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This paper aims at studying the model proposed by Kuznetsov and Taylor in 1994. Inspired byMayer et al., time delay is introduced
in the general model. The dynamic behaviors of this model are studied, which include the existence and stability of the equilibria
and Hopf bifurcation of the model with discrete delays. The properties of the bifurcated periodic solutions are studied by using the
normal form on the center manifold. Numerical examples and simulations are given to illustrate the bifurcation analysis and the
obtained results.

1. Introduction

For the longest time, malignant tumors have posed a threat
to human lives. Effective strategies based on the immune
system have been championed to complement traditional
methods of cancer treatment, such as surgery, radiation,
and chemotherapy. Cancer immunotherapy is the use of the
immune system to treat cancer. Immunotherapy is used to
provoke the immune system into attacking the tumor cells by
using these cancer antigens as targets. Cell types that can be
used in this way are natural killer cells, lymphokine-activated
killer cells, cytotoxic T cells, and dendritic cells. There has
been much interest in mathematical models describing the
interaction between tumor cells and effector cells of the
immune system; see [1–6]. An ideal model can provide
insight into the dynamics of interactions of the immune
response with the tumor and may play an important role
in understanding of cancer and developing effective drug
therapies. Developing ideal models for such complex pro-
cesses is not easy. Simple models which display some useful
immunological phenomena have been proposed and studied
extensively. See Bi and Xiao [7], Galach [4], and Yafia [8–10],
and the references cited therein. In 1994, Kuznetsov et al. [11]
introduced a model, which describes competition between

the tumor and immune cells. It also describes the response
of effector cells (ECs) to the growth of tumor cells (TCs). It
is assumed that the tumor cells are “immunogenic” and thus
subject to immune attack by cytotoxic (CT) or natural killer
(NK) cells. This model studies the infiltration of TCs by ECs
and also the possibility of ECs inactivation. It is assumed that
interactions between ECs and TCs in vitro can be described
by the following kinetic scheme describing interactions between
ECs and TCs:

𝐸 + 𝑇 𝑘1󳨀󳨀󳨀󳨀󳨀󳨀→←󳨀󳨀󳨀󳨀󳨀󳨀
𝑘−1

𝐶{{{{{
𝑘2󳨀→ 𝐸∗ + 𝑇󳨀→
𝑘3

𝑇∗ + 𝐸 (1)

where 𝐸, 𝑇, 𝐶, 𝑇∗, 𝐸∗ are the local concentrations of 𝐸𝐶s,𝑇𝐶s, 𝐸𝐶-𝑇𝐶 complexes, inactivated ECs, and TCs, respec-
tively. The parameters 𝑘1, 𝑘−1, 𝑘2 and 𝑘3 are nonnegative
constants, which describe the conversion rates of differential
cells. Then Kuznetsov and Taylor’s model is as follows:𝑑𝐸𝑑𝑡 = 𝑠 + 𝐹 (𝐶, 𝑇) − 𝑑1𝐸 − 𝑘1𝐸𝑇 + (𝑘−1 + 𝑘3) 𝐶,𝑑𝑇𝑑𝑡 = 𝑎𝑇 (1 − 𝑏𝑇tot) − 𝑘1𝐸𝑇 + (𝑘−1 + 𝑘2) 𝐶,
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𝑑𝐶𝑑𝑡 = 𝑘1𝐸𝑇 − (𝑘−1 + 𝑘2 + 𝑘3) 𝐶,𝑑𝑇∗𝑑𝑡 = 𝑘3𝐶 − 𝑑2𝑇∗,𝑑𝐸∗𝑑𝑡 = 𝑘2𝐶 − 𝑑3𝐸∗,
(2)

where 𝐶 is the normal rate of the flow of adult 𝐸𝐶s into the
tumor site, 𝐹(𝐶, 𝑇) describes the accumulation of effector
cells in the tumor cells localization due to the presence of the
tumor. 𝐹(𝐶, 𝑇) = 𝑓𝐶/(𝑔 + 𝑇), (𝑓, 𝑔 are constants). If 𝑇tot ≈𝑇 (𝑇tot = 𝑇 + 𝐶), it is reasonable to assume 𝑑𝐶/𝑑𝑡 ≈ 0, that
is, 𝐶 ≈ 𝑘𝐸𝑇 (𝑘 = 𝑘1/(𝑘−1 + 𝑘2 + 𝑘3)), then 𝐹(𝐶, 𝑇) = 𝐹(𝐸, 𝑇).
Then we only need to analyze the dynamical behavior of the
first two equations.

In 2003, Galach [4] suggested that the function 𝐹 is in the
Michaelis-Menten form 𝐹(𝐸, 𝑇) = 𝜃𝐸𝑇, and thus (2) can be
simplified as 𝑑𝑥𝑑𝑡 = 𝑐 + 𝜃𝑥𝑦 − 𝑚1𝑥𝑦 − 𝑑1𝑥,𝑑𝑦𝑑𝑡 = 𝑎𝑦 (1 − 𝑏𝑦) − 𝑚2𝑥𝑦, (3)

where 𝑥 is the local concentrations of 𝐸𝐶s, and 𝑦 is the local
concentrations of 𝑇𝐶s, 𝑚1 = 𝑘𝑘2, 𝑚2 = 𝑘𝑘3, and all the
parameters are positive. The properties of the model (3) is
studied in [7–9].Thedynamical behaviors and the bifurcation
of the model with delay are also studied by [7, 10].

