
Research Article
Hybrid Simulation Environment for Construction Projects:
Identification of System Design Criteria

Mohamed Moussa,1 Janaka Y. Ruwanpura,1

George Jergeas,1 and Tamer Mohamed2

1 Centre for Project Management Excellence, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada T2N 1N4
2 Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada T2N 1N4

Correspondence should be addressed to Mohamed Moussa; mohmoussa@shaw.ca

Received 27 January 2014; Accepted 28 May 2014; Published 29 June 2014

Academic Editor: Eric Lui

Copyright © 2014 Mohamed Moussa et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Large construction projects are complex, dynamic, and unpredictable. They are subject to external and uncontrollable events that
affect their schedule and financial outcomes. Projectmanagers take decisions along the lifecycle of the projects to align with projects
objectives. These decisions are data dependent where data change over time. Simulation-based modeling and experimentation of
such dynamic environment are a challenge. Modeling of large projects or multiprojects is difficult and impractical for standalone
computers. This paper presents the criteria required in a simulation environment suitable for modeling large and complex systems
such as construction projects to support their lifecycle management. Also presented is a platform that encompasses the identified
criteria. The objective of the platform is to facilitate and simplify the simulation and modeling process and enable the inclusion of
complexity in simulation models.

1. Introduction

Building a computer simulation model requires specialised
knowledge in software engineering and modeling. Modi-
fications to models are difficult to implement. Simulation
is generally regarded by professionals in the construction
industry as an additional layer to the business software
environment. Feedback from industry practitioners and sim-
ulation researchers shows that minimizing the specialized
knowledge and simplifying the modeling process are nec-
essary to increase the appeal to simulation [1]. Simulation
modeling methodologies for construction projects are devel-
oped around modeling of repetitive/cyclic operations [2].
Such models are small compared to those required to model
a complete construction project. Projects are data dependent
where data are updated periodically by actualizing the data
of completed work and reforecasting future work. Models
should be current with latest data. Projects are managed by
people who influence the project outcomes by their decisions.
Projects are also affected by external and internal events that
could change their schedule and financial results. Neglecting

the inclusion of decisions and events in the model results in
unrealistic project forecast.

Presented in this paper are the criteria used in the
development of a simulation environment that is aimed
at simplifying the modeling process and facilitating the
modeling of construction systems to enable practitioners to
use simulation as integrated technology during their project
management. We achieve this objective by incorporating
agent-based modeling, network modeling, object oriented
paradigm, discrete event simulation, Monte Carlo analysis,
and distributed calculation in one framework and by integrat-
ing simulation models with databases. In this paper, we focus
on presenting and reasoning out the design criteria without
addressing the implementation or the detailed possible appli-
cations.

2. Background

Simulation programs require specialized knowledge, high
level of programming ability, and time for building and

Hindawi Publishing Corporation
Journal of Construction Engineering
Volume 2014, Article ID 847430, 12 pages
http://dx.doi.org/10.1155/2014/847430

2 Journal of Construction Engineering

analyzing the models [1, 3]. Software engineering remains
the obstacle to using simulation [4]. One notable application
of simulation in project management is the assessment
and quantification of risks ([5], p. 299) and modeling of
cyclic operations [2]. Simulation is “highly advantageous for
designing construction operations and can be of great help to
project manager” [6]. Nevertheless, simulation-based appli-
cations in construction project management lack industry
support [2], which demonstrates the need to simplify the
modeling process and demonstrate the advantage of using
simulation in project management. This section provides a
background on simulation and suggests areas of improve-
ments to facilitate the utilization of simulation in managing
construction projects.

2.1. Computer Simulation. Meredith et al. [7] define simula-
tion as “the process of conducting experiments with a model
of the system that is being studied or designed” (p. 228).
Pritsker and O’Reilly ([8], p. 6) described computer simu-
lation as “the process of designing a mathematical/logical
model of a real world system and experimenting with the
model on a computer.” Simulation allows for modelling and
testing concepts and ideas ([9], pp. 7 and 8). Fujimoto
([10], p. 27) defines computer simulation as a system that
emulates another system using computer. Sadowski and
Grabau [11] define success of a simulation application as one
that delivers “useful information at the appropriate time to
support meaningful decisions.” Provision of the simulation-
based model at the appropriate time requires a simulation
environment that enables fast modeling, fast data input,
and less human interaction. Data acquisition, input, and
analysis take the most time in the modeling lifecycle [12].
Simulation applications for construction projects did not pass
the planning and design stage of the projects with lack of
applications during project performance [2].

The simulation process is an iterative procedure that may
be described based on “inputs and outputs with feedbacks”
([7], p. 228). Inputs define the set of values, events, and
conditions that can affect the system in the real world
and outputs predict the system responses. By studying the
outputs, modelers learn more about the system and may use
this knowledge to define new sets of inputs.

2.2. Historical Background. Computer simulation requires
knowledge of a special language that allows the programmer
to simulate the system ([13], p. 614). Early simulation-based
models were written by programming languages such as
FORTRAN [14]. Models were manipulated at the same level
of the programming languages in which they were created
[14]. Programming languages created for simulation were
many which made it impossible to decide “which language is
best fit for a specific problem” [15]. The programmer would
design the model and provide the services to draw and
perform the logical and mathematical functions. Languages
were procedural or machine languages.

