𝑙
3

}

≥ 𝑎
𝑙

2
𝑑
𝑙

3
exp{𝑎𝑙

2
−
𝐵
2
+ 𝜀

𝑑𝑙
3

} .

(23)

Let

𝑥
2𝜀

def
= 𝑎
𝑙

2
𝑑
𝑙

3
exp{𝑎𝑙

2
−
𝐵
2
+ 𝜀

𝑑𝑙
3

} . (24)

We claim that

𝑥
2
(𝑛) ≥ 𝑥

2𝜀
for 𝑛 ≥ 𝑙

0
. (25)

By way of contradiction, assume that there exists 𝑝
0
> 𝑙
0
such

that 𝑥
2
(𝑝
0
) < 𝑥

2𝜖
. Then 𝑝

0
≥ 𝑙
0
+ 2. Let 𝑝

0
≥ 𝑙
0
+ 2 be the

smallest integer such that 𝑥
2
(𝑝
0
) < 𝑥

2𝜖
. Then 𝑥

2
(𝑝
0
− 1) ≥

𝑥
2𝜖

> 𝑥
2
(𝑝
0
), and clearly 𝑥

2
(𝑝
0
− 1) > 𝑥

2
(𝑝
0
). The above

argument produces that 𝑥
2
(𝑝
0
) ≥ 𝑥

2𝜖
for all large 𝑛. Then

lim
𝑛→∞

𝑥
2
(𝑛) exists, denoted by 𝑥

2
.We claim that 𝑥

2
≥ 𝑎
𝑙

2
𝑑
𝑙

3
.

By way of contradiction, assume that 𝑥
2
< 𝑎
𝑙

2
𝑑
𝑙

3
. Taking limit

in the second equation in system (3) gives

lim
𝑛→∞

(𝑎
2 (𝑛) −

𝑥
2
(𝑛)

𝑑
3
(𝑛) + 𝑑

4
(𝑛) 𝑥
1
(𝑛)

) = 0, (26)

which is a contradiction since

lim
𝑛→∞

(𝑎
2
(𝑛) −

𝑥
2 (𝑛)

𝑑
3
(𝑛) + 𝑑

4
(𝑛) 𝑥
1
(𝑛)

) ≥ 𝑎
𝑙

2
−

𝑥
2

𝑑𝑙
3

> 0.

(27)

This proves the claim. Note that

𝐵
2

𝑑𝑙
3

=
𝑑
𝑢

3
exp {𝑎𝑢

2
− 1} + 𝑑

𝑢

4
exp {𝑎𝑢

1
+ 𝑎
𝑢

2
− 2} /𝑏

𝑙

1

𝑑𝑙
3

≥ exp {𝑎𝑢
2
− 1} +

𝑑
𝑢

4
exp {𝑎𝑢

1
+ 𝑎
𝑢

2
− 2}

𝑏𝑙
1
𝑑𝑙
3

≥ 𝑎
𝑢

2
+
𝑑
𝑢

4
exp {𝑎𝑢

1
+ 𝑎
𝑢

2
− 2}

𝑏𝑙
1
𝑑𝑙
3

.

(28)

Clearly, 𝑎𝑙
2
− 𝐵
2
/𝑑
𝑙

3
< 0, so 𝐷

2
< 𝑎
𝑙

2
𝑑
𝑙

3
. We can easily see that

(19) holds.The proof of the other two inequalities is similar to
the above analysis andwe omit the detail here.This completes
the proof of the main result.

As a direct corollary ofTheorems 1 and 2, from the defini-
tion of permanence, we have the following.

Theorem 3. Assume that (𝐻
1
) holds. Then system (3) is

permanent.
It should be noticed that, from the inequality 𝑘𝑙

1
𝑐
𝑙

1
𝐷
1
/(𝑑
𝑢

1
+

𝑑
𝑢

2
𝐵
2
) − 𝑎
𝑢

3
> 0 and from the proofs of Theorems 1 and 2,

one knows that where (𝐻
1
) holds, the set [𝐷

1
, 𝐵
1
] × [𝐷

2
, 𝐵
2
] ×

[𝐷
3
, 𝐵
3
] is an invariant set of system (3).

3. Existence and Stability of
a Periodic Solution

Due to seasonal effects of weather, temperature, food supply,
mating habits, contact with predators, and other resources or
physical environmental quantities, we can assume temporal
to be cyclic or periodic [26–28]. In this section, we consider
system (3) with 𝑎

𝑖
(𝑛) (𝑖 = 1, 2, 3) , 𝑏

𝑗
(𝑛), 𝑐
𝑗
(𝑛) (𝑗 = 1, 2),

𝑘
1
(𝑛), and𝑑

𝑟
(𝑛) (𝑟 = 1, 2, 3, 4) being periodicwith a common

period. More precisely, we assume that there exists a positive
integer 𝑤 such that, for 𝑛 ∈ 𝑁,

0 < 𝑎
𝑖
(𝑛 + 𝑤) = 𝑎

𝑖
(𝑛) ,

0 < 𝑏
𝑗 (𝑛 + 𝑤) = 𝑏

𝑗 (𝑛) ,

0 < 𝑐
𝑗 (𝑛 + 𝑤) = 𝑐

𝑗 (𝑛) ,

0 < 𝑑
𝑘
(𝑛 + 𝑤) = 𝑑

𝑘
(𝑛) ,

0 < 𝑘
1 (𝑛 + 𝑤) = 𝑘

1 (𝑛) .

(29)

Let 𝐵
𝑖
,𝐷
𝑖
, 𝑖 = 1, 2, 3, be the same as inTheorems 1 and 2. Our

first result concerns the existence of a periodic solution.

