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An impulsive two-prey and one-predator model with square root functional responses, mutual interference, and integrated
pest management is constructed. By using techniques of impulsive perturbations, comparison theorem, and Floquet theory, the
existence and global asymptotic stability of prey-eradication periodic solution are investigated.We use somemethods and sufficient
conditions to prove the permanence of the systemwhich involvemultiple Lyapunov functions and differential comparison theorem.
Numerical simulations are given to portray the complex behaviors of this system. Finally, we analyze the biological meanings of
these results and give some suggestions for feasible control strategies.

1. Introduction and Model Formulation

In real world, the study on models of three or more species
is very popular, such as food-chain and food webs systems,
which have extremely rich dynamics [1, 2]. For predator-prey
model, in portrayal of the relationship between predator and
prey, a crucial element is the classic definition of a predator’s
functional response. In the past few decades, many different
functional responses have been extensively investigated [3–
7]. For example, Liu et al. [5] gave the following Holling type
II functional response which describes the relations of one
prey and one predator:
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where 𝑥
1
(𝑡) is the density of prey and 𝑥

2
(𝑡) is the density

of predator at time 𝑡. 𝑎 is the intrinsic growth rate of
prey. 𝑏 represents the rate of intraspecific competition or
density dependence. 𝑐 is the death rate of predator. 𝑘 is
transformation rate for the predator to prey; 𝛼𝑥

1
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2
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1
(𝑡)) denotes the Holling type II functional response.
However, in the actual ecosystem, if examining more

complicated ecological case, some preys show herd behavior.

That is to say, the predator interacts with the prey along the
outer corridor of the herd of prey. Hence actual dynamic
behaviors of individuals have not been described in detail by
the predation term of Holling type II functional response.
Ajraldi et al. [8] pointed out that, by using the terms of the
square root of the prey population, the response functions of
prey that exhibited herd behavior aremore properlymodeled.
In this respect, Braza [9] gave the following predator-prey
model:
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where 𝛼√𝑥
1
(𝑡)/(1 + 𝑤√𝑥

1
(𝑡)) is the square root functional

response. Ma et al. [10] also investigated a predator-prey
system with square root functional response. Their results
showed that square root functional response brought about
large influence to the dynamical behaviors.

On the other hand, few researchers consider the mutual
interference between predators, but mutual interference
between predators always exists in the actual ecosystem.
In 1971, Hassell set about studying the capturing behavior
between hosts and parasites; he discovered that hosts or
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parasites had the tendency to depart from each other when
theymet, which affected the hosts capturing. If the size of par-
asite became larger and larger, then the mutual interference
would be stronger and stronger. Hence he introduced the
mutual interference of predator [11]. Considering the effect
from mutual interference between predators, the dynamic
behaviors were more complex. For example, He et al. [12]
and Zhang et al. [13] investigated the mutual interference of
the predator in detail and obtained much different dynamics
with those models without mutual interference. Hence, for
predator-prey system, it is necessary to consider the mutual
interference of predator.

Based on above discussion, we give the following prey-
predator system with square root functional response and
mutual interference of the predator:
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where 0 < 𝑚 ≤ 1 (see [8] for the details).
As is known to all, insects have a profound impact on the

survival and development of human beings. Most insects are
beneficial to human beings; only a few insects are harmful
to human life and agricultural development when they reach
a certain amount. Hence it is necessary to kill the harmful
pests or control them in a certain quantity. Chemical control
and biological control are twomost commonly usedmethods.
Chemical control is often applied by spraying pesticides,
which are used widely because they can kill pests quickly
and reduce economic losses in a short time, but they also
produce serious environmental pollution. For less pollution
to the environment, by stocking or releasing natural enemies,
biological control appears, but the effects are not very great. In
order to combine different approaches to control pests at the
same time, integrated pest management is given to maximize
control efficiency and reduce pollution. During the last two
decades, ecological pest control is a complex project [14, 15].
For predator-prey system, pest control strategy has been an
important topic for many researchers [16, 17].

The main purpose of this paper is to investigate the
dynamical behaviors of an impulsive one-predator two-
prey model with mutual interference, square root functional
response, and integrated control methods. The model is
described by the following differential equations:
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where 𝑥
1
(𝑡), 𝑥
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(𝑡), and 𝑥

3
(𝑡) are densities of two preys and

one predator at time 𝑡, respectively. 𝑎
𝑖
(𝑖 = 1, 2) is intrinsic

increasing rate; 𝑎
3
is the death rate of predator. 𝑚 represents

the mutual interference of the predator: 0 < 𝑚 ≤ 1. 𝑘
𝑖
(𝑖 =

1, 2) is transformation rate for the predator to prey. 𝑏
𝑖
(𝑖 =

1, 2) is death rate of prey; 0 < 𝜇
𝑖
< 1 (𝑖 = 1, 2, 3) represents

the percent of prey-predator that dies at time 𝑡 = (𝑛 + 𝑙 −

1)𝑇, 0 < 𝑙 < 1. 𝑝 > 0 is the releasing number of predators
at 𝑡 = 𝑛𝑇. Parameters 𝛼, 𝛽 are competitive effects between
two preys, respectively. Parameter 𝑇 is the moment period
of impulsive effect. The integer 𝑛 ∈ 𝑁; 𝑁 is the set of all
nonnegative integers. All parameters are positive constants.

We aim to investigate the dynamical behaviors of (4).
From the biological point of view, we only consider system
(4) in the biological meaningful region:
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and the initial conditions for system (4) are
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The structure of this paper is as follows. In Section 2, we
give some definitions, notations, and lemmas. In Section 3, by
using techniques of impulsive perturbations, Floquet theory,
and comparison theorem, we discuss stability, extinction,
and permanence of system (4). We give corollaries for single
chemical control in Section 4. Then we give some examples
and numerical analysis of system (4) in Section 5. Finally, we
conclude this paper with a brief discussion in Section 6.
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2. Preliminaries

In this section, some helpful remarks, notations, definitions,
and lemmas are introduced which are useful for our main
results.
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the following subsystem of (4):
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(1 − 𝜇
3
)
𝑛

(𝑥
3
(0
+
) −

𝑝

1 − (1 − 𝜇
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Lemma 5 (see [18]). Suppose 𝑥
∗

3
(𝑡) is a positive periodic

solution of (10) and 𝑥
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> 0; then we get |𝑥
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(𝑡) − 𝑥
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Lemma 6 (see [19]). Suppose 𝑋(𝑡) is a solution of (4) and
𝑋(0
+
) ≥ 0, and hence 𝑋(𝑡) ≥ 0 for all 𝑡 ≥ 0. It also has
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satisfies the following inequalities:
𝑑𝑢

𝑑𝑡

≤ 𝑓 (𝑡) 𝑢 (𝑡) + ℎ (𝑡) , 𝑡 ̸= 𝜏
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( ∏
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+ ∫
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( ∏
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𝑓 (𝛾) 𝑑𝛾) ℎ (𝑑) 𝑑𝑠

+ ∑

0<𝜏
𝑘
<𝑡

( ∏

𝜏
𝑘
<𝜏
𝑗
<𝑡

𝛼
𝑗
) exp(∫

𝑡

𝜏
𝑘

𝑓 (𝛾) 𝑑𝛾)𝛽
𝑘
.

(14)

3. Main Theorems

3.1. Boundedness

Theorem8. For any solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) of system (4),

there exists a constant𝑀 > 0, such that 𝑥
1
(𝑡) ≤ 𝑀, 𝑥

2
(𝑡) ≤ 𝑀,

and 𝑥
3
(𝑡) ≤ 𝑀 hold for all 𝑡 large enough.