Object oriented programming fits simulation better than
the procedural languages where systems are designed as a

group of objects. One important outcome is the “library-
elements” conceptwhere systems are designed as set of classes
grouped in a container/library of icons [1]. The simulation
environment is created using a computer language that the
user need not be aware of but provides functions that the
modeler can use to program the icons. The object oriented
paradigm created collaboration between two types of skills:
domain experts and simulation engineers.The experts define
the problem and data required and the engineers develop
the problem logic and specifications into the simulation
computer program [16]. By the library-elements concept
the developers build libraries of elements/icons that can
be reused in modeling systems of the same characteristics.
Modelers drag and drop the icons from the library on a
drawing window to construct the model (similar to using
Microsoft Visio). Libraries are programmed once and users
may build many organizations of models using these icons.
The “prevailing approach” of modeling construction projects
is the library-icons concepts using discrete event processes
[6]. However, programming the libraries requires strong pro-
gramming knowledge and a simulation engineer to develop
these libraries [17].

Development of a simulation-based model can be
“tedious and expert knowledge on simulation technique is
required” [17] and can also be time consuming [18]. In an
attempt to simplify the simulation-based modeling process
in construction, somemethodologies were developed.Halpin
[19] introduced CYCLONE (CYClic Operations Network)
as a simulation method for planning and analyzing con-
struction operations that are repetitive [20]. CYCLONE was
used to build simulation platforms such as INSIGHT [21],
RESQUE [22], UM-CYCLONE [23], STROBOSCOPE [24],
and DISCO [25]. CYCLONE uses graphical network model-
ing [20] as a general purpose simulation (GPS) environment.
Reference [26] developed Simphony as a new development
from CYCLONE for modeling construction operations and
the concept was presented as a special purpose simulation
(SPS) for domain specific modeling. Programmability of
platforms such as STROBOSCOPE and Simphony makes
them extendable to be used in a wide range of applications.

The object oriented programming paradigm resulted in
passive models that do not take decisions and lack the intel-
ligence to adapt to changes in its environment. Agent-based
modeling solves this problem (refer to Wooldridge [27], pp.
25–27, for the difference between object oriented and agent-
based concepts). Agent-based modeling is a philosophy of
modelingwhere decisionmakers are conceptualized as agents
in the modeling environment [28]. There is no universal
definition of an agent; however, it is agreed that agents are
characterized by autonomous behavior and ability to take
decisions [29]. Agent-based modeling is therefore suitable
for modeling systems where decisions are made based on
changes in the system and where the system is subject to
events that may change the system structure and outcomes
(see [30] for the use of agent-based modeling in complex
dynamic systems). We incorporate in our proposed frame-
work the agent-based modeling in an attempt to emulate
construction system more accurately.

Journal of Construction Engineering 3

2.3. Summary of Construction Projects Modeling Challenges.
Abourizk et al. [6] summarize the difficulty in using simula-
tion in three points: (1) identification of the logic of themodel,
(2) developing the simulation algorithm, and (3) availability
of software tools and applications. The first relates to lack
of modeling and analysis skills and the second and third
address the lack of software skills that [4] is attributed to
absence of software training in engineering schools. Centeno
and Carrillo [3] also agree that unavailability of skills is one
of the obstacles to introducing simulation to industry. It is
not surprising that simulation has been an academic tool
since the 1960s with no real success in construction industry
[20]. A simulation survey presented by Hlupic [31] revealed
many simulation platforms limitations, such as unsuitability
for complex andnonstandard problems,much expensiveness,
difficulty to learn, lack of integration/compatibilitywith other
packages such as database management tools, and lack of
flexibility. Similar problems were reported by Mohamed and
AbouRizk [32], Centeno and Carrillo [3], and AbouRizk [2].
Also, simulation platforms lack the services necessary to
incorporate decisions and events to emulate the construction
projects correctly whichmight have contributed to hindering
the ability to demonstrate the usefulness of simulation to
industry professionals.

The above discussion leads to two areas of challenges.

(1) Application challenges related to correctly emulating
complex and large systems in a unified modeling
philosophy.

(2) Technical challenges related to speeding and simpli-
fying the modeling process.

The rest of the paper addresses the above two areas and
discusses the criteria incorporated in a simulation platform
developed to respond to them.

3. Design Criteria of
the Simulation Environment

Construction projects are complex, dynamic, and objective-
oriented systems. They consume resources and take time to
complete. To achieve their business objectives, organizations
running many construction projects evaluate their projects
as a portfolio. This section presents the properties of con-
struction projects to deduce the criteria of the simulation
environment suitable for modeling construction projects and
presents these criteria.

3.1. Characteristics of Construction Projects and Related Sim-
ulation Environment. A construction project is planned,
organized, and performed in work packages. Work packages
are organized in a scheme defined in a top-bottom tree of
work breakdown structure (WBS). Work packages are also
planned in a dependency network of successor/predecessor
networks. Projects are influenced by internal and external
factors such as labour productivity, site conditions, weather,
and regulatory and political factors. Therefore a simulation
environment for construction projects should provide the

infrastructure to (1) model the work packages at different lev-
els of details and abstraction levels vertically (organizational)
and horizontally (dependency); (2) incorporate the decisions
and the decision criteria and permit the response to these
decisions; and (3) include the forces and events that affect the
project outcomes. Additionally, organizations do not manage
projects in isolation of other projects. Projects consume and
compete for resources and are subject to uncertainty in
planning and execution. To respond to these characteristics,
the simulation environment should facilitatemodeling of net-
works in discrete event simulation and resource utilizations
in a standalone and distributed computing facility to permit
modeling of a portfolio of projects.