Theorem 4. Assume that (𝐻
1
) holds; then system (3) has 𝑤-

periodic solution, denoted by (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑥
3
(𝑛)).

Proof. As noted at the end of the last section that [𝐷
1
, 𝐵
1
] ×

[𝐷
2
, 𝐵
2
] × [𝐷

3
, 𝐵
3
] is an invariant set of system (3), thus we

can define a mapping 𝐹 on [𝐷
1
, 𝐵
1
] × [𝐷

2
, 𝐵
2
] × [𝐷

3
, 𝐵
3
] by

𝐹 (𝑥
1
(0) , 𝑥

2
(0) , 𝑥

3
(0)) = (𝑥

1
(𝑤) , 𝑥

2
(𝑤) , 𝑥

3
(𝑤))

for (𝑥
1 (0) , 𝑥2 (0) , 𝑥3 (0)) ∈ [𝐷

1
, 𝐵
1
] × [𝐷

2
, 𝐵
2
] × [𝐷

3
, 𝐵
3
] .

(30)
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Obviously, 𝐹 depends continuously on (𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)).

Thus, 𝐹 is continuous and maps the compact set [𝐷
1
, 𝐵
1
] ×

[𝐷
2
, 𝐵
2
] × [𝐷

3
, 𝐵
3
] into itself. Therefore, 𝐹 has a fixed

point (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑥
3
(𝑛)). It is easy to see that the solution

(𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑥
3
(𝑛)) is𝑤-periodic solution of system (3).This

completes the proof.

Now, under some additional conditions, we study the
global stability of the periodic solution obtained in Theo-
rem 4.

Theorem 5. Assume that (29) and (𝐻
1
) hold, and

𝜆
1
= max {󵄨󵄨󵄨󵄨1 − 𝑏

𝑢

1
𝐵
1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

1
𝐷
1

󵄨󵄨󵄨󵄨󵄨
} +

𝑐
𝑢

1
𝐵
3
𝑑
𝑢

2
𝐵
2

(𝑑𝑙
1
+ 𝑑𝑙
2
𝐷
2
)
2

+
𝑐
𝑢

1
𝐵
3

𝑑𝑙
1
+ 𝑑𝑙
2
𝐷
2

< 1,

𝜆
2
= max{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝐵
2

𝑑𝑙
3
+ 𝑑𝑙
4
𝐷
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝐷
2

𝑑𝑢
3
+ 𝑑𝑢
4
𝐵
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

+
𝑑
𝑢

4
𝐵
1
𝐵
2

(𝑑𝑙
3
+ 𝑑𝑙
4
𝐷
1
)
2
< 1,

𝜆
3
= max {󵄨󵄨󵄨󵄨1 − 𝑏

𝑢

2
𝐵
3

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

2
𝐷
3

󵄨󵄨󵄨󵄨󵄨
} +

𝑐
𝑢

1
𝑘
𝑢

1
𝐵
1

𝑑𝑙
1
+ 𝑑𝑙
2
𝐷
2

+
𝑐
𝑢

1
𝑘
𝑢

1
𝐵
1
𝐵
2
𝑑
𝑢

2

(𝑑𝑙
1
+ 𝑑𝑙
2
𝐷
2
)
2
< 1.

(31)

Then for every solution (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑥
3
(𝑛)) of system (3), one

has

lim
𝑛→∞

(𝑥
1
(𝑛) − 𝑥

1
(𝑛)) = 0,

lim
𝑛→∞

(𝑥
2
(𝑛) − 𝑥

2
(𝑛)) = 0,

lim
𝑛→∞

(𝑥
3 (𝑛) − 𝑥

3 (𝑛)) = 0,

(32)

where (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑥
3
(𝑛)) is 𝑤-periodic solution obtained in

Theorem 4.

Proof. Let

𝑥
1 (𝑛) = 𝑥

1 (𝑛) exp (𝑢 (𝑛)) ,

𝑥
2
(𝑛) = 𝑥

2
(𝑛) exp (V (𝑛)) ,

𝑥
3
(𝑛) = 𝑥

31
(𝑛) exp (𝑧 (𝑛)) .

(33)

Then system (3) is equivalent to

𝑢 (𝑛 + 1) = 𝑢 (𝑛) + 𝑏
1 (𝑛) 𝑥1 (𝑛) [1 − exp {𝑢 (𝑛)}]

+ 𝑐
1
(𝑛) 𝑥
3
(𝑛)

[1 − exp {𝑧 (𝑛)}]
𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)

−
𝑐
1
(𝑛) 𝑥
3
(𝑛) 𝑥
2
(𝑛) 𝑑
2
(𝑛) [1 − exp {V (𝑛)}]

(𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)) (𝑑

1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛))

,

V (𝑛 + 1) = V (𝑛) +
𝑥
2 (𝑛) [1 − exp {V (𝑛)}]
𝑑
3
(𝑛) + 𝑑

4
(𝑛) 𝑥
1
(𝑛)

−
𝑥
2
(𝑛) 𝑑
4
(𝑛) 𝑥
1
(𝑛) [1 − exp {𝑢 (𝑛)}]

(𝑑
3 (𝑛) + 𝑑

4 (𝑛) 𝑥1 (𝑛)) (𝑑3 (𝑛) + 𝑑
4 (𝑛) 𝑥1 (𝑛))

,

𝑧 (𝑛 + 1) = 𝑧 (𝑛)

−
𝑘
1
(𝑛) 𝑐
1
(𝑛) 𝑥
1
(𝑛) [1 − exp {𝑢 (𝑛)}]

𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)

+ 𝑏
2
(𝑛) 𝑥
3
(𝑛) [1 − exp {𝑧 (𝑛)}]

+
𝑘
1
(𝑛) 𝑐
1
(𝑛) 𝑥
1
(𝑛) 𝑥
2
(𝑛) 𝑑
2
(𝑛) [1 − exp {V (𝑛)}]

(𝑑
1 (𝑛) + 𝑑

2 (𝑛) 𝑥2 (𝑛)) (𝑑1 (𝑛) + 𝑑
2
𝑥
2 (𝑛))

.