Proof. Let𝑋(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) be a solution of (4) with

initial value (𝑥
10
, 𝑥
20
, 𝑥
30
).

Define a function 𝜔(𝑡) = 𝑘
1
𝑥
1
(𝑡) +𝑘

2
𝑥
2
(𝑡) +𝑥

3
(𝑡), 𝜔(𝑡) ∈

𝑉
0
.

When 𝑡 ̸= (𝑘 + 𝑙 − 1)𝑇, 𝑘𝑇, take a constant 𝐿 such that
0 < 𝐿 < 𝑎

3
; then by calculating the upper right derivative of

𝜔(𝑡, 𝑋(𝑡)) along the solution of system (4), we have

𝐷
+
𝜔 (𝑡) + 𝐿𝜔 (𝑡) = 𝑘

1
(𝑎
1
+ 𝐿) 𝑥

1
(𝑡) − 𝑘

1
𝑏
1
𝑥
2

1
(𝑡)

− 𝑘
1
𝛼𝑥
1
(𝑡) 𝑥
2
(𝑡)

+ 𝑘
2
(𝑎
2
+ 𝐿) 𝑥

2
(𝑡) − 𝑘

2
𝑏
2
𝑥
2

2
(𝑡)

− 𝑘
2
𝛽𝑥
1
(𝑡) 𝑥
2
(𝑡)

+ (𝐿 − 𝑎
3
) 𝑥
3
(𝑡)

≤ 𝑘
1
(𝑎
1
+ 𝐿) 𝑥

1
(𝑡) − 𝑘

1
𝑏
1
𝑥
2

1
(𝑡)

+ 𝑘
2
(𝑎
2
+ 𝐿) 𝑥

2
(𝑡) − 𝑘

2
𝑏
2
𝑥
2

2
(𝑡)

≤ 𝑀
0
,

(15)

where𝑀
0
= 𝑘
2

1
(𝑎
1
+ 𝐿)
2
/4𝑘
1
𝑏
1
+ 𝑘
2

2
(𝑎
2
+ 𝐿)
2
/4𝑘
2
𝑏
2
.

Further, at moment 𝑡 = (𝑘 + 𝑙 − 1)𝑇, 𝜔((𝑘 + 𝑙 − 1)𝑇
+
) ≤

𝜔((𝑘 + 𝑙 − 1)𝑇) and at 𝑡 = 𝑘𝑇, 𝜔(𝑘𝑇+) ≤ 𝜔(𝑘𝑇) + 𝑝.Then by
Lemma 7, for all 𝑡 ≥ 0, we get

𝜔 (𝑡) ≤ 𝜔 (0) 𝑒
−𝐿𝑡

+

𝑘
0

𝐿

(1 − 𝑒
−𝐿𝑡
) + 𝑝

𝑒
−𝐿(𝑡−𝑇)

1 − 𝑒
𝐿𝑇

+ 𝑝

𝑒
𝐿𝑇

𝑒
𝐿𝑇
− 1

󳨀→

𝑘
0

𝐿

+ 𝑝

𝑒
𝐿𝑇

𝑒
𝐿𝑇
− 1

(as 𝑡 󳨀→ ∞) = 𝑀
1
.

(16)

Hence 𝜔(𝑡) is bounded for sufficiently large 𝑡. Let 𝑀 =

min{𝑀
0
,𝑀
1
}; then 𝑥

1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡) are bounded by𝑀

for sufficiently large 𝑡. This completes the proof.

3.2. Stability of Prey-Eradication Periodic Solution

Theorem 9. Suppose (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) is any solution of

(4); then the prey-eradication periodic solution (0, 0, 𝑥∗
3
(𝑡)) is

globally asymptotically stable provided that

𝑇 < min{ 1

𝑎
1

ln 1

1 − 𝜇
1

,

1

𝑎
2

ln 1

1 − 𝜇
2

} . (17)

Proof. The local stability of periodic solution (0, 0, 𝑥
∗

3
(𝑡))

can be determined by considering the behavior of small
amplitude perturbations of the solution.

Define 𝑥
1
(𝑡) = 𝑢

1
(𝑡), 𝑥
2
(𝑡) = 𝑢

2
(𝑡), and 𝑥

3
(𝑡) = 𝑥

∗

3
(𝑡) +

𝑢
3
(𝑡), and we get

(

𝑢
1
(𝑡)

𝑢
2
(𝑡)

𝑢
3
(𝑡)

) = Φ (𝑡)(

𝑢
1
(0)

𝑢
2
(0)

𝑢
3
(0)

) , 0 ≤ 𝑡 < 𝑇, (18)

where 𝑢
𝑖
(𝑡) (𝑖 = 1, 2, 3) is a small perturbation.When 𝑡 ̸= 𝑛𝑇,

and 𝑡 ̸= (𝑛 + 𝑙 − 1)𝑇, (4) can be expanded in a Taylor series.
Then, neglecting higher-order terms, the linearized equations
read

𝑢
󸀠

1
(𝑡) = 𝑎

1
𝑢
1
(𝑡) ,

𝑢
󸀠

2
(𝑡) = 𝑎

2
𝑢
2
(𝑡) ,

𝑢
󸀠

3
(𝑡) = −𝑎

3
𝑢
3
(𝑡) .

(19)

Let Φ(𝑡) be the fundamental matrix of above differential
equations; thenΦ(𝑡) satisfies

𝑑Φ (𝑡)

𝑑𝑡

= (

𝑎
1

0 0

0 𝑎
2

0

0 0 −𝑎
3

)Φ(𝑡) ,

Φ (𝑡) = (

𝑒
𝑎
1

𝑡

0 0

0 𝑒
𝑎
2

𝑡

0

0 0 𝑒
−𝑎
3

𝑡

);

(20)
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Φ(0) = 𝐼 is the identity matrix. Then the linearization of
system (4) becomes

(

𝑢
1
((𝑛 + 𝑙 − 1) 𝑇

+
)

𝑢
2
((𝑛 + 𝑙 − 1) 𝑇

+
)

𝑢
3
((𝑛 + 𝑙 − 1) 𝑇

+
)

)

= (

1 − 𝜇
1

0 0

0 1 − 𝜇
2

0

0 0 1 − 𝜇
3

)(

𝑢
1
(𝑛 + 𝑙 − 1) 𝑇

𝑢
2
(𝑛 + 𝑙 − 1) 𝑇

𝑢
3
(𝑛 + 𝑙 − 1) 𝑇

) ,

(

𝑢
1
(𝑛𝑇
+
)

𝑢
2
(𝑛𝑇
+
)

𝑢
3
(𝑛𝑇
+
)

) = (

1 0 0

0 1 0

0 0 1

)(

𝑢
1
(𝑛𝑇)

𝑢
2
(𝑛𝑇)

𝑢
3
(𝑛𝑇)

) .

(21)

The stability of periodic solution (0, 0, 𝑥∗
3
(𝑡)) of (4) is deter-

mined by the eigenvalues of the matrix 𝐴:

𝐴 = (

1 − 𝜇
1

0 0

0 1 − 𝜇
2

0

0 0 1 − 𝜇
3

)(

1 0 0

0 1 0

0 0 1

)Φ (𝑇) . (22)

If each of these eigenvalues of matrix 𝐴 is less than one, then
the periodic solution (0, 0, 𝑥∗

3
(𝑡)) is locally stable. The three

eigenvalues of the matrix 𝐴 are

𝜆
1
= (1 − 𝜇

1
) exp(∫

𝑇

0

𝑎
1
𝑑𝑡) ,

𝜆
2
= (1 − 𝜇

2
) exp(∫

𝑇

0

𝑎
2
𝑑𝑡) ,

𝜆
3
= (1 − 𝜇

3
) exp (−𝑎

3
𝑇) .

