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The stability and bifurcations of multiple limit cycles for the physical model of thermonuclear reaction in Tokamak are investigated
in this paper.The one-dimensional Ginzburg-Landau type perturbed diffusion equations for the density of the plasma and the radial
electric field near the plasma edge in Tokamak are established. First, the equations are transformed to the average equations with
the method of multiple scales and the average equations turn to be a 𝑍

2
-symmetric perturbed polynomial Hamiltonian system of

degree 5. Then, with the bifurcations theory and method of detection function, the qualitative behavior of the unperturbed system
and the number of the limit cycles of the perturbed system for certain groups of parameter are analyzed. At last, the stability of the
limit cycles is studied and the physical meaning of Tokamak equations under these parameter groups is given.

1. Introduction

Periodic solution theory is mainly about the existence and
stability of periodic solution of dynamical systems.The bifur-
cation theory of periodic solution, as the main method to
study the periodic solution, reveals the connection between
the topology of the solutions and the parameters.The investi-
gation and application of bifurcations and chaos of nonlinear
dynamical systems are frontier topics in the world.

Recently, a large number of important results of multiple
limit cycles of polynomial planar vector fields have been
achieved. Arnol’d [1] examined the problem on equivariant
fields and their topologically versal deformations in the func-
tional space of all equivariant fields and these results yield
the first approximation for the stability loss problem. Perko
[2] studied the local bifurcation and global behavior of one-
parameter families of limit cycles of a planar analytic system.
They obtained some new results on the global behavior
of one-parameter families of limit cycles. Wang and Mao
[3] gave an algorithm for computing the Lyapunov values
and a new criterion for determining the centers of planar
polynomial systems which have quartic nonlinear terms.
They found that there are 11 small limit cycles in a kind of
planar polynomial systems. Chan et al. [4] showed that the

numerical examples of different quadratic differential systems
had three limit cycles surrounding one singular point. Li [5]
investigated Hilbert’s 16th problem and bifurcations of planar
polynomial vector fields and gave the detection function
method of two dimensional Hamiltonian systems. Armengol
and Joan [6] perturb a vector field with a general polynomial
perturbation of degree 𝑛 and study the maximum number of
limit cycles that can bifurcate from the period annulus of the
origin in terms of 𝑘 and 𝑛. Their approach is based on the
explicit computation of the Abelian integral that controls the
bifurcation and on a new result for bounding the number of
zeroes of a certain family of real functions. Han and Li [7]
obtained some new lower bounds of Hilbert number 𝐻(𝑚),
and𝐻(𝑚) grows at least as rapidly as (1/2 ln 2) (𝑚+2)2 ln(𝑚+
2) for all large 𝑚. Zhao and Fan [8] studied the number of
small amplitude limit cycles in arbitrary polynomial systems
with degree 𝑚, denoted by 𝑀(𝑚), and obtained the lower
bounds for 𝑀(6) − 𝑀(14) and proved that 𝑀(𝑚) ≥ 𝑚

2 if
𝑚 ≥ 23. They also showed that the least growth order of
𝑀(𝑚) is equal to that of𝐻(𝑚) (in [9]); however, the growth
coefficient of𝑀(𝑚) is 25/18 that of𝐻(𝑚).

The symmetry of dynamical systems is alsowidely studied
by many researchers and a lot of results have been achieved.
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Li et al. [10] analyzed a𝑍
6
-equivariant perturbed polynomial

Hamiltonian system of degree 5 and found that there exist
at most 24 limit cycles. Li et al. [9] investigated a rotor-
active magnetic bearings (AMB) system with the time-
varying stiffness and found that there exist, respectively, at
least 17, 19, 21, and 22 limit cycles under four groups of
parametric controlling conditions. Li et al. [11] investigated
the bifurcation of multiple limit cycles of a 𝑍

2
-equivariant

perturbed polynomial Hamiltonian system of degree 5 and
found that the𝑍

2
-equivariant fields have up to 23 limit cycles.

Li et al. [12] studied bifurcations of limit cycles at three fine
focuses for a class of𝑍

2
-equivariant nonanalytic cubic planar

differential systems proved that there exist 12 small amplitude
limit cycles created from the critical points.

In recent years, theories are widely used in mechanical
systems. An important issue is the bifurcation of multiple
limit cycles for Tokamak system. The Tokamak is the most
promising device so far to attain the conditions for fusion. It
is a toroidal device (shaped like a car tire) in which a vacuum
vessel contains a plasma ring confined by twisting magnetic
fields. In the past 20 years, researches and applications of
the Tokamak have great achievements, especially with the
implementation of the construction named EAST (Experi-
mental Advanced Superconducting Tokamak). EAST is one
of Chinese national fusion projects.

