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We investigate a common due-date assignment scheduling problem with a variable maintenance on a single machine. The goal is
to minimize the total earliness, tardiness, and due-date cost. We derive some properties on an optimal solution for our problem.
For a special case with identical jobs we propose an optimal polynomial time algorithm followed by a numerical example.

1. Introduction

Recently, as a competitive strategy to provide high quality
service for customer demand, just-in-time (JIT) production
has received considerable attention from the manufacturing
enterprises [1]. In JIT production, jobs should be completed
as close as possible to their due-dates. A job which is
completed earlier or later than its due-date will incur penalty.
Thus, both earliness and tardiness are discouraged in JIT
production. Motivated by the JIT production, in the last two
decades scheduling problem with due-date assignment has
been extensively investigated. For the related surveys, we refer
the readers to Cheng and Gupta [2], Baker and Scudder [3],
and Gordon et al. [4]. For some recent related models on the
due-date assignment scheduling, see Xu et al. [5], Gerstl and
Mosheiov [6], Yin et al. [7], and Janiak et al. [8].

On the other hand, to prevent production disruption
caused by machine breakdown, machine maintenance needs
to be performed to perserve production efficiency. Since 1996,
researchers begun to take maintenance into consideration
in scheduling (see Lee [9], Lee and Chen [10], Kubzin and
Strusevich [11],Mosheiov and Sidney [12], andZhao andTang
[13]). For amaintenance (which is optional ormandatory), we
usually use two parameters to define it. One is its starting time
and the other is its duration. In some papers, the occupied
period by maintenance was also called nonavailable interval.
For the recent related survey, we refer the readers to Ma et al.
[14].

In the papers by Kubzin and Strusevich [11] andMosheiov
and Sidney [12], they considered a more realistic case on the
duration of maintenance. In their models, they assume the
duration of maintenance is variable; that is, the duration of
maintenance depends on its starting time in that the later
maintenance is performed, the longer time is needed to
perform the maintenance. Such maintenance can be called a
variable maintenance or a deteriorating maintenance.

Another popular topic in recent years is that of scheduling
with simultaneous considerations of due-date assignment
and maintenance. Mosheiov and Oron [15] studied a single-
machine scheduling problem jointly with rate-modifying
activity and common due-date assignment considerations to
minimize the total of earliness, tardiness, and due-date costs.
X. Y. Wang and M. Z. Wang [16] addressed a single-machine
slack due-date scheduling with a rate-modifying activity for
minimizing the objective function which contains the total
earliness, tardiness, and the common slack time costs. Yang
et al. [17] investigated single-machine common due-date
assignment and scheduling problems with an aging effect
under a deteriorating maintenance consideration simultane-
ously. Yin et al. [18] considered a common due-date assign-
ment and scheduling problem with a rate-modifying activity
to minimize the due-date, earliness, tardiness, holding, and
batch delivery cost.

In this paper we introduce a new scheduling model
which combines the due-date assignment and the machine
maintenance. We assume that the duration of maintenance is
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variable and the maintenance must be started prior to a given
deadline.

As a practical example for the proposed model, we may
consider the steel-making process in the steel plant [19]. In the
steel-making process, a charge, that is, a concurrent smelting
in the same converter, is regarded as a “job.” A refining
furnace is used to refine the charges. Naturally, the refining
furnace is regarded as “the machine.” In the refining process,
there will be some garbage. Before a given deadline, we must
clear the garbage to maintain the production efficiency and
thus the clearing operation can be regarded a maintenance.

In the second section we provide the notation and
formulation on our model. The third section derives some
important properties on an optimal solution. In Section 4, we
propose an optimal polynomial time algorithm for a special
case with identical jobs, followed by a numerical example.
Concluding remarks are discussed in the last section.

2. Problem Statement

Our problem can be described as follows. There are 𝑛 inde-
pendent jobs 𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
to be nonpreemptively processed

on a single machine, all of which are available at time zero.
A mandatory maintenance must be started before a given
deadline on the machine and the duration of maintenance
depends on its starting time; that is, the duration is a
nonnegative and nondecreasing function of the starting time.
Let 𝑝
𝑗
and 𝑑