Projects progress over time where large projects span
many years. At frequent time intervals, the project team
measures project performance, actualizes data of completed
work, changes plans, redefines resources, and reassesses the
external and internal forces affecting the project. Models are
built to emulate a project and the environment in which it is
built at a point in time. As the project progresses and plans are
updated the simulated environment should reflect the project
status and the new planning assumptions. Experimenting
with a simulation model requires the ability to test scenarios
and conduct sensitivity analysis of different options. The
modeling/remodeling process should be easy and speedy
with minimum manual data input and model restructure
efforts. Similarly, programming effort needs to be done with
minimum code writing requirements.

The above discussion leads to the following five criteria
as requirements in a simulation environment serving con-
struction projects (refer to Kluegl et al. [33] for the difference
between simulated and simulation environment) to serve the
management of large construction projects.

(1) Modeling architecture: modeling of networks verti-
cally (bottom-up and top-bottom designs) and hor-
izontally (dependency/relational) to represent con-
struction operations and organizations hierarchy.

(2) Modeling concepts: use the library-elements concept,
the agent-based philosophy, Monte Carlo analysis,
and discrete event simulation (DSE) with resource
utilization analysis with a queue and process calcu-
lation algorithm (refer to [9], pp. 11–17, for more on
DSE).

(3) Programming paradigm: object oriented program-
ming modified to suit agent-based modeling philos-
ophy and automating the generation of simulation
libraries and icons.

(4) Modeling life cycle management: importation and
exportation capabilities to databases and automation
of data input and documentation activities.

(5) User interface: graphical user interface for drawing
networks and retrieving simulation results and user-
friendly menu system for analyzing the data.

3.2. Overview of the Modeling Components. A simulation
model of a system consists of three categories: (1) modeling

4 Journal of Construction Engineering

elements representing parts of the system; (2) agents repre-
senting decision makers; and (3) triggers representing events
thatmay take place during the life of the system and can affect
the system. This section presents the three categories.

3.2.1. The Modeling Element. A modeling element represents
a system or a component of a system. It has presentation,
parameters, connections, and behavioural characteristics that
describe it. Modeling elements may be connected by links
to form a network that emulate the system components they
represent. Amodeling element does not take decisions. It can
send messages carrying information about its state to other
elements. Similarly, it can receive messages sent by other
elements. Elements have both input and output properties.
Input properties are the set of values that the modeler
defines to describe the modeling element before simulation.
Output properties represent the modeling elements response
to methods, events, decisions, and other changes that take
place in the system during the simulation process. Links
connect the modeling elements to represent dependencies,
flowof information, and/or sequence of processes in a system.
A link connects twomodeling elements and therefore has two
ends with a directional arrow indicating the flow of messages
transfer, dependency, and/or sequence. Links function as
pipelines to transfer messages from one modeling element
connected to the tail side of the link to another connected
to the head side. Amodeling element can be described by the
value of its parameters, the behaviours of itsmethods, and the
relationships with other elements.

(1) Parameters describe the states of the modeling ele-
ment.They are either user-defined or system-defined.
User-defined parameters are the (i) graphical parame-
ters that represent the pictorial characteristics such as
the shape and colour of the element and the (ii) data
parameters that represent the different states of the
element. The data parameters are the input, output,
and internal data parameters. Values of input param-
eters are assigned by the modeler at the steady state of
the model before experimenting with it.The program
uses these values to calculate the output parameters.
Internal parameters are temporary holders of values
that the developer uses to perform calculation during
the simulation process. Internal parameters are not
acceptable or retrievable by the modeler. System-
defined parameters are read only parameters assigned
by the simulation platform.

(2) Behaviours are methods (i.e., logical processes/pro-
grams) grouped in three categories; (i) system pro-
vided/system implemented methods that are pro-
vided by the simulation platform. The program pro-
cesses these methods during performing calculation
with no interference from the users; (ii) System
provided/user implemented methods where the sim-
ulation environment requires the developer to write
their implementation. The simulation environment
provides their signature and the developer writes

their code. These methods are invoked during simu-
lation calculation in a predefined sequence; (iii) user-
defined/user implemented methods that are created
by the developer who also decides when to trigger
them from other methods.

(3) Relationships describe elements connections and
communication. There are three types of possible
relationships among elements: (i) node/link relation-
ship where an element connects to other elements in a
network via connection points and directional links.
A connection point is either “in” or “out” depending
on the direction of message transfer (sending and
receiving messages). An element may have multiple
in/out connection points as well as many elements
connected through one point. A connection point
is programmatically an instant of a class. It holds
references to the elements connected to it; (ii) par-
ent/child relationship (a “one-to-many” relationship)
where an element can have one parent but may have
many children in multilevel modeling hierarchy; and
(iii) remote relationship where two elements are not
physically connected in the model through a link and
are not in a parent/child relationship. An element
can send messages to another element by address.
An element can have remote relationship with an
element in the samemodel, in a differentmodel in the
same computer, or in a deferent model in geographi-
cally separated computer. Elements communicate by
exchangingmessages. Amessage is programmatically
an instant of an object that possesses user-defined
parameters. The modeling element has a system-
defined method that is invoked when a message is
received and has a method that facilitates sending
messages to elements in any of the three relationships.