(34)

By using the mean-value theorem, it follows that

𝑢 (𝑛 + 1) = 𝑢 (𝑛) [1 − 𝑏
1
(𝑛) 𝑥
1
(𝑛) exp {𝜃

1
(𝑛) 𝑢 (𝑛)}]

−
𝑐
1
(𝑛) 𝑥
3
(𝑛) 𝑧 (𝑛) exp {𝜃

3
(𝑛) 𝑧 (𝑛)}

𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)

+
𝑐
1 (𝑛) 𝑑2 (𝑛) 𝑥2 (𝑛) 𝑥3 (𝑛) exp {𝜃2 (𝑛) V (𝑛)} V (𝑛)
(𝑑
1 (𝑛) + 𝑑

2 (𝑛) 𝑥2 (𝑛)) (𝑑1 (𝑛) + 𝑑
2 (𝑛) 𝑥2 (𝑛))

V (𝑛 + 1) = V (𝑛) [1 −
𝑥
2
(𝑛) exp {𝜃

2
(𝑛) V (𝑛)}

𝑑
3 (𝑛) + 𝑑

4 (𝑛) 𝑥1 (𝑛)
]

+
𝑑
4
(𝑛) 𝑥
1
(𝑛) 𝑥
2
(𝑛) 𝑢 (𝑛) exp {𝜃

1
(𝑛) 𝑢 (𝑛)}

(𝑑
3 (𝑛) + 𝑑

4 (𝑛) 𝑥1 (𝑛)) (𝑑3 (𝑛) + 𝑑
4 (𝑛) 𝑥1 (𝑛))

,

𝑧 (𝑛 + 1) = 𝑧 (𝑛) [1 − 𝑏
2
(𝑛) 𝑥
3
(𝑛) exp {𝜃

3
(𝑛) 𝑧 (𝑛)}]

+
𝑐
1
(𝑛) 𝑘
1
(𝑛) 𝑥
1
(𝑛) 𝑢 (𝑛) exp {𝜃

1
(𝑛) 𝑢 (𝑛)}

𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)

−
𝑐
1 (𝑛) 𝑘1 (𝑛) 𝑑2 (𝑛) 𝑥1 (𝑛) 𝑥2 (𝑛) exp {𝜃2 (𝑛) V (𝑛)} V (𝑛)
(𝑑
1 (𝑛) + 𝑑

2 (𝑛) 𝑥2 (𝑛)) (𝑑1 (𝑛) + 𝑑
2 (𝑛) 𝑥2 (𝑛))

,

(35)

where (𝜃
1
(𝑛), 𝜃
2
(𝑛), 𝜃
3
(𝑛)) ∈ [0, 1]. To complete the proof, it

suffices to show that

lim
𝑛→∞

𝑢 (𝑛) = lim
𝑛→∞

V (𝑛) = lim
𝑛→∞

𝑧 (𝑛) = 0. (36)

In view of (31), we can choose 𝜀 > 0 small enough such that

𝜆
𝜖

1
= max {󵄨󵄨󵄨󵄨1 − 𝑏

𝑢

1
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

1
(𝐷
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨
}

+
𝑐
𝑢

1
(𝐵
3
+ 𝜀) 𝑑

𝑢

2
(𝐵
2
+ 𝜀)

(𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀))
2

+
𝑐
𝑢

1
(𝐵
3
+ 𝜀)

𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀)

< 1

𝜆
𝜖

2
= max{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
(𝐵
2
+ 𝜀)

𝑑𝑙
3
+ 𝑑𝑙
4
(𝐷
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
(𝐷
2
− 𝜀)

𝑑𝑢
3
+ 𝑑𝑢
4
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} +
𝑑
𝑢

4
(𝐵
1
+ 𝜀) (𝐵

2
+ 𝜀)

(𝑑𝑙
3
+ 𝑑𝑙
4
(𝐷
1
− 𝜀))
2
< 1

𝜆
𝜖

3
= max {󵄨󵄨󵄨󵄨1 − 𝑏

𝑢

2
(𝐵
3
+ 𝜀)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

2
(𝐷
3
− 𝜀)

󵄨󵄨󵄨󵄨󵄨
}

+
𝑐
𝑢

1
𝑘
𝑢

1
(𝐵
1
+ 𝜀)

𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀)

+
𝑐
𝑢

1
𝑘
𝑢

1
(𝐵
1
+ 𝜀) (𝐵

2
+ 𝜀) 𝑑

𝑢

2

(𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀))
2

< 1.

(37)

According toTheorems 1 and 2, there exists 𝑛
0
∈ 𝑁 such that

𝐷
1
− 𝜀 ≤ 𝑥

1
(𝑛) ≤ 𝐵

1
+ 𝜀,

𝐷
2
− 𝜀 ≤ 𝑥

2 (𝑛) ≤ 𝐵
2
+ 𝜀,

𝐷
3
− 𝜀 ≤ 𝑥

3
(𝑛) ≤ 𝐵

3
+ 𝜀.