In this paper, the mechanism of the transition from L-
mode to H-mode in Tokamak is an important and difficult
problem. We mainly discussed the transition phenomenon
between low confinement mode (L-mode) and high con-
finement mode (H-mode) observed in Tokamak. S. Itoh
and K. Itoh [13] presented a new model of the transition
from L-mode to H-mode in the Tokamak plasmas and
discussed the catastrophic phenomenon of it. Viana [14] used
a Hamiltonian description for magnetic field lines in a large
aspect ratio Tokamak for describing the effect of resonant
helical windings in a perturbative way, taking into account
the toroidal correction. Zhang and Cao [15] found that in
Tokamak there existed not only the static L-mode to H-
mode transition but also to the dynamic L-mode to H-
mode transition, and the Hopf bifurcation and limit cycle
oscillations correspond to the L-mode to H-mode transition
near the plasma edge in Tokamak.

This paper focuses on the bifurcations of multiple limit
cycles for a Ginzburg-Landau type perturbed transport equa-
tion which can describe the L-mode to H-mode transition
near the plasma edge in Tokamak. The average equation of
Tokamak system turns out to be a 𝑍

2
-equivariant perturbed

Hamiltonian system. Using the bifurcation theory and the
method of detection function, the number of limit cycles of
the average equation under a certain group of parameters is
given. The stability of these limit cycles is analyzed and the
diffusion coefficients of H-mode and L-mode are obtained.

2. Equation of Motion and
Perturbation Analysis

We get the nondimensional formulations by using the
method in [16]. The one-dimensional Ginzburg-Landau type

perturbed diffusion equations for the density of the plasma
and the radial electric field near the plasma edge in Tokamak
can be written as

𝜕𝑛

𝜕𝑡
=
𝜕

𝜕𝑥
[𝐷 (𝐸

𝑟
)
𝜕𝑛

𝜕𝑥
] + 𝑓
1
cosΩ
1
𝑡,

𝛾
𝜕𝐸
𝑟

𝜕𝑡
= −𝑁 (𝐸

𝑟
, 𝑔) + 𝜇

1

𝜕
2
𝐸
𝑟

𝜕𝑡2
+ 𝑓
2
cosΩ
2
𝑡,

(1)

where 𝑛 and 𝐸
𝑟
are the density of the particle near the plasma

edge and the normalized radial electric field, respectively.
𝐷(𝐸
𝑟
) and 𝜇

1
are the diffusion coefficients of the density and

electric field, 𝑁(𝐸
𝑟
, 𝑔) is the total current effect, and 𝑓

1
, Ω
1
,

𝑓
2
, and Ω

2
are the amplitudes and frequencies of the particle

perturbation and the controlling radial electric field. It is
known that 𝐷(𝐸

𝑟
), 𝑁(𝐸

𝑟
, 𝑔), and 𝛾,respectively, satisfy the

following equations:

𝐷(𝐸
𝑟
) = (

𝐷max + 𝐷min
2

+
𝐷max − 𝐷min

2
) tan𝐷(𝐸

𝑟
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3

𝑟
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) ,

𝑔 (𝑛) =
3
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𝜕𝑥
, 𝛾 = (1 +

V2
𝐴

𝑐2
)
𝐵
2

𝑃

𝐵2
,

(2)
where 𝐷max and 𝐷min, respectively, denote the diffusion
coefficients of H-mode and L-mode, the parameters V

𝐴
, 𝑐, 𝐵
𝑃
,

𝐵, 𝛼, 𝛽, and 𝑔
0
are constants, and V

𝐴
, 𝑐, 𝐵
𝑃
, and 𝐵 are the

Alfven velocity, the light velocity, the magnetic field which
is parallel to the poloidal direction in Tokamak, and the
characteristic magnetic field, respectively.

In order to analyze the diffusion of the particle and the
stability and bifurcations of the normalized radial electric
field near the plasma edge in Tokamak, some transformations
may be introduced as follows:

𝑛 =
1

𝑉
, 𝐸

𝑟
= 𝑈,

𝑉 = 𝑉
0
+ 𝐴 (𝑥) V (𝑡) , 𝑈 = 𝐺 (𝑥) 𝑢 (𝑡) ,

(3)

where 𝐴(𝑥) V(𝑡) and 𝐺(𝑥) 𝑢(𝑡) are small perturbed terms.
Substituting (2) and (3) into (1), we have the following
equations:

V̇ = 𝑎
1
𝑢 + 𝑎
2
𝑢V + 𝑎

3
V + 𝑎
4
V2 + 𝑎

5
V3 + 𝑎
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𝑢V2 + 𝑎

7
V cosΩ

1
𝑡

+ 𝑎
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9
cosΩ
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0

(4a)
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3
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0
, (4b)

Eliminate V and V̇; then we can get
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2
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0
.