(23)

FromFloquet theory of impulsive differential equation [18], if
|𝜆
𝑖
| < 1 (𝑖 = 1, 2, 3), then (0, 0, 𝑥∗

3
(𝑡)) is locally asymptotically

stable. Here 𝜆
3
is already less than one, so we only need to

calculate |𝜆
𝑖
| < 1 (𝑖 = 1, 2).

Actually,

(1 − 𝜇
𝑖
) exp(∫

𝑇

0

(𝑎
𝑖
) 𝑑𝑡) < 1, (𝑖 = 1, 2) ,

⇐⇒ ∫

𝑇

0

(𝑎
𝑖
) 𝑑𝑡 < ln 1

1 − 𝜇
𝑖

, (𝑖 = 1, 2) ,

⇐⇒ 𝑎
𝑖
𝑇 < ln 1

1 − 𝜇
𝑖

, (𝑖 = 1, 2) ,

⇐⇒ 𝑇 <

1

𝑎
𝑖

ln 1

1 − 𝜇
𝑖

, (𝑖 = 1, 2) .

(24)

Hence, if𝑇 < min{(1/𝑎
1
) ln(1/(1−𝜇

1
)), (1/𝑎

2
) ln(1/(1−𝜇

2
))},

then (0, 0, 𝑥∗
3
(𝑡)) is locally asymptotically stable.

Next, we prove the global attractivity of (0, 0, 𝑥∗
3
(𝑡)).

Choose 𝜀 > 0 such that

𝜉
1
≜ (1 − 𝜇

1
) exp(∫

𝑇

0

(𝑎
1
− 𝑏
1
(𝑥
1
(𝑡) − 𝜀)) 𝑑𝑡) < 1,

𝜉
2
≜ (1 − 𝜇

2
) exp(∫

𝑇

0

(𝑎
2
− 𝑏
2
(𝑥
2
(𝑡) − 𝜀)) 𝑑𝑡) < 1.

(25)

From (4), we get

𝑑𝑥
1
(𝑡)

𝑑𝑡

≤ (𝑎
1
− 𝑏
1
𝑥
1
(𝑡)) 𝑥
1
(𝑡) , 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

𝑥
1
(𝑡
+
) = (1 − 𝜇

1
) 𝑥
1
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇.

(26)

It follows from (26) that

𝑥
1
((𝑛 + 𝑙) 𝑇) ≤ 𝑥

1
((𝑛 + 𝑙 − 1) 𝑇

+
)

⋅ exp(∫
𝑇

0

(𝑎
1
− 𝑏
1
(𝑥
1
(𝑡) − 𝜀)) 𝑑𝑡)

= 𝑥
1
((𝑛 + 𝑙 − 1) 𝑇) (1 − 𝜇

1
)

⋅ exp(∫
𝑇

0

(𝑎
1
− 𝑏
1
(𝑥
1
(𝑡) − 𝜀)) 𝑑𝑡)

= 𝑥
1
((𝑛 + 𝑙 − 1) 𝑇) 𝜉

1
.

(27)

Continuing the iteration technique, we can obtain 𝑥
1
((𝑛 +

𝑙)𝑇) ≤ 𝑥
1
(𝑙𝑇)𝜉
𝑛

1
and 𝑥

1
(𝑙𝑇)𝜉
𝑛

1
→ 0 as 𝑛 → ∞. Hence,

𝑥
1
((𝑛 + 𝑙)𝑇) → 0 as 𝑛 → ∞. Then, 𝑥

1
(𝑡) → 0 as 𝑛 → ∞

since 0 < 𝑥
1
(𝑡) < 𝑥

1
((𝑛 + 𝑙 − 1)𝑇)(1 − 𝜇

1
)exp(𝑎

1
𝑇) for

(𝑛 + 𝑙 − 1)𝑇 < 𝑡 ≤ (𝑛 + 𝑙)𝑇. By the same way, we can get
𝑥
2
(𝑡) → 0, as 𝑛 → ∞.

Now we prove 𝑥
3
(𝑡) → 𝑥

∗

3
(𝑡) as 𝑡 → ∞. For 𝜀 >

0 (𝑐
1
𝑘
1
√𝜀/(1 + 𝑑

1
𝜀) + 𝑐

2
𝑘
2
√𝜀/(1 + 𝑑

2
𝜀) < 𝑎

3
) sufficiently

small, there exists 𝑇󸀠 > 0 such that 0 < 𝑥
1
(𝑡) < 𝜀 and

0 < 𝑥
2
(𝑡) < 𝜀, 𝑡 > 𝑇

󸀠
.Without loss of generality, we assume

that 0 < 𝑥
1
(𝑡) < 𝜀 and 0 < 𝑥

2
(𝑡) < 𝜀 for all 𝑡 ≥ 0. Then from

system (4) we obtain

−𝑎
3
𝑥
3
(𝑡) ≤

𝑑𝑥
3
(𝑡)

𝑑𝑡

≤ −𝑎
3
𝑥
3
(𝑡)

+ (

𝑐
1
𝑘
1
√𝜀

1 + 𝑑
1
√𝜀

+

𝑐
2
𝑘
2
√𝜀

1 + 𝑑
2
√𝜀

)𝑥
3
(𝑡)
𝑚
.

(28)

Since 0 < 𝑚 ≤ 1, from (28), we have

−𝑎
3
𝑥
3
(𝑡) ≤

𝑑𝑥
3
(𝑡)

𝑑𝑡

≤ (−𝑎
3
+

𝑐
1
𝑘
1
√𝜀

1 + 𝑑
1
√𝜀

+

𝑐
2
𝑘
2
√𝜀

1 + 𝑑
2
√𝜀

)𝑥
3
(𝑡) .

(29)
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Consider the following two comparison systems:

𝑑V
1
(𝑡)

𝑑𝑡

= −𝑎
3
V
1
(𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

V
1
(𝑡
+
) = (1 − 𝜇

3
) V
1
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) ,

V
1
(𝑡
+
) = V
1
(𝑡) + 𝑝, 𝑡 = 𝑛𝑇,

V
1
(0
+
) = 𝑥
3
(0
+
) ,

(30)

𝑑V
2
(𝑡)

𝑑𝑡

= (−𝑎
3
+

𝑐
1
𝑘
1
√𝜀

1 + 𝑑
1
√𝜀

+

𝑐
2
𝑘
2
√𝜀

1 + 𝑑
2
√𝜀

) V
2
(𝑡) ,

𝑡 ̸= 𝑛𝑇, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

V
2
(𝑡
+
) = (1 − 𝜇

3
) V
2
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) ,

V
2
(𝑡
+
) = V
2
(𝑡) + 𝑝, 𝑡 = 𝑛𝑇,

V
2
(0
+
) = 𝑥
3
(0
+
) .