𝐷
1
− 𝜀 ≤ 𝑥

1
(𝑛) ≤ 𝐵

1
+ 𝜀,

𝐷
2
− 𝜀 ≤ 𝑥

2
(𝑛) ≤ 𝐵

2
+ 𝜀,

𝐷
3
− 𝜀 ≤ 𝑥

3 (𝑛) ≤ 𝐵
3
+ 𝜀

(38)

for 𝑛 ≥ 𝑛
0
.

Notice that 𝜃
1
(𝑛) ∈ [0, 1] implies that𝑥

1
(𝑛) exp{𝜃

1
(𝑛)𝑢(𝑛)}

lies between 𝑥
1
(𝑛) and 𝑥

1
(𝑛). Similarly, 𝑥

2
(𝑛) exp{𝜃

2
(𝑛)V(𝑛)}

lies between 𝑥
2
(𝑛) and 𝑥

2
(𝑛), and 𝑥

3
(𝑛)exp{𝜃

3
(𝑛)𝑧(𝑛)} lies

between 𝑥
3
(𝑛) and 𝑥

3
(𝑛). From (35), we get

|𝑢 (𝑛 + 1)| ≤ |𝑢 (𝑛)|max {󵄨󵄨󵄨󵄨1 − 𝑏
𝑢

1
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

1
(𝐷
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨
} + |V (𝑛)|

𝑐
𝑢

1
(𝐵
3
+ 𝜀) 𝑑

𝑢

2
(𝐵
2
+ 𝜀)

(𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀))
2

+ |𝑧 (𝑛)|
𝑐
𝑢

1
(𝐵
3
+ 𝜀)

𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀)

,

|V (𝑛 + 1)| ≤ |V (𝑛)|max{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝐵
2
+ 𝜀

𝑑𝑙
3
+ 𝑑𝑙
4
(𝐷
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝐷
2
− 𝜀

𝑑𝑢
3
+ 𝑑𝑢
4
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

+ |𝑢 (𝑛)|
𝑑
𝑢

4
(𝐵
1
+ 𝜀) (𝐵

2
+ 𝜀)

(𝑑𝑙
3
+ 𝑑𝑙
4
(𝐷
1
− 𝜀))
2
,

|𝑧 (𝑛 + 1)| ≤ |𝑧 (𝑛)|max {󵄨󵄨󵄨󵄨󵄨1 − 𝑏
𝑙

2
(𝐷
3
− 𝜀)

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨1 − 𝑏
𝑢

2
(𝐵
3
+ 𝜀)

󵄨󵄨󵄨󵄨} + |𝑢 (𝑛)|
𝑐
𝑢

1
𝑘
𝑢

1
(𝐵
1
+ 𝜀)

𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀)

+ |V (𝑛)|
𝑐
𝑢

1
𝑘
𝑢

1
𝑑
𝑢

2
(𝐵
1
+ 𝜀) (𝐵

2
+ 𝜀)

(𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀))
2

(39)

for 𝑛 ≥ 𝑛
0
. Let 𝜆 = max{𝜆𝜀

1
, 𝜆
𝜀

2
, 𝜆
𝜀

3
}. Then 𝜆 < 1. In view of

(39), we get

max {|𝑢 (𝑛 + 1)| , |V (𝑛 + 1)| , |𝑧 (𝑛 + 1)|}

≤ 𝜆max {|𝑢 (𝑛)| , |V (𝑛)| , |𝑧 (𝑛)|} , 𝑛 ≥ 𝑛
0
.

(40)

This implies

max {|𝑢 (𝑛)| , |V (𝑛)| , |𝑧 (𝑛)|}

≤ 𝜆
𝑛−𝑛0 max {󵄨󵄨󵄨󵄨𝑢 (𝑛0)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨V (𝑛0)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑧 (𝑛0)

󵄨󵄨󵄨󵄨} , 𝑛 ≥ 𝑛
0
.

(41)

Therefore (36) holds and the proof is complete.

4. Extinction of Predator Species and
Stability of Prey-Mutualist Species

In this section, we also consider system (3) with 𝑎
𝑖
(𝑛) (𝑖 =

1, 2, 3), 𝑏
𝑗
(𝑛), 𝑐
𝑗
(𝑛) (𝑗 = 1, 2) 𝑘

1
(𝑛), and 𝑑

𝑟
(𝑛) (𝑟 = 1, 2, 3, 4)

being periodic with a common period 𝑤 > 0. By developing
the analysis technique of [29], we show that, under some
suitable assumption, the predator will be driven to extinction
while prey-mutualist will be globally attractive to a certain
solution of a logistic equation.

We consider a discrete logistic equation

𝑥 (𝑛 + 1) = 𝑥 (𝑛) exp (𝑎
1
(𝑛) − 𝑏

1
(𝑛) 𝑥 (𝑛)) , 𝑛 ∈ 𝑁. (42)

Theorem 6. For any positive solution 𝑥∗ of (42), one has

𝑚
1
≤ lim inf
𝑛→∞

𝑥
∗
≤ lim sup
𝑛→∞

𝑥
∗
≤ 𝐵
1
, (43)

where 𝑚
1

= (𝑎
𝑙

1
/𝑏
𝑢

1
) exp{𝑎𝑙

1
− 𝑏
𝑢

1
𝐵
1
} and 𝐵

1
is defined by

Theorem 1. Furthermore, there exists 𝑤-periodic solution for
(42).

The proof of the above claim follows that of Theorems 1
and 2 with slight modification and we omit the detail here.