(5)

We assume that the uniform solution of (5) can be repr-
esented in the form

𝑥 (𝑡, 𝜀) = 𝑦
0
(𝑇
0
, 𝑇
1
, 𝑇
2
, . . .) + 𝜀𝑥

1
(𝑇
0
, 𝑇
1
, 𝑇
2
, . . .)

+ 𝜀
2
𝑥
2
(𝑇
0
, 𝑇
1
, 𝑇
2
, . . .) + ⋅ ⋅ ⋅ ,

(6)

where 𝑇
𝑖
= 𝜀
𝑖
𝑡, 𝑖 = 0, 1, 2, . . . .
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Then, the differential operators are given as

𝑑
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(7)

where𝐷
𝑘
= 𝜕/𝜕𝑇

𝑘
, 𝑘 = 0, 1.

The main work of this paper focuses on the 1/2 sub-
harmonic resonance-primary parametric resonance, because
this resonant case is the most common case which may be
exhibited in system (5). To simplify the procedure of the
analysis, without loss of generality, we may assume that

𝜔 = 1 + 𝜀𝜎, Ω
1
= Ω
2
= 2, (8)

where𝜎 is a detuning parameter. Substituting (6)–(8) into (5),
and we get the averaged equations of (5):

�̇� = (𝑗 + 𝑗) 𝑥 + (𝑘 + �̃�) 𝑦 + (𝑙 + �̃�) 𝑥
3
+ (𝑚 + �̃�) 𝑥
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3
+ (𝑚 − �̃�) 𝑥𝑦

2

+ (𝑛 − 𝑛) 𝑥
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3
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2
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2
)
2
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3
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)
2
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4
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3
𝑦
2
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(9b)

Then (9a) and (9b) can be rewritten as follows:

�̇� = 𝑎
01
𝑦 + 𝑎
03
𝑦
3
+ 𝑎
05
𝑦
5

− 𝜀𝑥 (−𝑎
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𝑥
4
− 𝑎
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𝑥
3
𝑦 − 𝑎
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𝑥
2
𝑦
2
− 𝑎
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𝑥𝑦
3

−𝑎
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𝑦
4
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𝑥
2
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𝑦
2
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) ,

(10a)

̇𝑦 = 𝑏
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𝑥
3
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𝑥
5

− 𝜀𝑦 (−𝑏
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𝑦
4
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𝑥𝑦
3
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𝑥
2
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2
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32
𝑥
3
𝑦
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𝑥
4
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2
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𝑥
2
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(10b)

Let 𝑎
41
= 𝑎
23
= 𝑎
21
= 𝑏
14
= 𝑏
32
= 𝑏
12
= 0 and 𝑎

10
= 𝑏
01
;

the system ((10a) and (10b)) turns out to be a 𝑍
2
-equivariant

perturbed Hamiltonian system with 17 free parameters.

3. The Dynamic Characteristics of
Thermonuclear Reaction in Tokamak

In Section 2, the Ginzburg-Landau Tokamak system turns
out to be a 𝑍

2
-equivariant Hamiltonian system of degree 5.

We will give a procedure of controlling parameters to obtain
more limit cycles of the system ((10a) and (10b)).

3.1. The Method of Detection Functions. In this section, the
method of detection functions will be described briefly based
on references [8, 17]. Let 𝐻(𝑥, 𝑦) be a real polynomial
of degree 𝑛, and let 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) be two different
real polynomials of degree 𝑚, respectively. We consider a
perturbed Hamiltonian system in the following form:

𝑑𝑥

𝑑𝑡
=
𝜕𝐻

𝜕𝑦
+ 𝜀𝑃 (𝑥, 𝑦, 𝜆) , (11a)

𝑑𝑦

𝑑𝑡
= −

𝜕𝐻

𝜕𝑥
+ 𝜀𝑄 (𝑥, 𝑦, 𝜆) , (11b)

where 0 < 𝜀 ≪ 1 is a small parameter and the level energy
curves 𝐻(𝑥, 𝑦) = ℎ of the unperturbed Hamiltonian system
((10a) and (10b))

𝜀=0
contain at least a family of closed orbits

Γ
ℎ
for ℎ ∈ (ℎ

𝑙
, ℎ
𝑟
).