(31)

We can obtain that the periodic solution V∗
1
(𝑡) = 𝑥

∗

3
(𝑡), and

periodic solution of (31) is

V∗
2
(𝑡)

=

{
{
{
{
{

{
{
{
{
{

{

𝑝 exp ((−𝑎
3
+ 𝑐
1
𝑘
1
√𝜀/ (1 + 𝑑

1
√𝜀) + 𝑐

2
𝑘
2
√𝜀/ (1 + 𝑑

2
√𝜀)) (𝑡 − (𝑛 − 1) 𝑇))

1 − (1 − 𝜇
3
) exp ((−𝑎

3
+ 𝑐
1
𝑘
1
√𝜀/ (1 + 𝑑

1
√𝜀) + 𝑐

2
𝑘
2
√𝜀/ (1 + 𝑑

2
√𝜀)) 𝑇)

, (𝑛 − 1) 𝑇 < 𝑡 ≤ (𝑛 + 𝑙 − 1) 𝑇,

𝑝 (1 − 𝜇
3
) exp ((−𝑎

3
+ 𝑐
1
𝑘
1
√𝜀/ (1 + 𝑑

1
√𝜀) + 𝑐

2
𝑘
2
√𝜀/ (1 + 𝑑

2
√𝜀)) (𝑡 − (𝑛 − 1) 𝑇))

1 − (1 − 𝜇
3
) exp ((−𝑎

3
+ 𝑐
1
𝑘
1
√𝜀/ (1 + 𝑑

1
√𝜀) + 𝑐

2
𝑘
2
√𝜀/ (1 + 𝑑

2
√𝜀)) 𝑇)

, (𝑛 + 𝑙 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇.

(32)

For any solutions V
1
(𝑡) and V

2
(𝑡) of the above two systems,

respectively, we have V
1
(𝑡) → V∗

1
(𝑡) = 𝑥

∗

3
(𝑡), and V

2
(𝑡) →

V∗
2
(𝑡) → 𝑥

∗

3
(𝑡) as 𝜀 → 0 and 𝑡 → ∞. From Lemmas 5 and 4,

we have V
1
(𝑡) ≤ 𝑥

3
(𝑡) ≤ V

2
(𝑡).Then, for any 𝜀

1
> 0, there exists

constant 𝑇
1
> 0 such that V∗

1
(𝑡) − 𝜀

1
< 𝑥
3
(𝑡) < V∗

2
(𝑡) + 𝜀

1
, 𝑡 ≥

𝑇
1
. Let 𝜀 → 0, and we have 𝑥∗

3
(𝑡) − 𝜀

1
< 𝑥
3
(𝑡) < 𝑥

∗

3
(𝑡) + 𝜀

1
for

𝑡 large enough, which implies 𝑥
3
(𝑡) → 𝑥

∗

3
(𝑡) as 𝑡 → ∞.This

completes the proof.

3.3. Permanence of System (4)

Theorem 10. System (4) is permanent if conditions (𝐻
1
) and

(𝐻
2
) hold:

(H
1
) 𝑝𝑚 < min{(𝐵

1
/𝑐
1
𝐴
1
)(ln(1 − 𝜇

1
) + (𝑎

1
− 𝛼𝑎
2
/𝑏
2
)𝑇),

(𝐵
2
/𝑐
2
𝐴
2
)(ln(1 − 𝜇

2
) + (𝑎
2
− 𝛽𝑎
1
/𝑏
1
)𝑇)},

(H
2
) 𝑎
3
(√𝑏
2
+ 𝑑
2√
𝑎
2
) > 𝑐

2
𝑘
2√
𝑎
2
, 𝑎
3
(√𝑏
1
+ 𝑑
1√
𝑎
1
) >

𝑐
1
𝑘
1√
𝑎
1
, where

𝐴
1
= (1 − exp(−(𝑎

3
−

𝑐
2
𝑘
2√
𝑎
2

√𝑏
2
+ 𝑑
2√
𝑎
2

)𝑚𝑙𝑇) + (1

− 𝜇
3
)
𝑚

(exp(−(𝑎
3
−

𝑐
2
𝑘
2√
𝑎
2

√𝑏
2
+ 𝑑
1√
𝑎
2

)𝑚𝑙𝑇)

− exp(−(𝑎
3
−

𝑐
2
𝑘
2√
𝑎
2

√𝑏
2
+ 𝑑
1√
𝑎
2

)𝑚𝑇))) ,

𝐴
2
= (1 − exp(−(𝑎

3
−

𝑐
1
𝑘
1√
𝑎
1

√𝑏
1
+ 𝑑
1√
𝑎
1

)𝑚𝑙𝑇) + (1

− 𝜇
3
)
𝑚

(exp(−(𝑎
3
−

𝑐
1
𝑘
1√
𝑎
1

√𝑏
1
+ 𝑑
1√
𝑎
1

)𝑚𝑙𝑇)

− exp(−(𝑎
3
−

𝑐
1
𝑘
1√
𝑎
1

√𝑏
1
+ 𝑑
1√
𝑎
1

)𝑚𝑇))) ,

𝐵
1
= 𝑑
1
(𝑎
3
−

𝑐
2
𝑘
2√
𝑎
2

√𝑏
2
+ 𝑑
2√
𝑎
2

)𝑚(1 − (1 − 𝜇
3
)

⋅ exp(−(𝑎
3
−

𝑐
2
𝑘
2√
𝑎
2

√𝑏
2
+ 𝑑
2√
𝑎
2

)𝑇))

𝑚

,

𝐵
2
= 𝑑
1
(𝑎
3
−

𝑐
1
𝑘
1√
𝑎
1

√𝑏
1
+ 𝑑
1√
𝑎
1

)𝑚(1 − (1 − 𝜇
3
)

⋅ exp(−(𝑎
3
−

𝑐
1
𝑘
1√
𝑎
1

√𝑏
1
+ 𝑑
1√
𝑎
1

)𝑇))

𝑚

.

(33)

Proof. Suppose 𝑋(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) is any solution of

system (4) with 𝑋(0) > 0. From Theorem 8, we know that
there exists constant 𝑀 > 0 such that 𝑥

1
(𝑡) < 𝑀, 𝑥

2
(𝑡) <

𝑀, 𝑥
3
(𝑡) < 𝑀 with 𝑡 ≥ 0. Noticing that 𝑑𝑥

3
(𝑡)/𝑑𝑡 ≥

−𝑎
3
𝑥
3
(𝑡), we consider this impulsive differential equation:

V󸀠
3
(𝑡) = −𝑎

3
V
3
(𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

V
3
(𝑡
+
) = (1 − 𝜇

3
) V
3
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

V
3
(𝑡
+
) = V
3
(𝑡) + 𝑝, 𝑡 = 𝑛𝑇,

V
3
(0
+
) = 𝑥
3
(0
+
) > 0.

(34)

Periodic solution of (34) is V∗
3
= 𝑝(1−𝜇

3
)exp(−𝑎

3
𝑇)/(1− (1−

𝜇
3
)exp(−𝑎

3
𝑇)). By Lemmas 4 and 6, we have 𝑥

3
(𝑡) ≥ V

3
(𝑡) >

𝑥
∗

3
(𝑡) − 𝜀 and 𝑥

3
(𝑡) ≥ 𝑝 exp(−𝑟

3
(𝑡 − 𝑛𝑇))/(1 − exp(−𝑟

3
𝑇)) −

𝜀 = 𝑚
3
(𝜀 > 0) for 𝑡 sufficiently large. Now we want to find
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𝑚
1
> 0, 𝑚

2
> 0 such that 𝑥

1
(𝑡) ≥ 𝑚

1
> 0, 𝑥

2
≥ 𝑚
2
> 0 for 𝑡

large enough. We prove it by the following two steps.

Step 1. We conclude that there exist𝑚
1
> 0, 𝑚

2
> 0, 𝑡

1
, 𝑡
2
∈

(0, +∞) such that 𝑥
1
(𝑡
1
) ≥ 𝑚

1
, 𝑥
2
(𝑡
2
) ≥ 𝑚

2
.Otherwise there

will be another three cases.