3.2.2. Agents. An agent is an element that is knowledgeable
of the simulation environment in which it exists. It can take
decisions based on predefined criteria when changes take
place in the environment. Programmatically agents can be
embedded in modeling elements. A modeling element can
take decisions by executing methods based on predefined
criteria (such as by using an “if statement”). Agents can
change the values of the properties of the other modeling
elements and enforce behaviours as well as adding, deleting,
or reconfiguring elements and relationships. Agents have
input properties (normally decisions criteria) but do not
have output properties because they are not affected by
the environment in which they exist. Decision criteria may
be stored in external databases or in the input properties
of the modeling elements. They communicate with other
modeling elements by sending and receiving messages. A
simulation modeling environment should provide means to
store decision criteria and allow the agents to access these
criteria at the simulation run time.

3.2.3. Events/Triggers. Triggers are events that may happen
during the simulation lifecycles. When an event is real-
ized, interested modeling elements and agents need to be

Journal of Construction Engineering 5

notified by the simulation environment. Triggers are condi-
tions/events that may arise during the system/project life and
the interestedmodeling elements and agents respond to them
by invoking actions/methods. Triggers can programmatically
be represented in tables embedded in modeling elements
or stored in external databases. Triggers can materialize
randomly or as a result of other events or conditions.

4. Application of Hybrid
Simulation Environment

The simulation environment criteria described in Section 3
were implemented in the design of a simulation platform.The
platform consists of three components: (1) modeling element
generator; (2) simulation modeling environment; and (3)
simulation services.This section describes the characteristics
of the three components.

4.1. Overview of the Simulation Environment. The simulation
environment developed to incorporate the criteria presented
in this paper consists of three components: (1) the elements
generator, (2) the simulation modeling environment, and (3)
the simulation services.The simulation andmodeling process
includes two main functions: (i) development (performed by
a developer) and (ii) modeling (done by a modeler). Figure 1
shows a conceptual framework describing the relationship
among the three components. The development process is
automated. A developer creates a library of elements using the
element generator. He/she decides the name and type of the
input and output properties and themethods of each element.
The modeler uses the simulation modeling environment
to graphically design a model by dragging the elements
from the library and dropping them onto a drawing board.
Models can be constructed in up-down hierarchy in layers
(multilayers). In each layer, the modeler adds elements and
connects themusing links to draw a horizontal network of the
elements representing the logic, the sequence of operation,
and/or the flow of information among the elements. The
multilayer is a parent/children hierarchy that permits decom-
posing elements (parents) to smaller elements (children) in
a containment relationship (i.e., the parent element contains
the children elements) (see, e.g., Moussa et al. [34]). Each
element has input parameters whose values are assigned by
the modeler at the modeling time. The simulation platform
invokes the methods to calculate the output properties in a
predefined order controlled by the simulation services.

A model can be described as a container of elements
that can be arranged in successor/predecessor and par-
ent/children relationships. Elements are described by their
parameters.Themodel can be saved and retrieved in a format
readable by the simulation environment. The model data—
elements, relationships, and the parameters values—can be
exported to and imported from a database by using the
simulation services. The simulation services control the sim-
ulation calculation process, the number of simulation runs,
and the simulation time and provide the agents with access
to the simulated environment information. The following

Modeling elements

Communication

Distributed models

Libraries Modeling environment

Programming Integration Simulation

Data and model Simulation services

 presentation

generator

language calculation

storage

Data

and databases

Figure 1: Conceptual framework of the simulation environment.

subsections present the three components as implemented in
the simulation platform.

4.2. Modeling Elements Generator (MEG). The modeling
element generator helps developers create libraries and mod-
eling elements code free by translating menu selections
into code. A library is a collection of modeling elements.
The developer creates a library using the menu system and
provides the library with a name of his/her choice (e.g.,
a library that contains modeling elements representing the
components of a critical-path method may be named CPM).
The developer creates the modeling elements using the menu
system and groups them in a library. A modeling element
is derived from a program provided class (base-element)
using inheritance (refer to any object oriented literature
for inheritance explanation). The base-element is used by
the simulation environment as the blueprint from which
all modeling elements are derived using inheritance. The
user has the option to derive the newly generated modeling
element from an existing modeling element in the library. By
inheritance, the developer is able to use the parameters and
methods of an existing modeling element without rewriting
code. Using the menus of the MEG the user defines the
following.

(1) The name of the element (the user may select a name
that represents the modeling element in real life such
as “activity” in a “CPM” library or “machine” in a
“factory” library).

(2) The parent element (the modeling element from
which to inherit; for example, the developer may
inherit the modeling element “car” from the base-
element and inherit the modeling element “truck”
from the element “car” and so on).

(3) The elements parameters (input, internal, and output
parameters) and their data types (i.e., integer, double,
string, tables, etc.).

6 Journal of Construction Engineering

System provided services

Modeling elements
generation

Menu system
for parameters
identification

User defined logic
and parameters

Code editing
screen

Modeling
element
library

Base-element
(blueprint)

Programming
language

Basic .NET
C# and Visual

Figure 2: Conceptual framework—code generation architecture.

Drawing Board
Drawing Board

User control

Drawing boardModeling
elements
library

Modeling
elements
property

grid
control

(main bar menu)

Figure 3: Modeling environment.

(4) The in/out connection points.
(5) The simulation discrete events and their time sched-

ule.
(6) The code of the system-defined/user implemented

methods.
(7) The user-defined methods.