Consider the Abelian integral

𝐼 (ℎ) = ∫
Γℎ

𝑃 (𝑥, 𝑦) 𝑑𝑦 − 𝑄 (𝑥, 𝑦) 𝑑𝑥

= ∬
𝐻≤ℎ

(
𝜕𝑃 (𝑥, 𝑦)

𝜕𝑥
+
𝜕𝑄 (𝑥, 𝑦)

𝜕𝑦
)𝑑𝑥𝑑𝑦.

(12)

We define the function

𝜆 = 𝜆 (ℎ) =
𝐼 (ℎ)

∬
𝐷
ℎ
𝑑𝑥 𝑑𝑦

, (13)

which is called a detection function corresponding to the
periodic family {Γℎ}. The graph of 𝜆 = 𝜆(ℎ) in the plane (ℎ,
𝜆) is called a detection curve, where𝐷ℎ is the area inside Γℎ.

Theorem 1 (bifurcation of limit cycles). Wehave the following
three statements on the local and global bifurcations.

(1) If 𝐼(ℎ∗) = 0 and 𝐼(ℎ∗) ̸= 0, then there exists a limit
cycle 𝐿

ℎ
∗ of system ((11a) and (11b)) such that 𝐿

ℎ
∗ →

Γ
ℎ
∗ as 𝜀 → 0. Conversely, if there exists a limit cycle

𝐿
ℎ
∗ of system ((11a) and (11b)) such that 𝐿

ℎ
∗ → Γ

ℎ
∗ as

𝜀 → 0, then 𝐼(ℎ∗) = 0, where ℎ∗ ∈ (ℎ
𝑙
, ℎ
𝑟
).

(2) If 𝐼(ℎ∗) = 𝐼(ℎ∗) = 𝐼(ℎ∗) = ⋅ ⋅ ⋅ = 𝐼(𝑘−1)(ℎ∗) = 0 and
𝐼
(𝑘)
(ℎ
∗
) ̸= 0, then, for 𝜀 sufficiently small, system ((11a)

and (11b)) has atmost 𝑘 limit cycles in the neighborhood
of Γ
ℎ
∗ .

(3) The total number of isolated zeros of the Abelian
integral is an upper bound for the number of limit cycles
of system ((11a) and (11b)) after taking into account
their multiplicity.

3.2. The Qualitative Behavior of Unperturbed System. We
consider the unperturbed system of ((10a) and (10b)) as

�̇� = 𝑎
01
𝑦 + 𝑎
03
𝑦
3
+ 𝑎
05
𝑦
5
, (14a)

̇𝑦 = 𝑏
10
𝑥 + 𝑏
30
𝑥
3
+ 𝑏
50
𝑥
5
, (14b)

where 𝑎
01
, 𝑎
03
, and 𝑎

05
satisfy 𝑎2

03
> 4𝑎
01
𝑎
05
, 𝑎
03
𝑎
05
< 0, and

𝑎
01
𝑎
05
> 0 and 𝑏

10
, 𝑏
30
, and 𝑏

50
satisfy 𝑏2

30
> 4𝑏
10
𝑏
50
, 𝑏
30
𝑏
50
< 0,

and 𝑏
10
𝑏
50
> 0.
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Equation ((14a) and (14b)) is a Hamiltonian system with
Hamiltonian function

𝐻(𝑥, 𝑦) =
1

2
(𝑎
01
𝑦
2
− 𝑏
10
𝑥
2
) +

1

4
(𝑎
03
𝑦
4
− 𝑏
30
𝑥
4
)

+
1

6
(𝑎
05
𝑦
6
− 𝑏
50
𝑥
6
) .

(15)

Let

𝑥
1
=
√
−𝑏
30
+ √𝑏
2

30
− 4𝑏
10
𝑏
50

2𝑏
50

,

𝑥
2
=
√
−𝑏
30
− √𝑏
2

30
− 4𝑏
10
𝑏
50

2𝑏
50

,

𝑦
1
=
√
−𝑎
03
+ √𝑎
2

03
− 4𝑎
01
𝑎
05

2𝑎
05

,

𝑦
2
=
√
−𝑎
03
− √𝑎
2

03
− 4𝑎
01
𝑎
05

2𝑎
05

.