In this paper, we analyze the dynamics of an immune
response function with Michaelis-Menten form 𝐹(𝐸, 𝑇) =𝑝𝐸𝑇/(𝑔 + 𝑇), where 𝑝 and 𝑔 are positive constants, that is,𝑑𝐸𝑑𝑡 = 𝑠 + 𝑝𝐸𝑇𝑔 + 𝑇 − 𝑚𝐸𝑇 − 𝑑𝐸,

𝑑𝑇𝑑𝑡 = 𝑎𝑇 (1 − 𝑏𝑇) − 𝑛𝐸𝑇. (4)

In order to simplify the original model, we nondimension-
alize (4) by choosing scale for 𝐸 and 𝑇 cell population,
respectively. Let 𝜏 = 𝑛𝑇0𝑡, and replace 𝜏with 𝑡; thus themodel
can be written as follows:𝑑𝑥𝑑𝑡 = 𝜎 + 𝛼𝑥𝑦1 + 𝑦 − 𝜇𝑥𝑦 − 𝛿𝑥,

𝑑𝑦𝑑𝑡 = 𝑓𝑦 (1 − 𝛽𝑦) − 𝑥𝑦, (5)

where 𝑦 = 𝑇/𝑔, 𝑥 = 𝐸/𝑔, 𝜏 = 𝑡𝑛𝑔, 𝜎 = 𝑠/𝑛𝑔2, 𝛼 =𝑝/𝑛𝑔, 𝜇 = 𝑚/𝑛, 𝛿 = 𝑑/𝑛𝑔, 𝑓 = 𝑎/𝑛𝑔, 𝛽 = 𝑏𝑔 and all the
above parameters are positive.

This paper is organized as follows: In Section 2, themodel
without delay is considered, and the conditions for existence
and stability of equilibria are given. In Section 3, the model
with delay is studied. The existence of Hopf bifurcation is
obtained; the direction and stability of bifurcated periodic

solutions are also given with the help of center manifold
and bifurcation theories. At the end of this paper, numerical
results are given to illustrate the main results of this paper.

2. Existence and Stability of the Equilibria

It is easy to see that (5) has a tumor-free equilibrium 𝑃0 =(𝜎/𝛿, 0). In order to find the positive equilibria 𝑃1 = (𝑥∗, 𝑦∗),
we need to solve the following equations:𝑑𝑥𝑑𝑡 = 𝜎 + 𝛼𝑥𝑦1 + 𝑦 − 𝜇𝑥𝑦 − 𝛿𝑥 = 0,

𝑑𝑦𝑑𝑡 = 𝑓𝑦 (1 − 𝛽𝑦) − 𝑥𝑦 = 0. (6)

Equation (6) is reduced to the following cubic polynomial:𝑎1𝑦3 + 𝑎2𝑦2 + 𝑎3𝑦 + 𝑎4 = 0, (7)

where 𝑎1 = 𝑓𝛽𝜇, 𝑎2 = 𝑓(−𝛼𝛽 + 𝛽𝛿 − 𝜇 + 𝛽𝜇), 𝑎3 = 𝑓𝛼 −𝑓𝛿 + 𝑓𝛽𝛿 − 𝑓𝜇 + 𝜎, 𝑎4 = −𝑓𝛿 + 𝜎.Obviously, system (5) in 𝑅+2
is as “well behaved” just as in biology. We have the following
lemma by qualitative analysis.

Lemma 1. If 𝜇 > 𝛼, then the solutions of (5) are invariable in𝐷: 𝐷 = {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 2𝜎𝛿 , 0 ≤ 𝑦 ≤ 2𝛽} . (8)

Proof. If 𝑥 = 0 and 0 < 𝑦 < 2/𝛽, then𝑑𝑥𝑑𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0 = 𝜎 > 0,
𝑑𝑦𝑑𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0 = 𝑓𝑦 (1 − 𝛽𝑦){{{{{{{

> 0 for 0 < 𝑦 < 1𝛽 ,< 0 for 1𝛽 < 𝑦 < 2𝛽 .
(9)

Similarly, if 𝑦 = 0 and 0 < 𝑥 < 2𝜎/𝛿, one has
𝑑𝑥𝑑𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0 = 𝜎 − 𝛿𝑥{{{{{

> 0, for 0 < 𝑥 < 𝜎𝛿 ,< 0, for 𝜎𝛿 < 𝑥 < 2𝜎𝛿 ,𝑑𝑦𝑑𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0 = 0. (10)

Also, if 𝑦 = 2/𝛽 and 0 < 𝑥 < 2𝜎/𝛿, we have𝑑𝑦𝑑𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=2/𝛽, 0<𝑥<2𝜎/𝛿 = 𝑦 (𝑓 (1 − 𝛽𝑦) − 𝑥)󵄨󵄨󵄨󵄨𝑦=2/𝛽, 0<𝑥<2𝜎/𝛿< 0,𝑑𝑥𝑑𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=2/𝛽, 0<𝑥<2𝜎/𝛿
= 𝜎 + 𝑥(2𝛼𝛽 − (𝛽 + 2) (2𝜇 + 𝛿𝛽)𝛽 (𝛽 + 2) )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=2/𝛽, 0<𝑥<2𝜎/𝛿< 0,

(11)
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and, then, there exists a positive number 𝑥∗, which is given
by

𝑥∗ = 𝜎𝛽 (𝛽 + 2)(𝛽 + 2) (2𝜇 + 𝛿𝛽) − 2𝛼𝛽 . (12)

Such that 𝑑𝑥/𝑑𝑡 < 0when 𝑥 > 𝑥∗. Similarly, 𝑑𝑥/𝑑𝑡 > 0when𝑥 < 𝑥∗. On the other hand, one has

0 < 𝜎𝛽 (𝛽 + 2)(𝛽 + 2) (2𝜇 + 𝛿𝛽) − 2𝛼𝛽 < 2𝜎𝛿 (13)

with the help of 𝜇 > 𝛼. That is 0 < 𝑥∗ < 2𝜎/𝛿.
When 𝑥 = 2𝜎/𝛿 and 0 < 𝑦 < 2/𝛽, we can prove the result

in a similar way. This finishes the proof.

It is easy to see that (5) has one tumor-free equilibrium𝑃0 = (𝜎/𝛿, 0). With the distribution of the eigenvalues, we
can easily obtain the following results.