𝑗
denote the processing time and the due-date

of job 𝐽
𝑗
, 𝑗 = 1, 2, . . . , 𝑛, respectively. For a given schedule,

we use 𝐶
𝑗
to denote the completion time of job 𝐽

𝑗
, 𝑗 =

1, 2, . . . , 𝑛. We define the earliness and tardiness of job 𝐽
𝑗
as

𝐸
𝑗
= max{𝑑

𝑗
−𝐶
𝑗
, 0} and𝑇

𝑗
= max{𝐶

𝑗
−𝑑
𝑗
, 0}, 𝑗 = 1, 2, . . . , 𝑛,

respectively. The unit earliness and tardiness penalties are
denoted by 𝛼 (>0) and 𝛽 (>0), respectively. In the case of a
common due-date (i.e., 𝑑

𝑗
= 𝑑, which is a decision variable),

we denote the penalty per unit time of delaying the due-
date by 𝛾 (>0). Furthermore, we denote the given deadline of
maintenance with 𝑠

𝑔
and the duration of maintenance with 𝑙.

Then according to our previous assumption, we can denote
𝑙 = 𝑓(𝑠), where 𝑠 (≤ 𝑠

𝑔
) is the starting time of maintenance

and 𝑓 is a nonnegative and nondecreasing function.The goal
is to find an optimal sequence of all the jobs, the common
due-date, and the staring time of maintenance such that the
objective ∑

𝑛

𝑗=1
(𝛼𝐸
𝑗
+ 𝛽𝑇
𝑗
) + 𝛾𝑑 is minimized. Following

the three-field notation proposed by Graham et al. [20], we
denote our problem as 1,VM ‖ ∑

𝑛

𝑗=1
(𝛼𝐸
𝑗
+ 𝛽𝑇
𝑗
) + 𝛾𝑑, where

VM in the first field stands for a variable maintenance.

3. The Properties on an Optimal Solution

The classical due-date assignment scheduling problem (with-
out maintenance) was introduced by Panwalkar et al. [21].
In their model, in addition to the traditional job sequencing
decisions, the common due-date is a decision variable. Both
earliness and tardiness incur penalty cost. The goal is to
find an optimal sequence of the jobs and the due-date that
minimizes the total earliness, tardiness, and due-date cost. By
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Figure 1: Idle time between jobs 𝐽
𝑖
and 𝐽
𝑗
.
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Figure 2: Idle time between job 𝐽
𝑖
and the maintenance VM.
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Figure 3: Idle time between the maintenance VM and job 𝐽
𝑗
.

using the small perturbations technique, Panwalkar et al. [21]
proposed a polynomial time algorithm.

In order to solve our problem, we first derive some
properties on an optimal solution. We also use the small
perturbations technique.

Lemma 1. There exists an optimal solution in which the
schedule starts at time zero and contains no idle time among
the jobs, and the maintenance is scheduled between the two
consecutive jobs without idle time.

Proof. First we show that there is no idle time between the
jobs.

Assume that there exists idle time between the jobs 𝐽
𝑖
and

𝐽
𝑗
, as shown in Figure 1, where 𝐶

𝑖
denotes the completion

time of job 𝐽
𝑖
and 𝑆
𝑗
denotes the starting time of job 𝐽

𝑗
. Clearly

we have 𝐶
𝑖
< 𝑆
𝑗
. If 𝑑 < 𝐶

𝑖
, we move job 𝐽

𝑗
by (𝑆
𝑗
− 𝐶
𝑖
) units

of time to the left without increasing the objective value. If
𝑑 > 𝑆

𝑗
, we may move job 𝐽

𝑖
by (𝑆
𝑗
− 𝐶
𝑖
) units of time to the

right without increasing the objective value. If 𝐶
𝑖
≤ 𝑑 ≤ 𝑆

𝑗
,

we maymove job 𝐽
𝑖
to the right and job 𝐽

𝑗
to the left such that

job 𝐽
𝑖
just finishes at time 𝑑 and job 𝐽

𝑗
starts at time 𝑑without

increasing the objective value. In the end, by clearing the idle
time between the jobs we always obtain a better solution.

Next, we show that themaintenance is scheduled between
the two consecutive jobs without idle time.

Assume that there exists idle time between the job 𝐽
𝑖
and

the maintenance, as shown in Figure 2, where 𝐽
𝑖
is scheduled

before the maintenance and 𝑠 denotes the starting time of the
maintenance. Clearly, we have 𝐶

𝑖
< 𝑠. If 𝑑 < 𝐶

𝑖
, we move

the maintenance by (𝑠 − 𝐶
𝑖
) units of time to the left without

increasing the objective value. If 𝑑 > 𝑠, we may move job 𝐽
𝑖

by (𝑠 − 𝐶
𝑖
) units of time to the right without increasing the

objective value. If 𝐶
𝑖
≤ 𝑑 ≤ 𝑠, we may move job 𝐽

𝑖
to the right

and themaintenance to the left such that job 𝐽
𝑖
finishes at time

𝑑 and the maintenance starts at time 𝑑without increasing the
objective value.