(16)

It is easily seen that there exist 25 singular points of system
(15). Based on the analysis of the stability, it is found that
13 singular points, namely, (0, 0), (𝑥

1
, 0), (±𝑥

2
, 𝑦
1
), (0, 𝑦

2
),

and (±𝑥
1
, 𝑦
2
), and their 𝑍

2
-symmetric points are the centers

and 12 singular points, namely, (𝑥
2
, 0), (0, 𝑦

1
), (±𝑥

1
, 𝑦
1
),

and (±𝑥
2
, 𝑦
2
), and their 𝑍

2
-symmetric points are the saddle

points.
In this paper, we only consider a special case that

𝑈𝑃 = (𝑎
01
, 𝑎
03
, 𝑎
05
, 𝑏
10
, 𝑏
30
, 𝑏
50
)

= (−1.01, 5.49, −3.76, 3.01, −8.01, 3.75) .

(17)

Proposition 2. Under the conditions of UP, the Hamiltonian
function (15) has the diagram as shown in Figure 1 and the𝑍

2
-

equivariant Hamiltonian vector field ((14a) and (14b)) has the
phase portraits as shown in Figure 2.

Figure 3 illustrates the changing process of the phase
portraits for system ((14a) and (14b)) as the variable ℎ changes
from −∞ to +∞. In the aforementioned case, there are nine
different families (Γℎ

𝑗
) (𝑗 = 0, 1, . . . , 8) of closed orbits and

several homoclinic or heteroclinic loops for unperturbed
system ((14a) and (14b)) as the variable ℎ changes from −∞

to +∞.
Notice that as ℎ increases, the periodic orbits Γℎ

1𝑖
, Γℎ
2𝑖
, and

Γ
ℎ

4
expand outwards and all other periodic orbits contract

inwards.

3.3. The Qualitative Behavior of Perturbed System ((10a) and
(10b)). Based on the results obtained above, we can analyze
the qualitative nonlinear characteristics of the perturbed sys-
tem ((10a) and (10b)).The detection functions corresponding

1.51.5
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h

xy

−2

−2.5

−0.5
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Figure 1: The diagram of the Hamiltonian function (15) is given.

to the aforementioned nine types of period families {Γℎ
0
}−{Γ
ℎ

8
}

are obtained as follows:

𝜆
𝑖
= 𝜆 (ℎ) =

∬
𝐷
ℎ

𝑖

𝐹 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

∬
𝐷
ℎ

𝑖

𝑑𝑥 𝑑𝑦
=
𝜑
𝑖
(ℎ)

𝜙
𝑖
(ℎ)
, (𝑖 = 0, . . . , 8) ,

(18)

where 𝐹(𝑥, 𝑦) = 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 and 𝐷ℎ is the area
inside Γℎ.

Denote that
𝑃𝐺

= (𝑐
40
, 𝑐
04
, 𝑐
22
, 𝑐
20
, 𝑐
02
)

= (76.05823, −48.67855, 25.95000, −156.46000, 15.15662) .

(19)

It follows that, under the parameter conditions ofUP and
PG, the system ((10a) and (10b)) has the graphs of detection
curves as shown in Figure 4.

We can see from Figure 4 that when

�̃� ∈ ( − 54.39948,min (max 𝜆
1
(ℎ) ,max 𝜆

5
(ℎ) ,

max 𝜆
6
(ℎ) , 𝜆

7
(ℎ
𝑠

5
))) ,

(20)

in the (ℎ − 𝜆)-plane, the straight line 𝜆 = �̃� intersects the
curves 𝜆 = 𝜆

1
(ℎ), 𝜆 = 𝜆

5
(ℎ), and 𝜆 = 𝜆

6
(ℎ) at two points and

the curves 𝜆 = 𝜆
2
(ℎ) and 𝜆 = 𝜆

8
(ℎ) at one point, respectively.

With the 𝑍
2
-equivariance of ((10a) and (10b)) and from the

results above, we have the following conclusion.

Proposition 3. When 𝜆 = �̃� satisfies (20), for the parameter
groups of UP and PG and small 𝜀 > 0, the system ((10a) and
(10b)) has at least 22 limit cycles with the configuration shown
in Figure 5.
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Figure 2: Families of closed orbits defined by system ((10a) and
(10b)) with UP is given.

4. The Analysis of Stability

Based on the local and global bifurcation theory and the
results of paper [14, 18], we have two propositions which
describe the properties of the detection function at the
boundary values of ℎ.
Theorem 4 (the parameter value of Hopf bifurcation). Sup-
pose that, as ℎ → ℎ

1
, the periodic orbit Γℎ of ((11a) and

(11b))
𝜀=0

approaches a singular point (𝜉, 𝜂). Then at this point
the Hopf bifurcation parameter value is given by

𝑏
𝐻
= 𝜆 (ℎ

1
) + 𝑂 (𝜀) = lim

ℎ→ℎ1

𝜆 (ℎ) + 𝑂 (𝜀) = 𝐹 (𝜉, 𝜂) + 𝑂 (𝜀) .