Theorem 2. If 𝑓 > 𝜎/𝛿, then 𝑃0 is unstable. If 𝑓 = 𝜎/𝛿, 𝑃0 is
stable. If 𝑓 < 𝜎/𝛿, 𝑃0 is asymptotically stable.

Theorem 3. If > 𝑓𝛿, 𝛿𝛽 > 𝜇 > 𝛼, then 𝑃0 is globally
asymptotically stable.

Proof. When > 𝛿𝑓, 𝛽𝛿 > 𝜇 > 𝛼, then it is easy to see that𝑎1 > 0,𝑎4 = −𝑓𝛿 + 𝜎 > 0,𝑎3 = 𝑓𝛼 + (𝜎 − 𝑓𝛿) + 𝑓 (𝛽𝛿 − 𝜇) > 0,𝑎2 = 𝑓 (𝛽 (𝜇 − 𝛼) + (𝛽𝛿 − 𝜇)) > 0.
(14)

This implies that 𝑃0 is the only positive equilibrium.
Noting 𝜎 > 𝑑𝑓, we know that 𝑃0 is locally stable with the

help ofTheorem 2. In the remaining part of the proof, we only
need to prove the global stability. By Lemma 1, we know that
the following domain𝐷 is invariable:

𝐷 = {(𝑥, 𝑦) | 0 ≤ 𝑥 ≤ 2𝜎𝛿 , 0 ≤ 𝑦 ≤ 2𝛽} . (15)

Then it is easy to prove that 𝑑𝑥/𝑑𝑡 < 0 as 𝑥 > 2𝜎/𝛿. In
addition, when 𝑦0 > 2/𝛽,𝑑𝑦𝑑𝑡 = 𝑓𝑦 (1 − 𝛽𝑦 − 𝑥) = −𝑓𝑦 ((1 − 𝛽𝑦) + 𝑥𝑦) < 0. (16)

This shows that the vector fields are moving towards 𝐷 as 𝑡
increases.

Let Dulac function 𝐵 = 1/𝑦. Then𝜕 (𝐵𝑃)𝜕𝑥 + 𝜕 (𝐵𝑄)𝜕𝑦 ≤ 𝛼 − 𝜇 − 𝑓𝛽 < 0. (17)

Hence there are no closed trajectory surrounds 𝑃0 in field𝐷.
That is, the result follows.

Using the original parameters, we can give the results as
follows.

Theorem 4. If 𝑠 > 𝑑𝑎/𝑛, 𝑑𝑏 > 𝑚 > 𝑝/𝑔, system (5) has
only one critical equilibrium 𝑃0 = (𝜎/𝛿, 0). Furthermore, 𝑃0
is globally asymptotically stable.

Remark 5. Theorem 4 is an instructive results to kill the
tumor cells. The tumor cells will be killed out by the immune
cells sooner or later under the above conditions; then we only
need to take the necessarymeasures to control the parameters
to satisfy the inequity inTheorem 4.

In the following, we will study the existence and stability
of the tumor-present equilibrium 𝑃1(𝑥∗, 𝑦∗). Similar to the
proof of Lemma 2.4 in [12], we can easily obtain the following
results.

Theorem 6. For the number of positive equilibria, we can get
the following results:

(1) If > 𝛿 > 𝜇/𝛽 > 𝜇, 𝜎 < 𝑓𝛿, and Δ < 0, then (5) has
three distinct positive roots.

(2) If one of the following conditions is satisfied, then (5)
has two distinct positive roots:

(a) 𝛼 > 𝛿 > 𝜇/𝛽 > 𝜇, 𝜎 > 𝑓𝛿, and Δ < 0.
(b) 𝛼 > 𝛿 > 𝜇/𝛽 > 𝜇, 𝜎 > 𝑓𝛿 and Δ = 0.

(3) Assume one of the following conditions is satisfied, then
(5) has one positive root:

(a) 𝛼 > 𝛿 > 𝜇/𝛽 > 𝜇, 𝜎 < 𝑓𝛿, and Δ < 0.
(b) 𝛼 > 𝛿 > 𝜇/𝛽 > 𝜇, 𝜎 < 𝑓𝛿, and 𝐴 = 𝐵 = 0.
(c) 𝛿 > 𝛼, 𝛽 > 1, 𝛼 + 𝛽𝛿 < 𝜇, 𝜎 < 𝛿𝑓, and Δ > 0.
(d) 𝛼 > 𝛿 > 𝜇/𝛽 > 𝜇, 𝜎 < 𝑓𝛿, and Δ = 0.

The corresponding Jacobian matrix at 𝑃1(𝑥∗, 𝑦∗) is
J = ( −𝜎𝑥∗ 𝛼𝑥∗(1 + 𝑦∗)2 − 𝜇𝑥∗−𝑦∗ −𝑓𝛽𝑦∗ ) . (18)

Thus, we can give the following results.

Theorem 7. If 𝜎𝛽 > 𝜇𝑓, then 𝑃1 is stable. And no Hopf bifur-
cation appears around the equilibrium 𝑃1.
Proof. It is easy to see Tr(𝐽(𝑃1)) = −(𝜎/𝑥∗+𝑓𝛽𝑦∗) < 0.Noting𝜎𝛽 > 𝜇𝑓, it is easy to see that

det (𝐽 (𝑃1)) ≥ 𝑦∗𝑥∗(1 + 𝑦∗)2 [(𝜎𝛽𝑓 − 𝜇) (1 + 𝑦∗)2 + 𝛼]
> 0. (19)

Thus the results are proved.