Case 1. There exists a constant 𝑡
2
> 0 such that 𝑥

2
(𝑡
2
) ≥ 𝑚

2
,

but 𝑥
1
(𝑡) < 𝑚

1
for all 𝑡 > 0.

Case 2. There exists a constant 𝑡
1
> 0 such that 𝑥

1
(𝑡
1
) ≥ 𝑚

1
,

but 𝑥
2
(𝑡) < 𝑚

2
for all 𝑡 > 0.

Case 3. Consider 𝑥
1
(𝑡) < 𝑚

1
, and 𝑥

2
(𝑡) < 𝑚

2
for all 𝑡 > 0.

For Case 1, choose a sufficiently small constant 𝜂
1
> 0

such that

𝛿
1
= (1 − 𝜇

1
)

⋅ exp(∫
(𝑛+𝑙)𝑇

(𝑛+𝑙−1)𝑇

(𝑎
1
− 𝑏
1
𝑀− 𝛼𝑀 − 𝑐

1

𝑀

𝑑
1

(𝛾
∗

1
(𝑡) + 𝜂

1
)
𝑚

)𝑑𝑡)

> 1.

(35)

Then we have

𝑥
󸀠

3
= 𝑥
3
(

𝑘
1
𝑐
1√
𝑥
1
𝑥
3

𝑚−1

1 + 𝑑
1
√𝑥
1
(𝑡)

+

𝑘
2
𝑐
2√
𝑥
2
𝑥
3

𝑚−1

1 + 𝑑
2
√𝑥
2
(𝑡)

− 𝑎
3
)

≤ 𝑥
3
(𝑘
1
𝑐
1
(𝑚
3
)
𝑚−1

√𝑀 + 𝑘
2
𝑐
2
(𝑚
3
)
𝑚−1

√𝑀 − 𝑎
3
)

≜ 𝐹
1
𝑥
3
(𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

𝑥
3
(𝑡
+
) = (1 − 𝜇

3
) 𝑥
3
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑥
3
(𝑡
+
) = 𝑥
3
(𝑡) + 𝑝, 𝑡 = 𝑛𝑇.

(36)

Consider the following comparison equation:

𝛾
󸀠

1
= 𝐹
1
𝛾
1
, 𝑡 ̸= 𝑛𝑇, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

𝛾
1
(𝑡
+
) = (1 − 𝜇

3
) 𝛾
1
, 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝛾
1
(𝑡
+
) = 𝛾 + 𝑝, 𝑡 = 𝑛𝑇,

𝛾
1
(0
+
) = 𝑥
3
(0
+
) > 0;

(37)

the periodic solution of (37) reads

𝛾
∗

1
(𝑡) =

{
{
{
{
{

{
{
{
{
{

{

𝑝 exp (𝐹
1
(𝑡 − (𝑛 − 1) 𝑇))

1 − (1 − 𝜇
3
) exp (𝐹

1
𝑇)

, (𝑛 − 1) 𝑇 < 𝑡 ≤ (𝑛 + 𝑙 − 1) 𝑇,

𝑝 (1 − 𝜇
3
) exp (𝐹

1
(𝑡 − (𝑛 − 1) 𝑇))

1 − (1 − 𝜇
3
) exp (𝐹

1
𝑇)

, (𝑛 + 𝑙 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇.

(38)

For any solution 𝛾
1
(𝑡) of (37), we have 𝛾

1
(𝑡) → 𝛾

∗

1
(𝑡). By

comparison theorem, we can easily obtain 𝑥
3
(𝑡) ≤ 𝛾

1
(𝑡) as

𝑡 → +∞. Hence, there exists 𝑇
1
> 0, when 𝑡 > 𝑇

1
, 𝑥
3
(𝑡) ≤

𝛾
1
(𝑡) < 𝛾

∗

1
(𝑡) + 𝜂

1
.

Then we have

𝑥
󸀠

1
(𝑡)

≥ 𝑥
1
(𝑡) (𝑎

1
− 𝑏
1
𝑀− 𝛼𝑀 − 𝑐

1

𝑀

𝑑
1

(𝛾
∗

1
(𝑡) + 𝜂

1
)
𝑚

) ,

𝑡 ̸= 𝑛𝑇, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

𝑥
1
(𝑡
+
) = (1 − 𝜇

1
) 𝑥
1
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑥
1
(𝑡
+
) = 0, 𝑡 = 𝑛𝑇;

(39)

𝑁
1
∈ 𝑁 and (𝑁

1
+ 𝑙 − 1)𝑇 ≥ 𝑇

1
. Integrating (39) on ((𝑛 + 𝑙 −

1)𝑇, (𝑛 + 𝑙)𝑇], 𝑛 ≥ 𝑁
1
, we get

𝑥
1
((𝑛 + 𝑙) 𝑇) ≥ 𝑥

1
((𝑛 + 𝑙 − 1) 𝑇

+
)

⋅ exp(∫
(𝑛+𝑙)𝑇

(𝑛+𝑙−1)𝑇

(𝑎
1
− 𝑏
1
𝑀− 𝛼𝑀 −

𝑐
1

𝑑
1

𝑀(𝛾
∗

1
(𝑡) + 𝜂

1
)
𝑚

)𝑑𝑡)

= 𝑥
1
((𝑛 + 𝑙 − 1) 𝑇) (1 − 𝜇

1
)

⋅ exp(∫
(𝑛+𝑙)𝑇

(𝑛+𝑙−1)𝑇

(𝑎
1
− 𝑏
1
𝑀− 𝛼𝑀 −

𝑐
1

𝑑
1

𝑀(𝛾
∗

1
(𝑡) + 𝜂

1
)
𝑚

)𝑑𝑡)

= 𝑥
1
((𝑛 + 𝑙 − 1) 𝑇) 𝛿

1
.

(40)

Continuing the iteration technique, we can obtain 𝑥
1
((𝑁
1
+

𝑘)𝑇) ≥ 𝑥
1
((𝑁
1
)𝑇)𝜎
𝑘

1
→ ∞ as 𝑘 → ∞, which is a

contradiction. Similar to Case 1, we can prove Case 2 is
contradictory.

Nextwe consider Case 3.Using the assumption inCase 3,
it is easy to get

𝑥
󸀠

3
= 𝑥
3
(

𝑘
1
𝑐
1√
𝑥
1
𝑥
3

𝑚−1

1 + 𝑑
1
√𝑥
1
(𝑡)

+

𝑘
2
𝑐
2√
𝑥
2
𝑥
3

𝑚−1

1 + 𝑑
2
√𝑥
2
(𝑡)

− 𝑎
3
)

≤ 𝑥
3
(𝑘
1
𝑐
1
(𝑀)
𝑚−1

√𝑚1
+ 𝑘
2
𝑐
2
(𝑀)
𝑚−1

√𝑚2
− 𝑎
3
)

≜ 𝑥
3
(𝑡) 𝐹
2
, 𝑡 ̸= 𝑛𝑇, 𝑡 ̸= (𝑛 + 𝑙 − 1) 𝑇,

𝑥
3
(𝑡
+
) = (1 − 𝜇

3
) 𝑥
3
(𝑡) , 𝑡 = (𝑛 + 𝑙 − 1) 𝑇,

𝑥
3
(𝑡
+
) = 𝑥
3
(𝑡) + 𝑝, 𝑡 = 𝑛𝑇.