The MEG uses the reflection capability of the .NET tech-
nology to create the modeling elements at run time (refer
to .NET documentation for more information on reflection).
Figure 2 demonstrates the relationship between theMEG and
the simulation environment.The user defines the parameters,
events, and methods using the simulation services (i.e.,
the code editor, the menu systems, the data input tables,
the programming language compiler, and the base-element
class). The MEG translates the user inputs into C# or Visual
Basic .NET code using reflection. The developer designs the
shape of the element using a graphical user interface of
drawing design capabilities. The developer is not required
to write the code to create the graphical presentation of
the element, the parameters, the connection points, or the
signature of the methods. The developer, however, needs to
write the code of the model logic specific to the element. The
MEG has a drawing board that has predefined basic shapes
that can be used to design the shape of the element. Users
may add pictures or icons to the element and use its property
grid to define the pictorial properties of the element (refer
to .NET documentation for information about the property
grid).

4.3. Simulation Modeling Environment (SME). As shown in
Figure 3, the SME consists of

(1) the modeling elements library;
(2) the drawing board;
(3) the menu system;
(4) the property grid.

To construct a model, users drag and drop an element
from the library on the drawing board and connect the
elements in a network. The menu system provides the means
to access the simulation services such as importing from
and exporting to Microsoft Access database. Modelers use
the property grid to input values to the input parameters
and retrieve the output properties. A modeler accesses the
child window of an element by double clicking on the
element. In the child window, the modeler can add and draw
networks. An element has system provided properties that
hold the value of its parent element, children elements, and
predecessor/successor elements. The ME uses the simulation
services to save and retrieve a model as well as export and
import models to databases.

4.4. Simulation Services (SS). The simulation services (SS)
provide the following functions to create and experiment
with a model.

(1) Programming language compiler: users can use
C# .NET or Visual Basic .NET.

(2) Database integration: users can export input param-
eters, output parameters, or the model relationships
to databases. Users can also import the values of the
input parameters and the model from a database.
Database exportation allows analyzing and stor-
ing the model outside the simulation environment.
Database importation speeds up and automates the
modeling and updating process.

(3) Simulation type: models can be discrete event/
process-based simulation in a standalone/distributed
model(s). The discrete event simulation performs
scheduling and management of events where the
simulation time proceeds based on a clock controlled
as a global variable managed by the simulation
environment. The platform provides the means to
create and manage resources and measurement of

Journal of Construction Engineering 7

the utilization of the resources. Modelers can choose
to perform a standalone modeling or distributed
modeling depending on the number of models
involved in the simulated environment.

(4) Calculation control: the user decides the number of
times he/she wants the simulation to run “n” and the
simulation time “t.” The simulation calculation pro-
cess starts with iterating through the modeling ele-
ments to initiate the simulation initialization method
of the elements. The simulation initialization method
performs functions required before running calcu-
lation. It includes processes such as validating the
model input values and/or the relationships among
the elements. Afterwards, the simulation engine iter-
ates “n” times though the elements. During each
run, the simulation clock advances from simulation
time zero to “t.” Each simulation iteration starts
by initializing the input parameters to their start-
up values and performs functions written in the
initialization method. At this stage, density function
parameters are assigned a value based on the type of
their density function and input values. Events are
scheduled and the next procedure/event is invoked.
As the simulation time advances events are triggered
at their scheduled time and users-defined procedures
are called per the program logic. At the end of the run,
the postrun simulation function is called. When the
program performs all the “n” iterations the function
“postsimulation” is invoked. Figure 4 summarizes the
simulation calculation steps described above.

(5) Random number generation of continues functions.
(6) Data storage: the simulation output results are stored

within the element. The output results can also be
stored in a database. The modeler defines the name
of the database and the name of the table to store
the results. The modeler can run the simulation
using different input parameters and can store the
simulation results in different tables inside the same
database.

(7) Output presentation: output parameters hold the
simulation results where there is a value for each
simulation time/run. At the end of calculation, the
values of the output parameters are displayed in
tabular format and can be exported to a spreadsheet
or a database table. The presentation module displays
the cumulative density function (CDF) graph, the
probability distribution function (PDF) graph, and
the statistical results such as averages, means, and
standard deviation for each variable collected.

(8) Distributed simulation (DS): DS allows modeling
for several models located at different machines
simultaneously using .NET Windows Communica-
tion Foundation technology. The modeling structure
of the DS consists of identifying a master machine
that controls the synchronization among the par-
ticipating models, a server machine (could be any
of the machines in the distributed models) that

User specifies the number of simulation trials and the simulation time

Call the simulation initialize function to perform presimulation

Start simulation calculation to the next simulation trial run number

Start simulation, run initialize function, schedule events, and advance the

Call events as per their scheduled time and call procedures as required by

Stop the simulation run when the simulation time reaches the simulation

Call the postsimulation run function to perform final run calculation

Call the postsimulation function

run procedures

simulation time

the code

time decided by the user or when there are no more events
or procedures to call

Proceed with the next simulation run; if simulation has reached

Return user interface control to the user to allow display of simulation
results and perform other data management functions

the maximum number of trials specified the user, stop the simulation runs

Figure 4: Simulation calculation procedure.

controls receiving/sending protocol of the messages,
and the modeling machine that hosts the models.
The SS provide the methods that allow models to
send messages (objects that carry information) to
other models in the network (based on address/name
of the machine) and events that are triggered when
messages are received. Synchronization among the
models is currently to the simulation run number
(i.e., the master machine controls the simulation runs
so that all machines are running the same simulation
run number at any time). Synchronizing the simula-
tion time is part of the next development upgrade of
the SS. With the current DS architecture of the SS,