Theorem 8. Let (𝑥∗, 𝑦∗) be the coordinate of the positive
equilibrium 𝑃1. Then the following results hold:

(1) If 𝑓𝜎𝛽 ≥ 𝜇𝑥∗2, then 𝑃1 is stable.
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(2) If 𝑓𝜎𝛽 < 𝜇𝑥∗2, then 𝑃1 is stable for 𝑦∗ >√𝛼𝑥∗2/(𝜇𝑥∗2 − 𝑓𝜎𝛽) − 1 and unstable for 0 < 𝑦∗ <√𝛼𝑥∗2/(𝜇𝑥∗2 − 𝑓𝜎𝛽) − 1.
Proof. It is easy to see

det (𝐽 (𝑃1)) = 𝑦∗𝑥∗(1 + 𝑦∗)2 [𝑎𝑦∗2 + 2𝑎𝑦∗ + 𝑎 + 𝛼] , (20)

where 𝑎 = 1/𝑥∗2(𝜎𝑓𝛽 − 𝜇𝑥∗2).
Let ℎ (𝑦∗) = 𝑎𝑦∗2 + 2𝑎𝑦∗ + 𝑎 + 𝛼. (21)

Then the sign of the det(𝐽(𝑃1)) is the same as that of ℎ(𝑦∗).
Let Δ = 4𝛼(𝜇 − 𝜎𝑓𝛽/𝑥∗2). If 𝑓𝜎𝛽 = 𝜇𝑥∗2 for any 𝑦∗ > 0, then𝑎 = Δ = 0.Hence,ℎ (𝑦∗) = 𝑎𝑦∗2 + 2𝑎𝑦∗ + 𝑎 + 𝛼 = 𝛼 > 0. (22)

Then the first result can be obtained easily.
If 𝑓𝜎𝛽 > 𝜇𝑥∗2, that is, 𝑎 > 0, Δ < 0, then ℎ(𝑦∗) > 0 for

any 𝑦∗ > 0. That is to say, 𝑃1 is stable as 𝑓𝜎𝛽 > 𝜇𝑥∗2. On the
other hand, one knows 𝑎 < 0 as 𝑓𝜎𝛽 < 𝜇𝑥∗2. Noting 𝛼 > 𝜇,
then 𝑎 + 𝛼 = 1𝑥∗2 (𝜎𝑓𝛽 − 𝜇𝑥∗2 + 𝛼𝑥∗2) > 0. (23)

Then ℎ(𝑦∗) = 0 has roots −√𝛼𝑥∗2/(𝜇𝑥∗2 − 𝑓𝜎𝛽) − 1 < 0
and √𝛼𝑥∗2/(𝜇𝑥∗2 − 𝑓𝜎𝛽) − 1 > 0. From 𝑦∗ > 0, we haveℎ(𝑦∗) < 0 as 𝑦∗ > √𝛼𝑥∗2/(𝜇𝑥∗2 − 𝑓𝜎𝛽) − 1 and ℎ(𝑦∗) > 0 as0 < 𝑦∗ < √𝛼𝑥∗2/(𝜇𝑥∗2 − 𝑓𝜎𝛽) − 1. That is to say, the second
result holds.

In the following, we give some simulation results of the
above results. We consider the system (5) and the parameters
suggested by V. A. Kuznetsov et al. Then system (5) becomes𝑑𝑥𝑑𝑡 = 0.1181 + 1.131𝑥 (𝑡) 𝑦 (𝑡)1 + 𝑦 (𝑡) − 0.00311𝑥 (𝑡) 𝑦 (𝑡)− 0.3743𝑥 (𝑡) ,𝑑𝑦𝑑𝑡 = 1.636𝑦 (𝑡) (1 − 0.002𝑦 (𝑡)) − 𝑥 (𝑡) 𝑦 (𝑡) . (24)

Obviously, system (24) has three positive equilibria:𝐸1(1.6348, 0.366269), 𝐸2(0.6538, 300.188), and 𝐸3(0.1906,441.757). By simple computation, it is easy to know that the
eigenvalues of 𝐸1 are −0.0367189 ± 0.599721𝑖, and 𝐸2 has
eigenvalues −1.45811 and 0.295245, and 𝐸3 has eigenvalues−1.68973 and −0.375447. These results are represented in
Figures 1 and 2.

3. Dynamical Behaviors of
the Model with Delay

In this section, we shall consider model (5) with delay𝑑𝑥𝑑𝑡 = 𝜎 + 𝛼𝑥𝑦1 + 𝑦 − 𝜇𝑥 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏) − 𝛿𝑥,𝑑𝑦𝑑𝑡 = 𝑓𝑦 (1 − 𝛽𝑦) − 𝑥𝑦. (25)

The existence of the equilibria is the same as those of
(5). The dynamical behaviors of the trivial equilibria and
semitrivial equilibria are not difficult; we only study the
positive equilibrium 𝑃1 = (𝑥∗, 𝑦∗) here. The characteristic
equation of linearized system for (25) at𝑃1 takes the following
form: 𝜆2 + 𝐵𝜆 + 𝐶 + (𝐷𝜆 + 𝐸) 𝑒−𝜆𝜏 = 0, (26)

where

𝐵 = 𝑓𝛽𝑦∗ − 𝛼𝑦∗1 + 𝑦∗ + 𝛿
= 𝑓𝛽𝑦∗ + 𝑓𝛽𝑦∗2 + 𝛿 + 𝑦∗ (𝛿 − 𝛼)1 + 𝑦∗ ,

𝐶 = 𝑓𝛽𝑦∗2 (𝛿 − 𝛼) + 𝑓𝛽𝑦∗ (2𝛿 − 𝛼) + 𝑓𝛽𝛿 + 𝛼𝑥∗(1 + 𝑦∗)2 ,
𝐷 = 𝜇𝑦∗,𝐸 = 𝜇𝑦∗2𝑓𝛽 − 𝜇𝑥∗𝑦∗ = 𝜇𝑓𝑦∗ (2𝛽𝑦∗ − 1) .

(27)

Similar to the proof in [7], then the following results can be
obtained easily.