(21)

Theorem 5 (bifurcation direction of heteroclinic or homo-
clinic loop). Suppose that, as ℎ → ℎ

2
, the periodic orbit Γℎ of

((11a) and (11b))
𝜀=0

approaches a heteroclinic (or homoclinic)
loop connecting a hyperbolic saddle point (𝛼, 𝛽), where the
saddle point value satisfies

𝑆𝑄 (𝛼, 𝛽) = 2𝜀𝜎 (𝛼, 𝛽) ≡ 2𝜀 (𝜆 (ℎ
2
) − 𝐹 (𝛼, 𝛽)) > 0 (< 0) .

(22)

Then one has
𝜆

(ℎ
2
) = lim
ℎ→ℎ2

𝜆

(ℎ) = −∞(+∞) . (23)

From the theorems above, we can also prove the following
results.

(1) If Γℎ contracts inwards as ℎ increases, then the
stability of limit cycles mentioned in Theorem 4 and
the sign of 𝜆(ℎ

2
) in Theorem 5 have the opposite

conclusion.
(2) If the curve Γℎ defined by 𝐻(𝑥, 𝑦) = ℎ (ℎ ∈

(ℎ
1
, ℎ
2
)) consists of 𝑚 components of oval families

having 𝑍
𝑞
-equivariance, thenTheorem 4 gives rise to

simultaneous global bifurcations of limit cycles from
all these𝑚 oval families.

(3) If ((11a) and (11b))
𝜀
has several different period annu-

luses filled with periodic orbit families {Γℎ
𝑖
}, then, by

calculating detection functions for every oval family,
the global information of bifurcations of system ((11a)
and (11b))

𝜀
can be obtained.

On the basis of the method of the theorems above, we
have the following analyses of stability.

(1) If the period orbit Γ1 expands outwards as ℎ increases
and 𝜆

1
(ℎ
1
) < 0, then the period orbit Γ1 is stable.

(2) If the period orbit Γ2 expands outwards as ℎ increases
and 𝜆

2
(ℎ
2
) > 0, then the period orbit Γ2 is unstable.

(3) If the period orbit Γ5 contracts inwards as ℎ increases
and 𝜆

5
(ℎ
4
) > 0, then the period orbit Γ5 is stable.

(4) If the period orbit Γ6 contracts inwards as ℎ increases
and 𝜆

6
(ℎ
4
) < 0, then the period orbit Γ6 is unstable.

(5) If the period orbit Γ8 contracts inwards as ℎ increases
and 𝜆

8
(ℎ
5
) > 0, then the period orbit Γ8 is stable.

Proposition 6. It follows that, under the parameter conditions
of UP and PG, 10 of the 22 limit cycles are stable and others are
unstable with the configuration shown in Figure 6.

5. The Physical Meaning of
Tokamak Equations under the UP and PG
Parameter Groups

The relationship between the actual parameters of the phys-
ical equations and the parameter conditions UP and PG
will be discussed in the following parts and the results will
be explained following the theory of multiple limit cycle
bifurcation.

Proposition 7. One has the following parameters relationship
between ((10a) and (10b)) and (5):

10

∑

i=1
A(k)i 𝑥𝑖 + ∑

1≤𝑙1≤10

1≤𝑙2≤10

𝐶
(𝑘)

𝑙1𝑙2

2

∏

i=1
𝑥
𝑙𝑖
= 𝑏
(𝑘)

(𝑘 = 1, 2, . . . , 9) ,

(24)

where

{𝑥
𝑖
| 𝑖 = 1, . . . , 10}

= {𝜇, 𝜎, (𝛿
1
+ 𝛿
2
) , 𝛼
2
, 𝛼
3
, 𝛽
2
, 𝛽
3
, 𝛽
4
, 𝛽
5
, 𝛽
6
} ,

𝐶
(1)
= (𝐶
(1)

5,5
, 𝐶
(1)

5,8
, 𝐶
(1)

8,8
, 𝐶
(1)

9,9
, 𝐶
(1)

9,10
, 𝐶
(1)

10,10
)

= (3, 2, −11, 7, 2, −9) ,

𝑏
(1)
= −60.16, 𝐴

(2)

5
= 36,

𝐴
(2)

8
= 12, 𝐴

(2)
= (𝐴
(2)

5
, 𝐴
(2)

8
) = (36, 12) ,
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Figure 3: Different schemes of ovals defined by ((11a) and (11b)) as ℎ varied with UP are given.