(41)
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Figure 1: A prey-eradication periodic solution with initial values of 𝑥
1
(0) = 2, 𝑥

2
(0) = 2, and 𝑥

3
(0) = 3; (a) time series of 𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡),

which are simulated 100 cycles in the interval [0, 200]; (b) phase portrait of 𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡): the solution goes gradually into the stable state

from the initial point [2, 2, 3]; (c) the dynamic behaviors of system (4) with mutual interference of predator𝑚 as𝑚 = 0.6.

By the same discussion as Case 1, we can find a contra-
diction. Hence, from the above three cases, there exist𝑚

1
> 0

and𝑚
2
> 0, 𝑡

1
, 𝑡
2
∈ (0, +∞) such that 𝑥

1
(𝑡
1
) ≥ 𝑚

1
, 𝑥
2
(𝑡
2
) ≥

𝑚
2
.

Step 2. If 𝑥
1
(𝑡) ≥ 𝑚

1
for all 𝑡 ≥ 𝑡

1
, then our aim is achieved.

Otherwise, if 𝑥
1
(𝑡) < 𝑚

1
for some 𝑡 ≥ 𝑡

1
, thenwe only need to

consider those solutions which leave the region {𝑋(𝑡) ∈ 𝑅3
+
:

𝑥
1
(𝑡) ≥ 𝑚

1
} and reenter it again. Let 𝑡∗ = inf

𝑡≥𝑡
1

{𝑥
1
(𝑡) < 𝑚

1
},

and then there are two possible cases for 𝑡∗.

Case 1. If 𝑡∗ = (𝑛
1
+ 𝑙 − 1)𝑇, 𝑛

1
∈ 𝑁, then 𝑥

1
(𝑡) ≥ 𝑚

1
for

𝑡 ∈ [𝑡
1
, 𝑡
∗
) and (1 − 𝜇

1
)𝑚
1
≤ 𝑥
1
(𝑡
∗+
) = (1 − 𝜇

1
)𝑥
1
(𝑡
∗
) < 𝑚

1
.

Choose 𝑛
2
, 𝑛
3
∈ 𝑁 such that

(𝑛
2
− 1) 𝑇 >

ln (𝜂
1
/ (𝑀 + 𝑝))

𝐹
1

,

(1 − 𝜇
1
)
𝑛
2

𝛿
𝑛
3

1
exp (𝛿𝑛

2
𝑇)

> (1 − 𝜇
1
)
𝑛
2

𝛿
𝑛
3

1
(𝛿 (𝑛
2
+ 1) 𝑇) > 1,

(42)
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Figure 2: Dynamic behavior of the prey-eradication periodic solution with different initial values and the parameters are same as Figure 1.
(a) Phase portrait of 𝑥

1
(𝑡) and 𝑥

3
(𝑡) with different initial values. (b) Phase portrait of 𝑥

2
(𝑡) and 𝑥

3
(𝑡) with different initial values.

where 𝛿 = 𝑎
1
− 𝑏
1
𝑀 − 𝛼𝑀 − 𝑐

1
𝑀
𝑚
(𝑀/𝑑

1
) < 0. Let 𝑇 =

𝑛
2
𝑇 + 𝑛
3
𝑇.We claim there must be 𝑡󸀠 ∈ (𝑡∗, 𝑡∗ + 𝑇) such that

𝑥
1
(𝑡
󸀠
) > 𝑚

1
.Otherwise we have 𝑥

1
(𝑡
󸀠
) < 𝑚

1
, considering (37)

with 𝛾
1
(𝑛
1
𝑇
+
) = 𝑥
3
(𝑛
1
𝑇
+
), and then we get

𝛾
1
(𝑡)

=

{
{
{
{
{
{

{
{
{
{
{
{

{

(1 − 𝜇
3
)
𝑛−(𝑛
1
+𝑙)

(𝑥
3
(𝑛
1
𝑇
+
) −

𝑝

1 − (1 − 𝜇
3
) exp (𝐹

1
𝑇)

) exp (𝐹
1
(𝑡 − 𝑛

1
𝑇)) + 𝛾

∗

1
(𝑡) , (𝑛 − 1) 𝑇 < 𝑡 ≤ (𝑛 + 𝑙 − 1) 𝑇,

(1 − 𝜇
3
)
𝑛−(𝑛
1
+𝑙−1)

(𝑥
3
(𝑛
1
𝑇
+
) −

𝑝

1 − (1 − 𝜇
3
) exp (𝐹

1
𝑇)

) exp (𝐹
1
(𝑡 − 𝑛

1
𝑇)) + 𝛾

∗

1
(𝑡) , (𝑛 + 𝑙 − 1) 𝑇 < 𝑡 ≤ 𝑛𝑇,

(43)

and 𝑛
1
+ 1 ≤ 𝑛 ≤ 𝑛

1
+ 𝑛
2
+ 𝑛
3
+ 1. Then |𝛾

1
(𝑡) − 𝛾

∗

1
(𝑡)| <

(𝑀 + 𝑝)exp(𝐹
1
(𝑡 − 𝑛
1
𝑇)) < 𝜂

1
and 𝑥

3
(𝑡) ≤ 𝛾

1
(𝑡) < 𝛾

∗

1
(𝑡) + 𝜂

1

for 𝑡∗ + 𝑛
2
𝑇 ≤ 𝑡 ≤ 𝑡

∗
+ 𝑇. These imply that (39) holds for

𝑡
∗
+ 𝑛
2
𝑇 ≤ 𝑡 ≤ 𝑡

∗
+ 𝑇. By the same discussion of Step 1, we

obtain 𝑥
1
(𝑡
∗
+ 𝑇) ≥ 𝑥

1
(𝑡
∗
+ 𝑛
2
𝑇)𝛿
𝑛
3

1
.

From the first equation of (4), we have

𝑥
󸀠

1
(𝑡) ≥ 𝑥

1
(𝑡) (𝑎

1
− 𝑏
1
𝑀− 𝛼𝑀 − 𝑐

1
𝑀
𝑚𝑀

𝑑
1

)

= 𝛿𝑥
1
(𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑥
1
(𝑡
+
) = (1 − 𝜇

1
) 𝑥
1
(𝑡) , 𝑡 = 𝑛𝑇.

(44)

Integrating (44) on 𝑡 ∈ [𝑡
∗
, 𝑡
∗
+ 𝑛
2
𝑇], then 𝑥

1
(𝑡
∗
+

𝑛
2
𝑇) ≥ 𝑚

1
(1 − 𝜇

1
)
𝑛
2exp(𝛿𝑛

2
𝑇) and 𝑥

1
(𝑡
∗
+ 𝑇) ≥ 𝑚

1
(1 −

𝜇
1
)
𝑛
2
𝛿
𝑛
3

1
exp(𝛿𝑛

2
𝑇) > 𝑚

1
, which is a contradiction with

𝑥
1
(𝑡) < 𝑚

1
. Hence, 𝑥

1
(𝑡) > 𝑚

1
holds for 𝑡 ∈ (𝑡

1
, 𝑡
∗
). Let

𝑡 = inf
𝑡≥𝑡
∗{𝑥
1
(𝑡) ≥ 𝑚

1
}, and then 𝑥

1
(𝑡) ≤ 𝑚

1
, 𝑥
1
(𝑡) = 𝑚

1
and

𝑥
1
(𝑡) ≥ 𝑚

1
(1−𝜇
1
)
𝑛
2
+𝑛
3exp((𝑛

2
+𝑛
3
)𝛿𝑇) ≜ 𝑚

󸀠

1
for 𝑡∗ < 𝑡 < 𝑡. So

𝑥
1
(𝑡) ≥ 𝑚

󸀠

1
holds for 𝑡∗ < 𝑡 < 𝑡. If 𝑡 > 𝑡, the same arguments

can be expanded since 𝑥
1
(𝑡) ≥ 𝑚

1
.