Theorem 9. (1) If𝐵 + 𝐷 > 0,𝐶 + 𝐸 > 0,𝐷2 − 𝐵2 + 2𝐶 < 0,𝐶2 − 𝐸2 > 0 or (𝐷2 − 𝐵2 + 2𝐶)2 < 4 (𝐶2 − 𝐸2) ,
(28)

then all roots of (26) have negative real parts for all 𝜏 ≥ 0.
(2) If𝐶2−𝐸2 < 0 or𝐷2−𝐵2+2𝐶 > 0 and (𝐷2−𝐵2+2𝐶)2 =4(𝐶2 −𝐸2), then (26) has a pair of purely imaginary roots ±𝑖𝜔+

at 𝜏 = 𝜏+𝑗 .
(3) If 𝐷2 − 𝐵2 + 2𝐶 > 0, 𝐶2 − 𝐸2 > 0 and (𝐷2 − 𝐵2 +2𝐶)2 > 4(𝐶2 − 𝐸2), then (26) has a pair of purely imaginary

roots ±𝑖𝜔+ (±𝑖𝜔−, resp.) at 𝜏 = 𝜏+𝑗 (𝜏 = 𝜏−𝑗 , 𝑟𝑒𝑠𝑝.), where
𝜔2± = 12 [(𝐷2 − 𝐵2 + 2𝐶) ± √(𝐷2 − 𝐵2 + 2𝐶)2 − 4 (𝐶2 − 𝐸2)] ,
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Figure 1: (a) Stable equilibrium 𝐸1. (b) Saddle-node equilibrium 𝐸2.
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Figure 2: (a) Stable focus equilibrium 𝐸3. (b) Saddle node (𝐸2) and stable focus (𝐸3).

𝜏±𝑗 = {{{{{{{{{{{
1𝜔± (2𝑗𝜋 + arccos

(𝜔2 − 𝐶)𝐸 − 𝐷𝐵𝜔2𝐸2 + 𝐷2𝜔2 ) , 𝐷𝜔2 − 𝐶𝐷 + 𝐵𝐸 ≥ 0, 𝑗 = 1, 2, . . . ,1𝜔± ((2𝑖 + 1) 𝜋 − arccos
(𝜔2 − 𝐶)𝐸 − 𝐷𝐵𝜔2𝐸2 + 𝐷2𝜔2 ) , 𝐷𝜔2 − 𝐶𝐷 + 𝐵𝐸 < 0, 𝑖 = 1, 2, . . . .

(29)

Theorem 10. (1) If the conditions of (1) inTheorem 9 hold, then𝑃1 is asymptotically stable for any 𝜏 > 0.
(2) If 𝐶2 < 𝐸2 or the conditions of (3) in Theorem 9 hold,

then 𝐸∗ undergoes Hopf bifurcation as 𝜏 = 𝜏0.
(3) If 𝐷2 − 𝐵2 + 2𝐶 > 0, (𝐷2 − 𝐵2 + 2𝐶)2 = 4(𝐶2 − 𝐸2)

and 𝐵2 + 2𝐷𝜏𝐸 + 𝜏2 > 𝐷2 + 𝐸2, then 𝐸∗ undergoes a Hopf
bifurcation as 𝜏 = 𝜏0.

Proof. From the analysis of the above, we only need to
compute

Sign 𝑑 (Re𝜆)𝑑𝜏 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆=𝑖𝜔= Sign ± √(𝐷2 − 𝐵2 + 2𝐶)2 − 4 (𝐶2 − 𝐸2). (30)
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In third case, 𝑑(Re𝜆)/𝑑𝜏|𝜏=𝜏0 = 0, then we need the sign
of the second derivative of Re𝜆(𝜏) of (26) at the point where𝜆 is passing through 𝜆0. We can easily obtain

Sign (Re𝜆󸀠󸀠)󵄨󵄨󵄨󵄨󵄨𝜆=𝑖𝜔 = 𝜔2 (𝐸2 + 𝐷2𝜔2)2 (𝐸2 + 𝐷2𝜔2 (2𝜔2 − 2𝐶 − 2𝐷𝜏𝐸 − 𝜏2) − 2𝐸2𝐴 − 𝐴2)𝐴3 (31)

with 𝐴 = −𝐵𝜔2 − 𝐵𝐶 − 𝐷𝐸 + 𝜏𝜔 (𝐸2 + 𝐷2𝜔2) . (32)

Since sgn Re(𝑑𝜆/𝑑𝜏)−1|𝜆=𝑖𝜔 = 0, sgn Im(𝑑𝜆/𝑑𝜏)−1|𝜆=𝑖𝜔 ̸=0. Thus it is easy to see that 𝐸2 + 𝐷2𝜔2(2𝜔2 − 2𝐶 − 2𝐷𝜏𝐸 −𝜏2) − 2𝐸2𝐴 − 𝐴2 < 0.This finishes the proof.

In the above, we obtained the conditions under which
a family of periodic solutions bifurcated from the positive
equilibrium at 𝜏 = 𝜏0. In the following, we derive the
explicit formulae for determining the properties of the Hopf
bifurcated solution by using the normal form and the center
manifold theory. Throughout this section, we always assume
that the system (25) undergoes Hopf bifurcations at the

positive equilibrium 𝑃1(𝑥∗, 𝑦∗) for 𝜏 = 𝜏0 and ±𝑖𝜔 are the
corresponding pure imaginary roots.