𝐶
(2)
= (𝐶
(2)

1,9
, 𝐶
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, 𝐶
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4,6
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4,4
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(2)

6,6
, 𝐶
(2)

7,7
)
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𝑏
(2)
= 131.76,

𝐶
(3)
= (𝐶
(3)

1,9
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)
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𝐴
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= (𝐴
(3)

8
, 𝐴
(3)

5
) = (12, 36) , 𝑏

(3)
= 192.24,

𝐶
(4)
= (𝐶
(4)

5,10
, 𝐶
(4)

5,9
, 𝐶
(4)

8,10
, 𝐶
(4)

8,9
) = (3, 5, 13, 3) ,

𝐶
(5)
= (𝐶
(5)

8,9
, 𝐶
(5)

8,10
, 𝐶
(5)

5,9
, 𝐶
(5)

5,10
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𝑏
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(6)
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Figure 4: Graphs of detection curves of system ((9a) and (9b)) with
parameter conditions UP and PG are given.

Figure 5: Configuration of 22 limit cycles of system ((10a) and (10b))
with parameter conditions UP and PG is given.

Figure 6: The stability of 22 limit cycles of system ((10a) and (10b))
with parameter conditions UP and PG is given.

Proposition 8. Based on Proposition 7, (5), and ((4a) and
(4b)), one has the following results:
12

∑

𝑖=1

𝐴
𝑘

𝑖
𝑥
𝑖
+ ∑

1≤𝑙1≤12

1≤𝑙1≤12

𝐶
𝑘

𝑙1,𝑙2

2

∏

𝑖=1

𝑥
𝑙𝑖
+ ∑

1≤𝑙1≤12

1≤𝑙2≤12

1≤𝑙3≤12

𝐷
(𝑘)

𝑙1,𝑙2,𝑙3,𝑙4

3

∏

𝑖=1

𝑥
𝑙𝑖

+ ∑

1≤𝑙1≤12

1≤𝑙2≤12

1≤𝑙3≤12

1≤𝑙4≤12

𝐸
(𝑘)

𝑙1,𝑙2,𝑙3,𝑙4

4

∏

𝑖=1

𝑥
𝑙𝑖
= 0,

(26)
where

{𝑥
𝑖
| 𝑖 = 1, . . . , 12} = {𝑏

𝑖
, 𝑎
𝑗
| 𝑖 = 0, . . . 4, 𝑗 = 2, . . . 8} ,

𝐶
(1)
= (𝐶
(1)

2,2
) = (−0.9761411) ,

𝐸
(1)
= (𝐸
(1)

2,3,3,8
, 𝐸
(1)

2,2,3,6
, 𝐸
(1)

1,2,3,10
, 𝐸
(1)

1,3,3,9
) = (1, −1, 2, −3) ,

𝐶
(2)
= (𝐶
(2)

2,2
) = (−5.124814) ,

𝐷
(2)
= (𝐷

(2)

2,3,10
, 𝐷
(2)

3,3,9
) = (1, −1) ,

𝐸
(2)
= (𝐸
(2)

1,2,4,8
, 𝐸
(2)

2,2,4,7
, 𝐸
(2)

1,1,4,9
) = (2, −1, 3) ,

𝐷
(3)
= (𝐷

(3)

2,2,3
, 𝐷
(3)

2,2,7
, 𝐷
(3)

1,2,8
, 𝐷
(3)

3,3,9
) = (1, 1, −2, 3) ,

𝐶
(4)
= (𝐶
(4)

2,8
, 𝐶
(4)

1,9
, 𝐶
(4)

2,2
) = (1, −3, −2.493826) ,

𝐶
(5)
= (𝐶
(5)

2,2
) = (−3.988565) ,

𝐷
(5)
= (𝐷

(5)

2,2,4
, 𝐷
(5)

3,3,9
) = (3, 3) ,

𝐴
6
= (𝐴
(6)

9
) = (−1) , 𝐶

(6)
= (𝐶
(6)

2,2
) = (0.4428814) ,

𝐴
(7)
= (𝐴
(7)

2
) = (−2.502493) ,

𝐷
(7)
= (𝐷
(7)

1,3,12
, 𝐷
(7)

2,3,11
, 𝐷
(7)

3,5,8
, 𝐷
(7)

2,5,6
, 𝐷
(7)

1,5,10
)

= (2, −1, 2, −1, 2) .