Case 2. If 𝑡∗ ̸= (𝑛
1
+ 𝑙 − 1)𝑇, 𝑛

1
∈ 𝑁, then 𝑥

1
(𝑡) ≥ 𝑚

1
for

𝑡
1
≤ 𝑡 < 𝑡

∗ and 𝑥
1
(𝑡
∗
) = 𝑚

1
.

Suppose 𝑡∗ ∈ ((𝑛󸀠
1
+ 𝑙 − 1)𝑇, (𝑛

󸀠

1
+ 𝑙)𝑇), 𝑛

󸀠

1
∈ 𝑁, and then

there are two possible cases for 𝑡 ∈ (𝑡∗, (𝑛󸀠
1
+ 𝑙)𝑇).

Case 2.1. 𝑥
1
(𝑡) ≤ 𝑚

1
holds for all 𝑡 ∈ (𝑡∗, (𝑛󸀠

1
+ 𝑙)𝑇). Similar to

Case 1, we can prove that theremust exist 𝑡󸀠
1
∈ [(𝑛
󸀠

1
+𝑙)𝑇, (𝑛

󸀠

1
+

𝑙)𝑇 + 𝑇] such that 𝑥
1
(𝑡
󸀠

1
) > 𝑚

1
; we omit it here.

Let 𝑡̃ = inf
𝑡≥𝑡
∗{𝑥
1
(𝑡) > 𝑚

1
}, and then 𝑥

1
(𝑡) ≤ 𝑚

1
holds for

𝑡
∗
≤ 𝑡 < 𝑡̃.Then we have 𝑥

1
(𝑡) ≥ 𝑚

1
(1 − 𝜇

1
)
𝑛
2
+𝑛
3
+1exp((𝑛

2
+

𝑛
3
)𝛿𝑇) ≜ 𝑚

1
, and 𝑥

1
(𝑡) ≥ 𝑚

1
for 𝑡 ∈ (𝑡

∗
, 𝑡̃). For 𝑡 > 𝑡̃, the

same arguments can be followed since 𝑥
1
(̃𝑡) ≥ 𝑚

1
.
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Figure 3: (a) is the existence of the positive periodic solution of system (4) with initial values of 𝑥
1
(𝑡) = 2, 𝑥

2
(𝑡) = 2, 𝑥

3
(𝑡) = 3, which

implies that system (4) is permanent; (b) is phase portrait of positive periodic solution of system (4); (c) is dynamic behavior of system (4)
with the mutual interference of the predator𝑚 = 0.66; other parameters are also the same as (a).

Case 2.2. There exist 𝑡∗ < 𝑡 < (𝑛󸀠
1
+ 𝑙)𝑇 such that 𝑥

1
(𝑡) > 𝑚

1
.

Let 󵱰𝑡 = inf
𝑡≥𝑡
∗{𝑥
1
(𝑡) > 𝑚

1
}, and then 𝑥

1
(𝑡) ≤ 𝑚

1
for 𝑡 ∈ (𝑡∗, 󵱰𝑡)

and 𝑥
1
(󵱰𝑡) = 𝑚

1
.When 𝑡 ∈ (𝑡∗, 󵱰𝑡), (44) holds. Integrating (44)

on (𝑡∗, 󵱰𝑡), then 𝑥
1
(𝑡) ≥ 𝑥

1
(𝑡
∗
)exp(𝛿(𝑡 − 𝑡∗)) ≥ 𝑚

1
exp(𝛿𝑇) >

𝑚
1
. Since 𝑥

1
(󵱰𝑡) ≥ 𝑚

1
for 𝑡 > 𝑡

∗, the same arguments can be
used; then 𝑥

1
(𝑡) ≥ 𝑚

1
for all 𝑡 ≥ 𝑡

1
.

Thus in both cases, we conclude that 𝑥
1
(󵱰𝑡) ≥ 𝑚

1
holds for

all 𝑡 ≥ 𝑡
1
. Similarly, we have 𝑥

2
(𝑡) ≥ 𝑚

2
for all 𝑡 ≥ 𝑡

2
. Let𝑚

4
=

max{𝑚
1
, 𝑚
2
, 𝑚
3
}, and then we have𝑚

4
< 𝑥
1
, 𝑥
2
, 𝑥
3
< 𝑀.The

proof is completed.

4. Single Chemical Control

If 𝑝 = 0, system (4) concerns the single chemical control.
Then we have the following corollary.

Corollary 11. Assume 𝑝 = 0 and 𝑙 = 1.
(i) Let (𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑥
3
(𝑡)) be any solution of (4). Then the

solution (0, 0, 𝑥∗
3
(𝑡)) is locally stable if

𝑇 < min{ 1

𝑎
1

ln 1

1 − 𝜇
1

,

1

𝑎
2

ln 1

1 − 𝜇
2

} . (45)
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Figure 4: Bifurcation diagrams of system (4) with 𝑥
1
(0) = 0.7, 𝑥

2
(0) = 0.8, 𝑥

3
(0) = 0.5. The system exhibits stable solution, periodic

doubling bifurcation, and chaotic phenomenon corresponding with different 𝑇. (a) is the bifurcation diagram of population 𝑥
1
(𝑡); (b) is the

bifurcation diagram of population 𝑥
2
(𝑡); (c) is the bifurcation diagram of population 𝑥

3
(𝑡).

(ii) System (4) is permanent if 𝑎
3
(𝑏
2
𝑑
1
+ 𝑎
2
𝑑
3
) >

𝑐
2
𝑘
2
𝑎
2
, 𝑎
3
(𝑏
1
𝑑
1
+ 𝑎
1
𝑑
2
) > 𝑐
1
𝑘
1
𝑎
1
and

𝑇 > max{ 1

𝑎
1
− 𝛼𝑎
2
/𝑏
2

ln 1

1 − 𝜇
1

,

1

𝑎
2
− 𝛽𝑎
1
/𝑏
1

⋅ ln 1

1 − 𝜇
2

} .

(46)

5. Examples and Simulations

In this section, we give some examples and numerical
simulations to verify our theoretical results and further study
the complexity and variety of system (4).

Firstly, let 𝑎
1
= 0.2, 𝑎

2
= 0.3, 𝑎

3
= 0.2, 𝑏

1
= 0.03, 𝑏

2
= 0.04, 𝑐

1

= 0.1, 𝑐
2
= 0.1, 𝑑

1
= 100, 𝑑

2
= 100, 𝜇

1
= 0.56, 𝜇

2
= 0.55, 𝜇

3
= 0.09,

𝛼 = 0.003, 𝛽 = 0.004, 𝑘
1
= 0.75, 𝑘

2
= 0.75,𝑚 = 1, 𝑙 = 0.2, 𝑇 = 10,

and 𝑝 = 1. By verification, these parameters satisfy conditions

of Theorem 9; then the prey-eradication periodic solution is
global asymptotic stability. With Matlab, by simulation, the
asymptotic stability can be illustrated by Figures 1(a), 1(b),
and 2. Figures 1(a) and 1(b) show the existence of the prey-
eradication periodic solution. Figure 2 shows the attractivity
of prey-eradication periodic solution. If we change themutual
interference of the predator 𝑚 and other parameters are the
same as Figure 1(a), then we get another dynamical portrait
that is very different from Figure 1(a). We give an example
for 𝑚 = 0.6 (see Figure 1(c)), which shows that the mutual
interference of the predator𝑚 affects the dynamical behaviors
of system (4) to be more complex.