Let 𝑡 = 𝜏𝑡󸀠, 𝑥(𝑡) = 𝑥(𝜏𝑡󸀠). Then (25) becomes𝑑𝑥𝑑𝑡 = 𝜏 [𝜎 + 𝛼𝑥𝑦1 + 𝑦 − 𝜇𝑥 (𝑡 − 1) 𝑦 (𝑡 − 1) − 𝛿𝑥] ,𝑑𝑦𝑑𝑡 = 𝜏 (𝑓𝑦 (1 − 𝛽𝑦) − 𝑥𝑦) . (33)

Set 𝜏 = 𝜏0 + 𝑝, 𝑝 ∈ 𝑅. Then 𝑝 = 0 is a Hopf bifurcation value
for (33). Equation (5) can be written as𝑥󸀠 (𝑡) = 𝐿𝑝 (𝑥𝑡) + 𝐹 (𝑝, 𝑥𝑡) , (34)

where 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡))𝑇 ∈ 𝑅2, and 𝐿𝑝 : 𝐶 → 𝑅, 𝐹 :𝑅 × 𝐶 → 𝑅 are given, respectively, by

L𝑝 (𝜙) = 𝐴1 (𝜙1 (0)𝜙2 (0)) + 𝐴2 (𝜙1 (−1)𝜙2 (−1)) ,
F (𝑝, 𝜙) = (𝜏0 + 𝑝)( −𝛼𝑥∗(1 + 𝑦∗)3 (𝜙)22 (0) + 𝛼2 (1 + 𝑦∗)2 𝜙1 (0) 𝜙2 (0) − 𝜇𝜙1 (−1) 𝜙2 (−1)−𝑓𝛽 (𝜙)22 (0) − 𝜙1 (0) 𝜙2 (0) ) , (35)

with 𝜙(0) = (𝜙1(0), 𝜙2(0))𝑇 ∈ 𝐶 and

𝐴1 = (𝜏0 + 𝑝)( 𝛼𝑦∗1 + 𝑦∗ − 𝛿 𝛼𝑥∗(1 + 𝑦∗)2−𝑦∗ −𝑓𝛽𝑦∗ ),
𝐴2 = (𝜏0 + 𝑝)(−𝜇𝑦∗ −𝜇𝑥∗0 0 ) . (36)

By Riesz representation theorem, there exists a function𝜂(𝜃, 𝑝) of bounded variation for 𝜃 ∈ [−1, 0] such that

𝐿𝑝 (𝜃) = ∫0
−1
𝑑𝜂 (𝜃, 𝑝) 𝜙 (𝜃) . (37)

For 𝜙 ∈ 𝐶1([−1, 0], 𝑅3), define
𝐴 (𝑝) 𝜙 = {{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , 𝜃 ∈ [−1, 0) ,∫0
−1
𝑑𝜂 (𝑠, 𝑝) 𝜙 (𝑠) , 𝜃 = 0,

𝑅 (𝑝) 𝜙 = {{{0, 𝜃 ∈ [−1, 0) ,𝐹 (𝑝, 𝜙) , 𝜃 = 0.
(38)

Then system (34) is equivalent to𝑥󸀠𝑡 = 𝐴 (𝑝) (𝑥𝑡) + 𝑅 (𝑝) 𝑥𝑡, (39)

where 𝑥𝑡(𝜃) = 𝑥(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0]. For Ψ ∈ 𝐶1([0, 1],(𝑅3)∗), define
𝐴∗𝜓 (𝑠) = {{{{{{{

𝑑𝜓 (𝑠)𝑑𝑠 , 𝑠 ∈ (0, 1] ,∫− 10𝑑𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0, (40)

and a bilinear inner product⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)
− ∫0
−1
∫𝜃
𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (41)

where 𝜂(𝜃) = 𝜂(𝜃, 0).Then 𝐴(0) and 𝐴∗ are joint operators.



Computational and Mathematical Methods in Medicine 7

Suppose that 𝑞(𝜃) = (1, 𝜌)𝑇𝑒𝑖𝜃𝜔0𝜏0 is the eigenvector of𝐴(𝜃) corresponding to 𝑖𝜔0𝜏0, with 𝜌 = −𝑦∗/(𝑓𝛽𝑦∗ + 𝑖𝜔0𝜏0).
Then 𝑞∗(𝑠) = 𝐷(1, 𝜌∗)𝑒𝑖𝑠𝜔0𝜏0 is the eigenvector of 𝐴∗ with𝜌∗ = (1/𝑦∗)[𝛼𝑦∗/(1 + 𝑦∗) − 𝛿 − 𝜇𝑦∗𝑒𝑖𝜔0𝜏0 − 𝑖𝜔0𝜏0], 𝐷 =1/(1+𝜌𝜌∗+𝜏(−𝜇𝑦∗−𝜇𝑥∗𝜌)𝑒−𝑖𝜔0𝜏0) such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1,⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.

In the following, we use the ideas in Adam and Bellomo
[1] to compute the coordinates describing center manifold𝐶0
at 𝑝 = 0. Define 𝑧 (𝑡) = ⟨𝑞∗, 𝑥𝑡⟩ ,𝑊 (𝑡, 𝜃) = 𝑥𝑡 (𝜃) − 2Re𝑧 (𝑡) 𝑞 (𝜃) . (42)

On the center manifold 𝐶0, we have𝑊(𝑡, 𝜃) = 𝑊 (𝑍 (𝑡) , 𝑧 (𝑡) , 𝜃)
= 𝑊20 (𝜃) 𝑧22 +𝑊11 (𝜃) 𝑧𝑧 +𝑊02 (𝜃) 𝑧22+ ⋅ ⋅ ⋅ ,

(43)

where 𝑧 and 𝑧 are local coordinates for the center manifold𝐶0 in the direction of 𝑞∗ and 𝑞∗. Note that 𝑊 is real if 𝑥𝑡 is
real. For 𝑥𝑡 ∈ 𝐶0 of (39), we have𝑧 (𝑡) = 𝑖𝜔0𝜏0𝑧 + 𝑞∗ (0) 𝐹 (0,𝑊 (𝑧, 𝑧 + 2Re𝑧𝑞 (𝜃)))= 𝑖𝜔0𝜏0𝑧 + 𝑔 (𝑧, 𝑧) , (44)

where𝑔 (𝑧, 𝑧) = 𝑞∗ (0) 𝐹0 (𝑍 (𝑡) , 𝑧 (𝑡))
= 𝑔20 (𝜃) 𝑧22 + 𝑔11 (𝜃) 𝑧𝑧 + 𝑔02 (𝜃) 𝑧22+ 𝑔21 (𝜃) 𝑧2𝑧2 + ⋅ ⋅ ⋅ .