Theorem 7. Assume that the inequality

𝑏
𝑢

1
exp (𝑎𝑢

1
− 1)

𝑏𝑙
1

< 2 (𝐻
2
)

holds. Let 𝑥∗(𝑛) be a periodic solution of (42). Then, for every
positive solution 𝑥(𝑛) of (42), one has

lim
𝑛→∞

(𝑥 (𝑛) − 𝑥
∗
(𝑛)) = 0. (44)

Proof. Let

𝑥 (𝑛) = 𝑥
∗
(𝑛) exp {𝑝 (𝑛)} . (45)

Then system (42) is equivalent to

𝑝 (𝑛 + 1) = 𝑝 (𝑛) + 𝑏
1 (𝑛) (𝑥

∗
(𝑛) − 𝑥 (𝑛))

= 𝑝 (𝑛) − 𝑏
1
(𝑛) 𝑥
∗
(𝑛) [exp𝑝 (𝑛) − 1] .

(46)
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By using the mean-value theorem, it follows that

𝑝 (𝑛 + 1) = 𝑝 (𝑛) [1 − 𝑏
1 (𝑛) 𝑥

∗
(𝑛) exp {𝜃4 (𝑛) 𝑝 (𝑛)}] , (47)

where 𝜃
4
(𝑛) ∈ [0, 1]. To complete the proof, it suffices to show

that

lim
𝑛→∞

𝑝 (𝑛) = 0; (48)

we first assume that

𝜆
∗
= max {󵄨󵄨󵄨󵄨1 − 𝑏

𝑢

1
𝐵
1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

1
𝑚
1

󵄨󵄨󵄨󵄨󵄨
} < 1; (49)

thenwe can choose positive constant 𝜀 > 0 small enough such
that

𝜆
∗

𝜀
= max {󵄨󵄨󵄨󵄨1 − 𝑏

𝑢

1
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

1
(𝑚
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨
} < 1. (50)

According toTheorem 6, there exists 𝑛∗ ∈ 𝑁 such that

𝑚
1
− 𝜀 ≤ 𝑥 (𝑛) ,

𝑥
∗
(𝑛) ≤ 𝐵

1
+ 𝜀,

𝑛 ≥ 𝑛
∗
.

(51)

Notice that 𝜃
4
(𝑛) ∈ [0, 1] implies that𝑥∗(𝑛) exp{𝜃

4
(𝑛)𝑝(𝑛)}

lies between 𝑥∗(𝑛) and 𝑥(𝑛). From (47), we get

󵄨󵄨󵄨󵄨𝑝 (𝑛 + 1)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑝 (𝑛)

󵄨󵄨󵄨󵄨max {󵄨󵄨󵄨󵄨1 − 𝑏
𝑢

1
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

1
(𝑚
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨
}

=
󵄨󵄨󵄨󵄨𝑝 (𝑛)

󵄨󵄨󵄨󵄨 𝜆
∗

𝜀
.

(52)

This implies that

󵄨󵄨󵄨󵄨𝑝 (𝑛)
󵄨󵄨󵄨󵄨 ≤ (𝜆

∗

𝜀
)
𝑛−𝑛
∗
󵄨󵄨󵄨󵄨𝑝 (𝑛
∗
)
󵄨󵄨󵄨󵄨 𝑛 ≥ 𝑛

∗
. (53)

Since 𝜆
∗

𝜀
< 1 and 𝜀 is arbitrarily small, we obtain

lim
𝑛→∞

𝑝(𝑛) = 0, and it means that (48) holds when 𝜆∗ < 1.
Note that

1 − 𝑏
𝑢

1
𝐵
1
≤ 1 − 𝑏

𝑙

1
𝑚
1
< 1; (54)

thus, 𝜆∗ < 1 is equivalent to

1 − 𝑏
𝑢

1
𝐵
1
> −1, (55)

or

𝑏
𝑢

1
𝐵
1
=
𝑏
𝑢

1

𝑏𝑙
1

exp {𝑎𝑢
1
− 1} < 2. (56)

Now, we can conclude that (48) is satisfied as (𝐻
2
) holds, and

so

lim
𝑛→∞

(𝑥 (𝑛) − 𝑥
∗
(𝑛)) = 0. (57)

Theorem 8. Assume that the inequality
𝑘
𝑢

1
𝑐
𝑢

1
𝐵
1

𝑑𝑙
1
+ 𝑑𝑙
2
𝐷
2

− 𝑎
𝑙

3
< 0 (𝐻

3
)

holds, where 𝐷
2
and 𝐵

1
are defined by Theorems 1 and 2. Let

(𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑥
3
(𝑛)) be any positive solution of system (3); then

𝑥
3
(𝑛) → 0 as 𝑛 → +∞.

Proof. From (𝐻
3
)we can choose positive constant 𝜀 > 0 small

enough such that inequality

𝑘
𝑢

1
𝑐
𝑢

1
(𝐵
1
+ 𝜀)

𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀)

− 𝑎
𝑙

3
< 0 (58)

holds. Thus, there exists 𝛿
2
> 0,

𝑘
𝑢

1
𝑐
𝑢

1
(𝐵
1
+ 𝜀)

𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀)

− 𝑎
𝑙

3
< −𝛿
2
< 0. (59)

Let (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑥
3
(𝑛)) be any positive solution of system (3).

For any 𝑞 ∈ 𝑁, according to the equation of system (3), we
obtain

ln
𝑥
3
(𝑞 + 1)

𝑥
3
(𝑞)

= −𝑎
3
(𝑞) +

𝑘
1
(𝑞) 𝑐
1
(𝑞) 𝑥
1
(𝑞)

𝑑
1
(𝑞) + 𝑑

2
(𝑞) 𝑥
2
(𝑞)

− 𝑏
2
(𝑞) 𝑥
3
(𝑞)

≤ −𝑎
3
(𝑞) +

𝑘
1
(𝑞) 𝑐
1
(𝑞) 𝑥
1
(𝑞)

𝑑
1
(𝑞) + 𝑑

2
(𝑞) 𝑥
2
(𝑞)

≤ −𝑎
𝑙

3
+

𝑘
𝑢

1
𝑐
𝑢

1
(𝐵
1
+ 𝜀)

𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀)

≤ −𝛿
2
< 0.