Secondly, let 𝑥
1
(𝑡) = 2, 𝑥

2
(𝑡) = 2, 𝑥

3
(𝑡) = 3, 𝑎

1
= 0.6,

𝑎
2
= 0.8, 𝑎

3
= 0.2, 𝑏

1
= 0.03, 𝑏

2
= 0.07, 𝑐

1
= 0.8, 𝑐

2
=

0.8, 𝑑
1
= 30, 𝑑

2
= 30, 𝜇

1
= 0.4, 𝜇

2
= 0.4, 𝜇

3
= 0.08, 𝛼

= 0.005, 𝛽 = 0.005, 𝑘
1
= 0.8, 𝑘

2
= 0.8, 𝑚 = 1, 𝑙 = 1, 𝑇

= 10, and 𝑝 = 10. By verification, these parameters satisfy
conditions of Theorem 10. Then we conclude that system
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Figure 5: The magnified parts of Figure 4(c) of dynamic behavior of 𝑥
3
. (a) and (b) are period solutions. (c) is a typical chaotic oscillation

when 𝑇 = 151.6. (d) is the symmetry-breaking bifurcations when 𝑇 = 153.5.

(4) is permanent from Theorem 10. By simulation, we can
verify the same results. Figure 3(a) is the time series of the
three species in the interval [0, 200]. In addition, we give the
phase portrait of a positive periodic solution of system (4) in
Figure 3(b). Similarly, if we change the mutual interference of
the predator𝑚 and other parameters are same as Figure 3(a),
then we get another dynamical picture that is very different
from Figure 3(a). We give an example for 𝑚 = 0.66 (see
Figure 3(c)). It also shows that the parameter 𝑚 affects the
dynamical behaviors of system (4).

Thirdly, by numerical analysis, we aim to investigate the
bifurcation diagrams of impulsive period 𝑇. Let 𝑥

1
(0) = 2,

𝑥
2
(0) = 2, and 𝑥

3
(0) = 3, and 𝑎

1
= 0.6, 𝑎

2
= 0.8, 𝑎

3
= 0.2,

𝑏
1
= 0.03, 𝑏

2
= 0.07, 𝑐

1
= 0.8, 𝑐

2
= 0.8, 𝑑

1
= 30, 𝑑

2
= 30, 𝜇

1

= 0.4, 𝜇
2
= 0.4, 𝜇

3
= 0.08, 𝛼 = 0.005, 𝛽 = 0.005, 𝑘

1
= 0.8,

𝑘
2
= 0.8, 𝑚 = 1, 𝑙 = 1, and 𝑝 = 10. The bifurcation diagrams

of 𝑥
1
(𝑡), 𝑥

2
(𝑡), and 𝑥

3
(𝑡) with respect to parameter 𝑇 in

range [107, 155] are shown in Figure 4. Figures 4(a)–4(c) are
bifurcation diagrams of 𝑥

1
(𝑡), 𝑥
2
(𝑡), and 𝑥

3
(𝑡), respectively.

From these diagrams, we can see that impulsive period 𝑇

heavily affects the dynamical behaviors. For example, Figure 5
shows the complex dynamic behaviors of 𝑥

3
. Figure 5 is the

magnified parts of Figure 4(c). From Figure 5(a), we can see
the following: when impulsive period 107 < 𝑇 < 117, it
is stable; if 𝑇 = 117, 142.4, 148, and 149.1, then bifurcation
appears, respectively. That is to say, when 𝑇 > 117, there
is a cascade of period-doubling bifurcations leading to 2𝑇-
period solution (Figure 5(a)); when 𝑇 > 142.4, 4𝑇-period
solution appears (Figure 5(a)); when 𝑇 > 148, 8𝑇-period
solution appears (Figure 5(b)); when 𝑇 > 149.1, 16𝑇-period
solution appears (Figure 5(b)). As 𝑇 increase beyond 149.5,
the phenomenon of “crisis” emerges. When 𝑇 = 151.6, there
is a typical chaotic oscillation (Figure 5(c)). When 𝑇 is near
153.5, we can see in the neighborhood of 𝑇 = 153.5, after
the period-doubling bifurcations, the symmetry-breaking
bifurcations appear (Figure 5(d)), which are specially simple
bifurcations that come into being multiplicity of steady states
[5]. It implies that when 107 < 𝑇 < 117, that is, spraying
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Figure 6: Dynamical behaviors of prey-eradication periodic solution and permanence of the system with single chemical control: (a) is the
prey-eradication periodic solution of the single chemical control; (b) is the permanence of the single chemical control.

pesticides and releasing natural enemies are frequent, the
solution of this system is stable in this situation; when 117 <
𝑇 < 149.5, periodic behaviors of prey and the predator will
appear; if 149.5 < 𝑇 < 155, then dynamical properties of this
system are complex and the development of this system may
be unpredictable.

Fourthly, let 𝑥
1
(𝑡) = 0.6, 𝑥

2
(𝑡) = 1, and 𝑥

3
(𝑡) = 1 and

𝑎
1
= 0.6, 𝑎

2
= 0.65, 𝑏

1
= 0.86, 𝑏

2
= 0.83, 𝜇

1
= 0.01, 𝜇

2
=

0.01, 𝛼 = 0.01, and 𝛽 = 0.01. By verification, these parameters
satisfy conditions of Corollary 11; then we can get the globally
asymptotic stability of prey-eradication periodic solution and
permanence for single chemical control (see Figures 6(a) and
6(b)).

6. Conclusion

In this paper, an impulsive two-prey and one-predator system
with square root functional responses, mutual interference,
and integrated pest management is constructed. Numerical
simulations are given to portray the complex behaviors of this
system. FromTheorem 9, the existence and global asymptotic
stability of prey-eradication periodic solution of (4) are
obtained. Some methods and sufficient conditions are given
to prove the permanence of system (4) inTheorem 10.

From Theorems 9 and 10 and simulations, we know
dynamical properties of system (4) are very complex which
depend on impulsive period 𝑇, the releasing amount of
predator 𝑝, the mutual interference of predator 𝑚, and the
parameter 𝜇

𝑖
(𝑖 = 1, 2, 3) of pests or predator which dies from

the chemical control. Figures 1(c) and 3(c) show that different
values of mutual interference of predator have different
dynamical properties for system (4). Figures 1(a), 1(b), and
2 show the existence and attractivity of prey-eradication

periodic solution. Figures 3(a) and 3(b) show the existence
of positive periodic solution. Figure 4 implies that impulsive
period 𝑇 heavily influences the dynamic behavior of system
(4). As 𝑇 changes, periodic behaviors, bifurcations, “crisis”
phenomenon, chaotic phenomenon, chaotic oscillation, and
symmetry-breaking bifurcations appear, respectively. Hence,
we can choose moderate value of 𝑇 for some different control
strategies.

In this paper, by considering mutual interference and
square root functional responses, our constructed model is
new and complex, which more rationally reflects the real
world. Furthermore, we also give the corresponding results
on strategies of integrated pest management and classical
chemical control. By our obtained results, if combining
biological control and chemical control to eradicate preys,
we can choose moderate impulsive period 𝑇 and moderate
parameters 𝑝 and 𝜇

𝑖
(𝑖 = 1, 2, 3) to effectively eliminate preys

and reduce environmental pollution. In particular, we analyze
the influence from impulsive period 𝑇. These theories have
some guidance to our real life and the natural balance.
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