(45)

From (43) and (44), we have𝑥𝑡 = (𝑥1𝑡 (𝜃) , 𝑥2𝑡 (𝜃)) = 𝑊 (𝑡, 𝜃) + 𝑧𝑞 (𝜃) + 𝑧𝑞 (𝜃) (46)

and 𝑞(𝜃) = (1, 𝜌)𝑇𝑒𝑖𝜃𝜔0𝜏0 . Comparing the coefficients of the
above equality with (45), we obtain

𝑔20 = 2𝜏𝐷[ 𝛼𝑥∗(1 + 𝑦∗)3 𝜌2 + 𝛼2 (1 + 𝑦∗)2 𝜌 − 𝜇𝜌𝑒−2𝑖𝜔0𝜏0
− 𝑓𝛽𝜌2 − 𝜌] ,

𝑔11 = 2𝜏𝐷[ 𝛼𝑥∗(1 + 𝑦∗)3 𝜌𝜌 + 𝛼2 (1 + 𝑦∗)2 2Re𝜌
− 𝜇2Re𝜌 − 𝑓𝛽𝜌𝜌 − 2Re𝜌] ,

𝑔02 = 2𝜏𝐷[ 𝛼𝑥∗(1 + 𝑦∗)3 𝜌2 + 𝛼2 (1 + 𝑦∗)2 𝜌 − 𝜇𝜌𝑒2𝑖𝜔0𝜏0

− 𝑓𝛽𝜌2 − 𝜌] + 𝛼𝑥∗(1 + 𝑦∗)3𝑊211 (0) 𝜌
+ 𝑧2𝑧 [( 𝛼2 (1 + 𝑦∗)2 (𝑊120 (0) 𝜌 +𝑊220 (0)
+ 𝑊111 (0) 𝜌 +𝑊211 (0)) + 𝛼𝑥∗(1 + 𝑦∗)3𝑊220 (0) 𝜌)] ,

𝑔21 = 2𝜏𝐷[𝛼𝑥∗ (𝑊220 (0) 𝜌 +𝑊211 (0) 𝜌)(1 + 𝑦∗)3
+ 𝛼 (𝑊120 (0) 𝜌 +𝑊220 (0) + 𝑊111 (0) 𝜌 +𝑊211 (0))2 (1 + 𝑦∗)2+ 𝜇 (𝑊120 (−1) 𝜌𝑒−2𝑖𝜔0𝜏0 +𝑊220 (−1) 𝑒−2𝑖𝜔0𝜏0+𝑊111 (−1) 𝜌𝑒−2𝑖𝜔0𝜏0 +𝑊211 (−1) 𝑒−2𝑖𝜔0𝜏0)− 𝑓𝛽 (𝑊220 (0) 𝜌 +𝑊211 (0) 𝜌) − (𝑊120 (0) 𝜌
+𝑊220 (0) + 𝑊111 (0) 𝜌 +𝑊211 (0))] .

(47)

In order to determine 𝑔21, we also need to compute 𝑊20(𝜃)
and𝑊11(𝜃) as follows:𝑊̇ = 𝑥̇𝑡 − 𝑧̇𝑞 − ̇𝑧𝑞

= {{{𝐴𝑊 − 2Re𝑞∗ (0) 𝐹0𝑞 (𝜃) , 𝜃 ∈ [−1, 0) ,𝐴𝑊 − 2Re𝑞∗ (0) 𝐹0𝑞 (𝜃) + 𝐹0, 𝜃 = 0, (48)

= 𝐴𝑊 +𝐻(𝑧, 𝑧, 𝜃) , (49)

where𝐻(𝑧, 𝑧, 𝜃) = 𝐻20 (𝜃) 𝑧22 + 𝐻11 (𝜃) 𝑧𝑧 + 𝐻02 (𝜃) 𝑧22+ ⋅ ⋅ ⋅ . (50)

On the center manifold 𝐶0 near the origin,𝑊̇ = 𝑊𝑧𝑧̇ + 𝑊𝑧𝑧̇. (51)

Comparing the coefficients of 𝑧, we obtain(𝐴 − 2𝑖𝜔𝜏)𝑊20 (𝜃) = −𝐻20 (𝜃) ,𝐴𝑊11 = −𝐻11 (𝜃) ,𝐻20 (𝜃) = −𝑔20𝑞 (𝜃) − 𝑔02𝜃,𝐻11 (𝜃) = −𝑔11𝑞 (𝜃) − 𝑔11𝑞 (𝜃) .
(52)

From (52) and the definition of 𝐴, one has𝑊̇20 (𝜃) = 2𝑖𝜔0𝜏0𝑊20 (𝜃) + 𝑔20𝑞 (0) 𝑒𝑖𝜔0𝜏0𝜃+ 𝑔02𝑞 (0) 𝑒−𝑖𝜔0𝜏0𝜃. (53)
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Solving the above ODE, then𝑊20 (𝜃) = − 𝑖𝑔20𝜔0𝜏0 𝑞 (0) 𝑒𝑖𝜔0𝜏0𝜃 − 𝑖𝑔023𝜔0𝜏0 𝑞 (0) 𝑒−𝑖𝜔0𝜏0𝜃+ 𝐸1𝑒2𝑖𝜔0𝜏0𝜃, (54)

where 𝐸1 = (𝐸(1)1 , 𝐸(2)1 ) ∈ 𝑅2 is a constant vector. Similarly, we
obtain𝑊̇11 = 𝑖𝑔11𝜔0𝜏0 𝑞 (0) 𝑒𝑖𝜔0𝜏0𝜃 − 𝑖𝑔11𝜔0𝜏0 𝑞 (0) 𝑒−𝑖𝜔0𝜏0𝜃 + 𝐸2, (55)

where 𝐸2 = (𝐸(1)2 , 𝐸(2)2 ) ∈ 𝑅2 is a constant vector.
From the definition of𝐴 and the above equations, we can

obtain𝐸1
= 2𝐴( 𝛼𝑥∗(1 + 𝑦∗)3 𝜌2 + 𝛼2 (1 + 𝑦∗)2 𝜌 − 𝜇𝜌𝑒−2𝑖𝜔0𝜏00−𝑓𝛽𝜌2 − 𝜌 ) , (56)

with𝐴
= (2𝑖𝜔0 + 𝛼𝑦∗1 + 𝑦∗ − 𝑑 − 𝜇𝑦∗𝑒2𝑖𝜔0𝜏0 𝛼𝑥∗(1 + 𝑦∗)2 − 𝜇𝑥𝑒2𝑖𝜔0𝜏0−𝑦∗ 2𝑖𝜔0 − 𝑓𝛽𝑦∗ )−1 . (57)