8 Journal of Construction Engineering

Modeling environment

Modeling element
generator

Database
integrationSimulation services

Code
generation

engine

Modeling elements

Modeling element generation

property editor

Code
editor

Modeling
property

grid
editor

Distributed simulation
and communication engine

Other models communication
engines

System global
variables

Object oriented programming

Predefined presentation controls

Modeling design and drawing board

External data
storage media

(database)

.NET environment C#/Visual Basic

Figure 5: Simulation platform components.

several construction projects were modeled and
the model located in the master machine collected
the results of the models (e.g., cost and schedule val-
ues). Models sent messages to the master machine at
the end of each simulation run carrying information
about the model and the master machine collected
this information to calculate the portfolio status as
well as the status of each model in the DS.

(9) Agent-based/network/object oriented modeling: the
SS provide services that allow for the agent-based
concept such as the ability to expose the simulation
environment parameters to agents and the ability to
interact with databases at run time. Decision criteria
and actions may be stored in tables that the agents
can access and iterate through to invoke methods
based on the conditions and information stored in the
tables. The SS provide the means to draw networks
consisting of nodes and links.

4.5. Integration among MEG, SME, and SS. The integra-
tion between the MEG, the SME, and the SS provides a
unified environment for simulation modeling. Agent-based
modeling allows for the inclusion of decision points and
events. The SS utilize the reflection capability of the .NET
framework to generate modeling elements at the run time
reducing the need for specialized programming knowledge
and provide integration with databases to speed up the
modeling and remodeling (updating) process. Included in
the unified environment is the ability to perform distributed
simulation using the samemodeling structure.Models can be
modeled separately or as part of distributed model.

Figure 5 shows the three components of the platform
and illustrates their role during the simulation process.
A developer creates a library of the elements and agents
required tomodel a systemusing themodeling elements code
generator. The modeler drags and drops the elements from
the library to the simulation modeling environment or may
use data stored in a database to import the model or update
the model input parameters using the SS. As summarized
in Figure 6, the simulation modeling process comes in three
steps.

(1) The developer generates the library (also called tool-
box) and themodeling elements. Amodeling element
may be inherited from the base-element or from an
existing element in the library.

(2) Themodeler creates amodel using the elements in the
toolbox/library. The modeler may store and retrieve
a model from a database or update the model with
parameters stored in an external database.

(3) Themodeler experiments with the model and if there
is more than onemodel, themodeler may experiment
with a collection of distributed models.

Developers require knowledge of C# .NET or Visual
Basic .NET. Modelers do not need programming knowledge
but should have a basic computer understanding to use
the menus and be knowledgeable of the problems being
modeled.

4.6. Applications. The criteria described in this paper are
intended to facilitate modeling of large systems that are

Journal of Construction Engineering 9

Base-element
Other modeling
elements in the
same library

Modeling Element
Generator

Simulation Services

Integration and
communication

services

Library

Developer design
system/business logic

Database input of
state variables

Database modeling
relations

Other models

(2) Model creation

(3) Simulation

(1) Modeling elements
 design

Figure 6: Simulation modeling process.

dynamic (change over time) and require simulation models
to be built to study them in different time spans. The main
advantage is the possibility to store the system data in
external databases, update the database, and incorporate the
updated databases in the model. It allows experimenting
with different scenarios stored in databases. Modelers can
store the different criteria and structures of these scenarios
in external databases and then run the simulation model of
these scenarios without the need to rebuild the model for
each scenario. Modelers need only to import the database
reflecting the new information, to run the model, and to
store the outputs in a new database. Modelers can compare
the outputs of these databases for analysis. Moussa [35]
shows an application of the platform in developing a CPM
stochastic model where the intent of the model is to study the
impact of risks stored in an external database on the project
schedule.The application also demonstrated the advantage of
the distributed simulation in modeling a portfolio of projects
that share a risk register but at the same time have their own
local risk register.

4.7. Highlight on Validation and Verification. The simulation
platformwas used to build three libraries: (1) a simple discrete
event library that can be used to model cyclic truck/batch
plant operation, (2) a risk assessment library that reads
and writes to a database of risk events and use of the
critical path method (CPM) to assess project risks, and (3)
a CPM risk assessment library to model distributed projects
and measure the risks for a portfolio of projects. The risk
assessment library was used in a graduate course work in

the University of Calgary in the academic year 2012. Many
tests were conducted on the simulation process to test the
batch data processing and the automation of the modeling
element generation and the modeling construction. More
applications are planned to be designed to increase the scope
of use and test the platform.Validation and verification aswell
as applications will be addressed in future papers.

5. Summary

This paper presented the criteria required in a simulation
environment suitable for modeling construction projects.
Also presented is a simulation platform that incorporates
the identified criteria. The objective of the platform is to
increase the appeal to simulation and enable modeling of
large complex systems. The simulation methodology uses
concepts from network modeling, Monte Carlo simulation,
discrete event simulation, agent-based modeling, and object
oriented programming.

The platform consists of three components: the mod-
eling element generator that aims at reducing the cod-
ing/programming requirements; the simulation modeling
environment that provides an easy-to-use graphical user
interface resembling that of other Windows-based graphical
interfaces; and the simulation services that allow integration
with external data storage media and facilitation of modeling
distributed systems. The platform offers a unified simulation
environment in which models are programmed, built, and
analyzed.