(60)

Summating both sides of the above inequations from 0 to 𝑛−1,
we obtain

ln
𝑥
3
(𝑛)

𝑥
3 (0)

< −𝛿
2
𝑛, (61)

and then

𝑥
3
(𝑛) < 𝑥

3
(0) exp (−𝛿

2
𝑛) . (62)

The above inequality shows that 𝑥
3
(𝑛) → 0 exponentially as

𝑛 → +∞. This completes the proof of Theorem 8.

Theorem9. Assume (𝐻
2
), (𝐻
3
), and𝐵

2
/(𝑑
𝑙

3
+𝑑
𝑙

4
𝐷
1
) < 2 hold;

also

𝑎
𝑙

1
−

𝑐
𝑢

1
𝐵
3

𝑑𝑙
1
+ 𝑑𝑙
2
𝐷
2

> 0,

𝑘
𝑢

1
𝑐
𝑢

1
𝐵
1

𝑑𝑙
1

− 𝑎
𝑙

3
> 0.

(63)

Then for any positive solution (𝑥
1
(𝑛), 𝑥
2
(𝑛), 𝑥
3
(𝑛)) of system

(3), one has
lim
𝑛→∞

(𝑥
1 (𝑛) − 𝑥

∗

1
(𝑛)) = 0,

lim
𝑛→∞

(𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)) = 0.

(64)

𝑥
∗

1
(𝑛) is any positive solution of system (42) and 𝑥∗

2
(𝑛) is any

positive solution of the second equation of system (3).
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Proof. Since (𝐻
3
) holds, it follows fromTheorem 8 that

lim
𝑛→∞

𝑥
3
(𝑛) = 0. (65)

To prove lim
𝑛→∞

(𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)) = 0, let

𝑥
1
(𝑛) = 𝑥

∗

1
(𝑛) exp (𝑢 (𝑛)) ; (66)

then from the first equation of system (3) and (66),

𝑢 (𝑛 + 1) = 𝑢 (𝑛) − 𝑏
1
(𝑛) 𝑥
∗

1
(𝑛) (exp (𝑢 (𝑛) − 1))

−
𝑐
1
(𝑛) 𝑥
3
(𝑛)

𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)

.

(67)

Using the mean-value theorem, one has

exp (𝑢 (𝑛) − 1) = exp (𝜁
1
(𝑛) 𝑢 (𝑛)) 𝑢 (𝑛) ,

𝜁
1
(𝑛) ∈ (0, 1) .

(68)

Then the first equation of system (3) is equivalent to

𝑢 (𝑛 + 1) = 𝑢 (𝑛) (1 − 𝑏
1 (𝑛) 𝑥

∗

1
(𝑛) exp (𝜁1 (𝑛) 𝑢 (𝑛)))

−
𝑐
1
(𝑛) 𝑥
3
(𝑛)

𝑑
1 (𝑛) + 𝑑

2 (𝑛) 𝑥2 (𝑛)
.

(69)

To complete the proof, it suffices to show that

lim
𝑛→∞

𝑢 (𝑛) = 0. (70)

We first assume that

𝜆 = max {󵄨󵄨󵄨󵄨1 − 𝑏
𝑢

1
𝐵
1

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

1
𝐷
1

󵄨󵄨󵄨󵄨󵄨
} < 1, (71)

and then we can choose positive constant 𝜀 > 0 small enough
such that

𝜆
𝜀
= max {󵄨󵄨󵄨󵄨1 − 𝑏

𝑢

1
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

1
(𝐷
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨
} < 1. (72)

For the above 𝜀, according toTheorems 1, 2, and 8, there exists
an integer 𝑛

1
∈ 𝑁 such that

𝐷
1
− 𝜀 ≤ 𝑥

1
(𝑛) ≤ 𝐵

1
+ 𝜀,

𝑚
1
− 𝜀 ≤ 𝑥

∗

1
(𝑛) ≤ 𝐵

1
+ 𝜀,

𝑥
3
(𝑛) ≤ 𝜀,

𝑛 ≥ 𝑛
1
.

(73)

Noting that𝑚
1
≥ 𝐷
1
, then

𝐷
1
− 𝜀 ≤ 𝑥

1
(𝑛) ,

𝑥
∗

1
(𝑛) ≤ 𝐵

1
+ 𝜀,

𝑥
3
(𝑛) ≤ 𝜀,

𝑛 ≥ 𝑛
1
.

(74)

It follows from (74) that

𝑐
1
(𝑛)

𝑑
1
(𝑛) + 𝑑

2
(𝑛) 𝑥
2
(𝑛)

≤
𝑐
𝑢

1

𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀)

≐ 𝑀
𝜀
,

𝑛 ≥ 𝑛
1
.

(75)

Noting that 𝜁
1
(𝑛) ∈ (0, 1), it implies that 𝑥∗

1
(𝑛) exp(𝜁

1
(𝑛)𝑢(𝑛))

lies between 𝑥∗
1
(𝑛) and 𝑥

1
(𝑛). From (69), (72)–(75), we get

|𝑢 (𝑛 + 1)|

≤ |𝑢 (𝑛)|max {󵄨󵄨󵄨󵄨1 − 𝑏
𝑢

1
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨󵄨
1 − 𝑏
𝑙

1
(𝐷
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨
}

+
𝑐
𝑢

1
𝜀

𝑑𝑙
1
+ 𝑑𝑙
2
(𝐷
2
− 𝜀)

= |𝑢 (𝑛)| 𝜆𝜀 +𝑀
𝜀
𝜀,

𝑛 ≥ 𝑛
1
.