In the same way, it is easy to get

𝐸2 = 2( 𝛼𝑦∗1 + 𝑦∗ − 𝑑 − 𝜇𝑦∗ 𝛼𝑥∗(1 + 𝑦∗)2 − 𝜇𝑥−𝑦∗ 2𝑖𝜔0 − 𝑓𝛽𝑦∗ )−1

⋅ ( 𝛼𝑥∗(1 + 𝑦∗)3 𝜌𝜌 + 𝛼2 (1 + 𝑦∗)2 2Re𝜌 − 𝜇2Re𝜌𝑓𝛽𝜌2 − 𝜌 ) . (58)

In order to determine 𝐸1 and 𝐸2, we can calculate 𝑊20(𝜃)
and 𝑊11(𝜃) from (54) and (55). Furthermore, we can also
determine 𝑔21. Thus we can be able to compute the following
values:𝑐1 (0) = 𝑖2𝜔0𝜏0 (𝑔20𝑔11 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 ) + 𝑔212 ,

𝜇2 = − Re𝑐1 (0)
Re𝜆󸀠 (𝜏0) ,𝛽2 = 2Re𝑐1 (0) ,

𝑇2 = − Im𝑐1 (0) + 𝜇2Im𝜆󸀠 (𝜏0)𝜔0𝜏0 .
(59)

Theorem 11. Equation (25) undergoes Hopf bifurcation as𝜏 = 𝜏0. If 𝜇2 < 0 (𝜇2 > 0), then the bifurcated periodic
solution is supercritical (subcritical); if 𝛽 < 0 (𝛽 < 0), then
the bifurcating solution is stable (unstable). The period of the
bifurcated periodic solution is 𝑇2.

In the following, we present some numerical results of
system (25) at different values of 𝜏.We choose the parameters
the same as before; the system (25) becomes𝑑𝑥𝑑𝑡 = 0.1181 + 1.131𝑥𝑦1 + 𝑦 − 0.00311𝑥 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)

− 0.3743𝑥,𝑑𝑦𝑑𝑡 = 1.636𝑦 (1 − 0.002𝑦) − 𝑥𝑦.
(60)

Obviously, system (60) has three positive equilibria:𝐸1(1.6348, 0.366269), 𝐸2(0.6538, 300.188), and 𝐸3(0.1906,441.757). Equilibrium 𝐸1 is stable for all 𝜏, while equilibrium𝐸2 is unstable saddle node for all 𝜏. When 𝜏 = 0, the
positive equilibrium 𝐸3 is a stable focus, as 𝜏 is growing
to 𝜏0 = 0.707732, 𝜆󸀠(𝜏0) = 0.604929 − 0.176726𝑖. When 𝜏
passes the critical value 𝜏0, 𝐸3 loses its stability and a Hopf
bifurcation occurs; that is, a family of periodic solutions
bifurcate from 𝐸1.This is clearly demonstrated by Figure 3.

4. Conclusions

In 1994, Kuznetsov et al. [11] introduced a model, which
describes competition between the tumor and immune cells.
This mode describes the response of effector cells to the
growth of tumor cells. Later, the model is simplified to a
two-dimensional differential equation with Lotka-Volterra
form immune response function 𝐹(𝐸, 𝑇) = 𝜃𝐸𝑇; the rich
dynamical behaviors are studied such as stability, qualitative
behaviors, and bifurcation behaviors.

In this paper, we studied the model with an immune
response function with Michaelis-Menten form 𝐹(𝐸, 𝑇) =𝑝𝐸𝑇/(𝑔+𝑇). In this case, the properties of system (4) aremore
complicated. There are so many tedious computations even
for the existence of the equilibria. The dynamical behaviors
of the model are more rich.

We have studied the nonlinear dynamics of a two-
dimensional general differential system. We first provided
linear analysis of the system at the possible equilibria, namely,
the semitrivial and positive equilibria, and discussed the
existence of Hopf bifurcation at the positive equilibrium.
Then we consider the system with delay; we investigated the
Hopf bifurcation of the system. The existence and stability
of periodic solutions were given. Numerical simulations
were presented to illustrate the theoretical analysis and
results. Cancer immunosurveillance functions are taken as
an important defense to cancer; this is the elimination
process. In fact, the existence and stability of the semitrivial
equilibrium correspond to the elimination process. Our
results on the existence and stability of the Hopf bifurcated
periodic solutions describe the equilibriumprocess. If a stable
periodic orbit exists, then the tumor and the immune system
can coexist for a long time, although the cancer cannot be
eliminated. Furthermore, the parameters are important in
controlling the development and progression of the tumor,
which is decided by the conditions of the existence of the
bifurcations.
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Figure 3: (a) Stable equilibrium 𝐸1 as 𝜏 = 1. (b) Bifurcated solution around 𝐸3 as 𝜏 = 0.7.
The existence of oscillatory solutions in the tummor and

immune system interaction models demonstrates that the
phenomenon has been observed in some related models [7,
10, 13–15]. The initial values and delay are also important in
the oscillatory coexistence of the tumor cells and the effector
cells. Numerical simulations indicate this information well.
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