The appendix demonstrates different screens from the
simulation platform that was developed to encompass the

10 Journal of Construction Engineering

criteria described in this paper. The purpose of the demon-
stration is to illustrate the criteria detailing the different
user interfaces or the implementation of the platform. The
appendix should help the reader visualize how the criteria are
reflected in an end user program.

Appendix

A. Selected Simulation Platform Screens

This appendix shows 11 screenshots from the simulation
platform developed as per the criteria described in this paper.
The appendix does not provide all the available output/input
screens; however, it shows miscellaneous screens to demon-
strate the criteria described in this paper. Not all options and
features of the simulation platform are demonstrated in this
appendix; only those features related to the criteria described
in this paper are presented.

A.1. Modeling Element Generator Screens. The left-hand side
window of Figure 7 shows the nine element generator steps.
When a developer selects any of the shown nine selections,
a related input screen is displayed at the right-hand side.
For example, selecting the “Element Name” displays a screen
where the user can provide the name of the new element and
select from a list of available elements that the new element
can inherit from. Similarly the “Ports” option allows the
developer to provide the ports/connection points informa-
tion. By selecting “Ports,” the user adds, deletes, or modifies a
port. Figure 7 shows the input screen of the input properties
screen where the developer can add/modify/delete the input
properties, specify their type, and provide their default values.

Figure 8 shows the methods input window. The user
can add a method (user-defined/user implemented meth-
ods) or select from the existing list of methods (system
provided/system implementedmethods) and write necessary
code required. The windows allow users to add, modify, or
delete methods.

The user can review the generated code by selecting
“Source Code” (see Figure 7). Figure 9 shows an example of
a compiled source code screen. The user draws the shape of
the elements and adds pictures if needed using a drawing user
interface similar to that provided by other drawing programs.

A.2. SimulationModeling Environment. Thesimulationmod-
eling environment allows the user to draw a model, input
values to the input properties, run the simulation calculation,
and retrieve the simulation results. Figure 10 shows the
drawings screen after a model was generated.

Figure 11 shows an example of the property windows used
to input values for an element’s property.

Running a standalone simulation, the user selects Simu-
late Diagram as shown in Figure 12.

The screen in Figure 13 shows the simulation options
menu screen. Users define the number of times they want to
run the simulation calculation, the simulation time of each
run (ticks) in discrete event simulation models, whether they
want the results to be saved in a database, and whether they
want to see the simulation progress during the calculation.

Figure 7: Properties definition screen.

Figure 8: Methods properties definition screen.

Figure 9: Source code review and compiling screen.

Figure 10: Simulation modeling environment drawing screen.

Figure 11: Example of inputting value to a property using a drop
down menu.

Journal of Construction Engineering 11

Figure 12: Simulation menu.

Figure 13: Simulation window.

Figure 14: Simulation result of a property graph and data table
output.

When the simulation calculations are complete, users can
retrieve the results (Figure 14) as a graph or a table and in
a summary showing the average, minimum, maximum, and
standard deviation of the values.

If the user is running a distributed simulationmodel, first
the user should establish the distributed simulation settings
(Figure 15) by providing the IP address of the computers
involved in the session. The user then performs the sim-
ulation for the participating machines using the screen in
Figure 16.

A.3. Simulation Services. Many of the simulation services
have been integrated in the simulation modeling environ-
ment. Figure 17 shows the options available to integrate with
an external database. Selecting an option from the list shown
in the figure displays a screen that allows the user to map the
modeling fields to a database. The options allow modelers to
export and import the model data to/from a database.

Figure 15: Distributed simulation settings.

Figure 16: Distributed simulation settings selection.

Figure 17: Distributed simulation settings selection.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] D. Hajjar and S. M. AbouRizk, “Unifiedmodelingmethodology
for construction simulation,” Journal of Construction Engineer-
ing and Management, vol. 128, no. 2, pp. 174–185, 2002.

[2] S. AbouRizk, “Role of simulation in construction engineering
and management,” Journal of Construction Engineering and
Management, vol. 136, no. 10, pp. 1140–1153, 2010.

[3] M. A. Centeno and M. Carrillo, “Challenges of introducing
simulation as a decision making tool,” in Proceedings of the 2011
Winter Simulation Conference, pp. 17–21, Arlington, Va, USA,
2011.

12 Journal of Construction Engineering

[4] S. F. Railsback, S. L. Lytinen, and S. K. Jackson, “Agent-based
simulation platforms: review and development recommenda-
tions,” Simulation, vol. 82, no. 9, pp. 609–623, 2006.

[5] Project Management Institute (PMI), A Guide to the Project
Management Body of Knowledge (PMBOK’ Guide), Project
Management Institute (PMI), 2008.

[6] S. Abourizk, D. Halpin, Y. Mohamed, and U. Hermann,
“Research in modeling and simulation for improving construc-
tion engineering operations,” Journal of Construction Engineer-
ing and Management, vol. 137, no. 10, pp. 843–852, 2011.

[7] D. D. Meredith, K.W.Wong, R.W.Woodhead, and R. H.Wort-
man,Design and Planning of Engineering Systems, Prentice-hall,
New Jersey, NJ, USA, 1973.

[8] A. A. B. Pritsker and J. J. O’Reilly, Simulation with Visual SLAM
and AweSim, John Wiley & Sons, New York, NY, USA, 1999.

[9] S. Ghosh and T. S. Lee,Modelling and Asynchronous Distributed
Simulation: Analyzing Complex Systems, IEEE Press, New York,
NY, USA, 2000.