(27)
Proposition 9. With the help of Propositions 7 and 8 above,
one has the following results:
17

∑

𝑖=1

𝐴
(𝑘)

𝑖
𝑥
𝑖
+ ∑

1≤𝑙1≤17

1≤𝑙1≤17

𝐶
(𝑘)

𝑙1,𝑙2

2

∏

𝑖=1

𝑥
𝑙𝑖
+ ∑

1≤𝑙1≤17

1≤𝑙2≤17

1≤𝑙3≤17

𝐷
(𝑘)

𝑙1,𝑙2,𝑙3

3

∏

𝑖=1

𝑥
𝑙𝑖

+ ∑

1≤𝑙1≤17

1≤𝑙2≤17

1≤𝑙3≤17

1≤𝑙4≤17

1≤𝑙5≤17

𝐸
(𝑘)

𝑙1,𝑙2,𝑙3,𝑙4

4

∏

𝑖=1

𝑥
𝑙𝑖
+ ∑

1≤𝑙1≤17

1≤𝑙2≤17

1≤𝑙3≤17

1≤𝑙4≤17

1≤𝑙5≤17

𝐹
(𝑘)

𝑙1,𝑙2,𝑙3,𝑙4,𝑙5

5

∏

𝑖=1

𝑥
𝑙𝑖
= 0,

(28)
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where
{𝑥
𝑖
| 𝑖 = 1, . . . , 17}

= {𝐷
−
, 𝐷
+
, 𝐺, 𝐴, �̇�, �̈�, 𝑉

0
, �̇�
0
, ̇𝑓
1
, 𝛾, 𝑔
0
, 𝛽, �̈�, 𝛼, 𝜇

1
, �̇�, 𝑓
1
} ,

𝐴
(1)
= (𝐴
(1)

8
, 𝐴
(1)

11
) = (−3, −1) ,

𝐶
(1)
= (𝐶
(1)

3,10
) = (1.655139) ,

𝐴
(2)
= (𝐴
(2)

5
) = (−3) , 𝐶

(2)
= (𝐶
(2)

3,10
) = (2.472232) ,

𝐶
(3)
= (𝐶
(3)

3,14
, 𝐶
(3)

13,15
, 𝐶
(3)

3,10
) = (1, 1, −0.643029) ,

𝐴
(4)
= (𝐴
(4)

10
, 𝐴
(4)

12
) = (1.004536, 1) ,

𝐸
(5)
= (𝐸
(5)

2,4,8,8
) = (1) ,

𝐹
(5)
= (𝐹
(5)

2,3,5,7,8
, 𝐹
(5)

2,3,6,7,7
, 𝐹
(5)

2,5,7,7,16
) = (−4, 1, 1) ,

𝐷
(6)
= (𝐷
(6)

4,7,7
) = (2.447986) ,

𝐸
(6)
= (𝐸
(6)

1,5,5,7
, 𝐸
(6)

1,4,5,8
) = (2, −4) .

(29)

Proposition 10. With the help of algebraic method and Lingo
mathematical software, one can get that 𝐷max = 2.516874

and 𝐷min = 2.4138866 under the parameter conditions of
UP and PG, where 𝐷max and 𝐷min, respectively, denote the
diffusion coefficients of H-mode and L-mode. This shows that,
when it satisfies the conditions of𝐷max = 2.516874 and𝐷min =
2.4138866, there will be 22 limit cycles in the physical model
of thermonuclear reaction in Tokamak, 10 of which are stable
and the others are unstable. The structure and morphology of
limit cycles provide a theoretical basis for the improvement of
Tokamak nuclear device.

6. Conclusions

This paper focuses on the bifurcations of multiple limit cycles
for a Tokamak system. First, the method of multiple scales
and normal form theory are employed to obtain the average
equation in the Tokamak system, which has the form of
a 𝑍
2
-symmetric perturbed polynomial Hamiltonian system

of degree 5. Then, with the bifurcation theory of planar
dynamical system and themethod of detection functions, the
bifurcations of multiple limit cycles of the averaged equation
are analyzed. Finally, the dynamical behavior of the Tokamak
system under a group of parameters condition is given.

One control condition of parameters is given to obtain 22
limit cycles of the Tokamak system. Ten of them are stable and
the others are unstable.The Hopf bifurcation and limit cycles
in averaged equation ((10a) and (10b)) correspond to the L-
mode to H-mode transition near the plasma edge in Toka-
mak. It implies that the amplitudemodulated oscillations can
jump from one limit cycle to another with a change of the
initial conditions. Because different limit cycles are located
in different energy planes of ((10a) and (10b)), motion of the
Tokamak system can jump from a lower energy plane to a
higher energy plane.

Appendices

A.

The coefficients given in ((4a) and (4b)) are as follows:
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B.

The coefficients given in (5) are as follows:
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C.

The coefficients given in ((10a) and (10b)) are as follows:
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