(76)

This implies that

|𝑢 (𝑛)| ≤ 𝜆
𝑛−𝑛1

𝜀

󵄨󵄨󵄨󵄨𝑢 (𝑛1)
󵄨󵄨󵄨󵄨 +

1 − 𝜆
𝑛−𝑛1

𝜀

1 − 𝜆
𝜀

𝑀
𝜀
𝜀, 𝑛 ≥ 𝑛

1
. (77)

Since 𝜆
𝜀

< 1 and 𝜀 is arbitrarily small, we obtain
lim
𝑛→∞

𝑢(𝑛) = 0, and it means that (70) holds when 𝜆 < 1.
Note that

1 − 𝑏
𝑢

1
𝐵
1
≤ 1 − 𝑏

𝑙

1
𝐷
1
< 1; (78)

thus, 𝜆 < 1 is equivalent to

1 − 𝑏
𝑢

1
𝐵
1
> −1, (79)

or

𝑏
𝑢

1
𝐵
1
=
𝑏
𝑢

1

𝑏𝑙
1

exp {𝑎𝑢
1
− 1} < 2. (80)

Now, we can conclude that (70) is satisfied as (𝐻
2
) holds, and

so
lim
𝑛→∞

(𝑥
1 (𝑛) − 𝑥

∗

1
(𝑛)) = 0. (81)

Next, we prove

lim
𝑛→∞

(𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)) = 0. (82)

Let

𝑥
2
(𝑛) = 𝑥

∗

2
(𝑛) exp (V (𝑛)) . (83)

If 𝑘𝑢
1
𝑐
𝑢

1
𝐵
1
/𝑑
𝑙

1
− 𝑎
𝑙

3
> 0 and 𝑎

𝑙

1
− 𝑐
𝑢

1
𝐵
3
/(𝑑
𝑙

1
+ 𝑑
𝑙

2
𝐷
2
) > 0

hold, from Theorems 1 and 2, we know that 𝑥
1
(𝑛), 𝑥

2
(𝑛) are

bounded eventually. From the second inequality of (39),

|V (𝑛 + 1)| ≤ |V (𝑛)|max{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝐵
2
+ 𝜀

𝑑𝑙
3
+ 𝑑𝑙
4
(𝐷
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝐷
2
− 𝜀

𝑑𝑢
3
+ 𝑑𝑢
4
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

+ |𝑢 (𝑛)|
𝑑
𝑢

4
(𝐵
1
+ 𝜀) (𝐵

2
+ 𝜀)

(𝑑𝑙
3
+ 𝑑𝑙
4
(𝐷
1
− 𝜀))
2

𝑛 > 𝑛
0
.

(84)
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We first assume that

𝜌 = max{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝐵
2

𝑑𝑙
3
+ 𝑑𝑙
4
𝐷
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝐷
2

𝑑𝑢
3
+ 𝑑𝑢
4
𝐵
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} < 1. (85)

It follows from (70) that lim
𝑛→∞

𝑢(𝑛) = 0.
For any positive constant 𝜀 > 0, there exists integer 𝑛

2
≥

max(𝑛
0
, 𝑛
1
) such that

𝜌
𝜀
= max{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
(𝐵
2
+ 𝜀)

𝑑𝑙
3
+ 𝑑𝑙
4
(𝐷
1
− 𝜀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
(𝐷
2
− 𝜀)

𝑑𝑢
3
+ 𝑑𝑢
4
(𝐵
1
+ 𝜀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} < 1, 𝑛 ≥ 𝑛
2

|𝑢 (𝑛)| < 𝜀, 𝑛 ≥ 𝑛
2
.

(86)

Let

𝑑
𝑢

4
(𝐵
1
+ 𝜀) (𝐵

2
+ 𝜀)

(𝑑𝑙
3
+ 𝑑𝑙
4
(𝐷
1
− 𝜀))
2
≐ 𝐴
𝜀
. (87)

From (84)–(87) we can conclude that

|V (𝑛 + 1)| ≤ 𝜌
𝜀 |V (𝑛)| + 𝜀𝐴

𝜀
, 𝑛 ≥ 𝑛

2
. (88)

This implies that

|V (𝑛)| ≤ 𝜌
𝑛−𝑛2

𝜀

󵄨󵄨󵄨󵄨V (𝑛2)
󵄨󵄨󵄨󵄨 + 𝜀𝐴

𝜀

1 − 𝜌
𝑛−𝑛2

𝜀

1 − 𝜌
𝜀

, 𝑛 ≥ 𝑛
2
. (89)

Since 𝜌
𝜀

< 1 and 𝜀 is arbitrarily small, we obtain
lim
𝑛→∞

𝑢(𝑛) = 0. Note that

1 −
𝐵
2

𝑑𝑙
3
+ 𝑑𝑙
4
𝐷
1

≤ 1 −
𝐷
2

𝑑𝑢
3
+ 𝑑𝑢
4
𝐵
1

< 1; (90)

thus 𝜌
𝜀
< 1 is equivalent to

1 −
𝐵
2

𝑑𝑙
3
+ 𝑑𝑙
4
𝐷
1

> −1, (91)

or

𝐵
2

𝑑𝑙
3
+ 𝑑𝑙
4
𝐷
1

< 2. (92)

Now, we can conclude that lim
𝑛→∞

V(𝑛) = 0. And so

lim
𝑛→∞

(𝑥
2 (𝑛) − 𝑥

∗

2
(𝑛)) = 0. (93)

We can conclude that

lim
𝑛→∞

(𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)) = 0,

lim
𝑛→∞

(𝑥
2 (𝑛) − 𝑥

∗

2
(𝑛)) = 0,

𝑛 ≥ 𝑛
2

(94)

This completes the proof of Theorem 9.
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Figure 1: Dynamic behavior of the solution (𝑥
1
(𝑛), 𝑥

2
(𝑛), 𝑥

3
(𝑛))

to system (95) with the initial conditions (𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)) =

(0.05, 0.1, 0.2), (0.5, 0.8, 0.3) and (0.4, 0.2, 0.6), respectively.