[10] R. M. Fujimoto, Parallel and Distributed Simulation Systems,
John Wiley & Sons, New York, NY, USA, 2000.

[11] D. A. Sadowski and M. R. Grabau, “Tips for successful practice
of simulation,” in Proceedings of the 2000 Winter Simulation
Conference, vol. 1, pp. 26–31, Orlando, Fla, USA, December
2000.

[12] T. Andel, “Get it right before it’s real,” Material Handling
Engineering, vol. 54, no. 7, pp. 55–61, 1999.

[13] P. A. Jensen and J. F. Bard, Operations Research: Models and
Methods, John Wiley & Sons, Hoboken, NJ, USA, 2003.

[14] D. Hajjar and S. M. AbouRizk, “Application framework for
development of simulation tools,” Journal of Computing in Civil
Engineering, vol. 14, no. 3, pp. 160–167, 2000.

[15] R. E. Shannon, “Introduction to simulation languages,” in
Proceedings of the 9th Conference on Winter Simulation, pp. 14–
20, Gaithersburg, Md, USA, 1977.

[16] M. A. Hossain and D. K. H. Chua, “Autogeneration of simu-
lation network of the design process,” Journal of Computing in
Civil Engineering, vol. 24, no. 5, pp. 452–461, 2010.

[17] D. K. H. Chua and G. M. Li, “RISim: resource-interacted
simulation modeling in construction,” Journal of Construction
Engineering andManagement, vol. 128, no. 3, pp. 195–202, 2002.

[18] Y. Yuan, C.A.Dogan, andG. L.Viegelahn, “Aflexible simulation
model generator,”Computers and Industrial Engineering, vol. 24,
no. 2, pp. 165–175, 1993.

[19] D. W. Halpin, “Cyclone: method for modeling of job site pro-
cesses,” Journal of the Construction Division. American Scoitey
of Civil Engineers, vol. 103, no. 3, pp. 489–499, 1977.

[20] D. W. Halpin and L. Martinez, “Real world applications of
construction process simulation,” in Proceedings of the 1999
Winter Simulation Conference, vol. 2, pp. 956–962, Phoenix,
Ariz, USA, December 1999.

[21] B. C. Paulson Jr., “Interactive graphics for simulating construc-
tion operations,” Journal of the Construction Division, vol. 104,
no. 1, pp. 69–76, 1978.

[22] D. Y. Chang and R. I. Carr, “RESQUE: a resource oriented
simulation system for multiple resource constrained processes,”
in Proceedings of the 1987 Project Management Institute Seminar
& Symposium, Milwaukee, Wis, USA, 1987.

[23] P. G. Ioannou, UM-CYCLONE User’s Guide, Department of
Civil Engineering, The University of Michigan, Ann Arbor,
Mich, USA, 1989.

[24] J. C. Martinez and P. G. Ioannou, “General purpose simulation
with stroboscope,” in Proceedings of the 1994 Winter Simulation
Conference, pp. 1159–1166, December 1994.

[25] R. Huang, A. M. Grigoriadis, and D. W. Halpin, “Simulation of
cable-stayed bridges using DISCO,” in Proceedings of the 1994
Winter Simulation Conference, pp. 1130–1136, December 1994.

[26] D. Hajjar, A unified modelling methodology for simulation-based
planning of construction projects [Doctoral dissertation], Depart-
ment of Civil and Environmental Engineering: University of
Alberta, Edmonton, Canada, 1999.

[27] M. Wooldridge, An Introduction to Multiagent Systems, John
Wiley & Sons, 2002.

[28] F. Klügl and A. L. C. Bazzan, “Agent-based modeling and
simulation,”The AI Magazine, vol. 33, no. 3, pp. 29–40, 2012.

[29] C. M. Macal and M. J. North, “Tutorial on agent-based mod-
eling and simulation,” in Proceedings of the 37th Conference
on Winter Simulation, pp. 2–15, Orlando, Fla, USA, December
2005.

[30] M. A. Niazi and A. Hussain, Cognitive Agent-Based Computing-
I. A Unified Framework for Modeling Complex Adaptive Sys-
tems Using Agent-Based & Complex Network-Based Methods,
Springer, London, UK, 2013.

[31] V. Hlupic, “Discrete-event simulation software: what the users
want,” Simulation, vol. 73, no. 6, pp. 362–370, 1999.

[32] Y. Mohamed and S. M. AbouRizk, “A hybrid approach for
developing special purpose simulation tools,” Canadian Journal
of Civil Engineering, vol. 33, no. 12, pp. 1505–1515, 2006.

[33] F. Kluegl, M. Fehler, and R. Herrler, “About the role of the
environment in multi-agent simulations,” in Environments for
Multi-Agent Systems, D.Weyns, H. V. V. Parunak, and F.Michel,
Eds., vol. 3374 of Lecture Notes in Computer Science, pp. 127–149,
Springer, Berlin, Germany, 2005.

[34] M. Moussa, J. Ruwanpura, and G. Jergeas, “CTAN for risk
assessments using multilevel stochastic networks,” Journal of
Construction Engineering and Management, vol. 133, no. 1, pp.
96–101, 2007.

[35] M. Moussa, Unified simulation methodology and project risk
assessment framework [Doctoral dissertation], Faculty of Civil
Engineering. Schulich School of Engineering. University of
Calgary, Alberta, Canada, 2013.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