5. Examples and Numeric Simulations

In this section, we will give two examples to show the
feasibility of our results.

Example 1. Consider the following system:

𝑥
1 (𝑛 + 1) = 𝑥

1 (𝑛)

⋅ exp{(0.5 − 0.2 cos (𝑛)) − 𝑥
1
(𝑛) −

0.02𝑥
3
(𝑛)

1 + 𝑥
2
(𝑛)

} ,

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛) exp{0.3 −

𝑥
2 (𝑛)

1 + 0.1𝑥
1
(𝑛)

} ,

𝑥
3
(𝑛 + 1) = 𝑥

3
(𝑛)

⋅ exp{−0.0001 + 0.01𝑥
1
(𝑛)

1 + 𝑥
2
(𝑛)

− 𝑥
3 (𝑛)} .

(95)

One could easily see that 𝑘
𝑙

1
𝑐
𝑙

1
𝐷
1
/(𝑑
𝑢

1
+ 𝑑
𝑢

2
𝐵
2
) − 𝑎

𝑢

3
≈

0.0011 > 0 and 𝑎
𝑙

1
− 𝑐
𝑢

1
𝐵
3
/(𝑑
𝑙

1
+ 𝑑
𝑙

2
𝐷
2
) ≈ 0.2940 > 0,

and then condition (𝐻
1
) is satisfied. According toTheorem 1,

system (3) is permanent. Numerical simulation (see Figure 1)
indicates the permanence of system (95).

Figure 1 shows the dynamic behaviors of system (95),
which strongly supports our results.

Example 2. Consider the following system:

𝑥
1
(𝑛 + 1) = 𝑥

1
(𝑛)

⋅ exp{(0.7 − 0.3 cos (𝑛)) − 2𝑥
1 (𝑛) −

0.02𝑥
3 (𝑛)

1 + 𝑥
2
(𝑛)

} ,
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Figure 2: Dynamic behavior of the solution (𝑥
1
(𝑛), 𝑥

2
(𝑛), 𝑥

3
(𝑛))

to system (96) with the initial conditions (𝑥
1
(0), 𝑥
2
(0), 𝑥
3
(0)) =

(0.05, 0.8, 0.1), (0.5, 1.2, 0.2) and (0.7, 1.4, 0.3), respectively.

𝑥
2
(𝑛 + 1) = 𝑥

2
(𝑛)

⋅ exp{(0.5 − 0.1 sin (𝑛)) −
𝑥
2
(𝑛)

2 + 𝑥
1 (𝑛)

} ,

𝑥
3 (𝑛 + 1) = 𝑥

3 (𝑛)

⋅ exp{−0.004 + 0.01𝑥
1 (𝑛)

1 + 𝑥
2
(𝑛)

− 50𝑥
3
(𝑛)} .

(96)

We could easily see that (𝑏𝑢
1
/𝑏
𝑙

1
) exp(𝑎𝑢

1
− 1) = 1 < 2,

𝑘
𝑢

1
𝑐
𝑢

1
𝐵
1
/(𝑑
𝑙

1
+ 𝑑
𝑙

2
𝐷
2
) − 𝑎

𝑙

3
≈ −0.000703 < 0, 𝐵

2
/(𝑑
𝑙

3
+

𝑑
𝑙

4
𝐷
1
) ≈ 0.7943 < 2, 𝑎𝑙

1
− 𝑐
𝑢

1
𝐵
3
/(𝑑
𝑙

1
+ 𝑑
𝑙

2
𝐷
2
) ≈ 0.3999 > 0,

and 𝑘
𝑢

1
𝑐
𝑢

1
𝐵
1
/𝑑
𝑙

1
− 𝑎
𝑙

3
= 0.001 > 0. Clearly, conditions of

Theorem 9 are satisfied, and so lim
𝑛→∞

(𝑥
1
(𝑛) − 𝑥

∗

1
(𝑛)) = 0,

lim
𝑛→∞

(𝑥
2
(𝑛) − 𝑥

∗

2
(𝑛)) = 0, and lim

𝑛→∞
𝑥
3
(𝑛) = 0.

Figure 2 shows the dynamic behaviors of system (96),
which strongly supports our results.

6. Discussion

It is well known that prey-mutualist system can decrease
predation risk; mutualism plays an important role in the
dynamic behaviors of predator-prey populations. For system
(3), we showed that the predator-prey-mutualist system will
be coexistent in a globally stable state under some suitable
conditions. We argued that it is an important topic to
study the extinction of the species [29–32], since, with the
development of modern society, more and more species are
driven to extinction; this motivated us to study the extinction
of the predator species. In Section 4, our results indicate that
if the death rate of the predator species 𝑥

3
is big enough or

the cooperate effect between species 𝑥
1
and 𝑥

2
is very strong,

the predator species will be driven to extinction due to the
fewer chances of meeting prey species. This can also be seen
from (𝐻

3
); 𝑥
3
will be driven to extinction when 𝑑

2
becomes

bigger.
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