Assume that there exists idle time between the mainte-
nance and the job 𝐽

𝑗
, also shown in Figure 3, where 𝐽

𝑗
is

scheduled after the maintenance and 𝑡 denotes the finishing
time of the maintenance.
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Clearly, we know 𝑡 < 𝑆
𝑗
. If 𝑑 < 𝑡, wemove job 𝐽

𝑗
by (𝑆
𝑗
−𝑡)

units of time to the left without increasing the objective value.
If 𝑑 > 𝑆

𝑗
, we may delay the starting time of maintenance such

that themaintenance finishes at time 𝑆
𝑗
. If 𝑡 ≤ 𝑑 ≤ 𝑆

𝑗
, wemay

delay the starting time of maintenance andmove job 𝐽
𝑗
to the

left such that the maintenance finishes at time 𝑑 and job 𝐽
𝑗

starts at time 𝑑.
By the above analysis, we can treat all the jobs and the

maintenance as a consecutive whole without idle time.
Finally, we show that the schedule starts at time zero.

Assume that there exists a solution which does not start at
time zero. Then we move the whole to the left by some times
to assure that the new schedule starts at time zero and reset
a smaller common due-date than the original due-date to
obtain a new solution, which does not increase the objective
value.

With the above argument, we conclude Lemma 1 holds.

Lemma 2. The optimal common due-date is the completion
time of the job in position𝑚, where𝑚 = ⌈(𝑛𝛽 − 𝛾)/(𝛼 + 𝛽)⌉.

Proof. First we show that in an optimal solution the common
due-date 𝑑 is the completion time of some job.We distinguish
two cases.

Case 1. Consider a solution with 𝐶
𝑖
< 𝑑 < 𝐶

𝑖+1
, where 𝑖

denotes the job scheduled in the 𝑖th location. Let 𝑍 be the
corresponding objective value. Define 𝑥 = 𝑑 − 𝐶

𝑖
and 𝑦 =

𝐶
𝑖+1

− 𝑑. Let 𝑍
1
and 𝑍

2
be the objective value for 𝑑 = 𝐶

𝑖
and

𝑑 = 𝐶
𝑖+1

. Then

𝑍
1
= 𝑍 + 𝛽 (𝑛 − 𝑖) 𝑥 − 𝛼𝑥𝑖 − 𝛾𝑥

= 𝑍 + 𝑥 (𝛽 (𝑛 − 𝑖) − 𝛼𝑖 − 𝛾) ,

𝑍
2
= 𝑍 − 𝛽 (𝑛 − 𝑖) 𝑦 + 𝛼𝑖𝑦 + 𝛾𝑦

= 𝑍 − 𝑦 (𝛽 (𝑛 − 𝑖) − 𝛼𝑖 − 𝛾) .

(1)

Thus, we have 𝑍
1
≤ 𝑍 if 𝛽(𝑛 − 𝑖) − 𝛼𝑖 − 𝛾 ≤ 0 and 𝑍

2
≤

𝑍 otherwise. This implies that an optimal solution exists in
which 𝑑 is equal to the completion time of some job.

Case 2. Consider a solution with 𝑠 ≤ 𝑑 ≤ 𝑠 + 𝑓(𝑠), where 𝑠
denotes the starting time ofmaintenance and𝑓(𝑠)denotes the
duration of maintenance. Similar to Case 1, using the small
perturbations technique we can show that the objective value
can reduce by resetting 𝑑 = 𝑠 or 𝑑 = 𝑠 + 𝑓(𝑠). Since the case
𝑑 = 𝑠 is shown in Case 1, thus we only need to consider the
case 𝑑 = 𝑠 + 𝑓(𝑠). Let 𝑍 be the corresponding objective value
with 𝑑 = 𝑠 + 𝑓(𝑠) and 𝑍

1
and 𝑍

2
the corresponding objective

values for 𝑑 = 𝐶
𝑖
and 𝑑 = 𝐶

𝑖+1
, where the maintenance is

scheduled between the job 𝐽
𝑖
and the job 𝐽

𝑖+1
; that is, 𝑠 = 𝐶

𝑖

and 𝑠 + 𝑓(𝑠) = 𝐶
𝑖+1

− 𝑝
𝑖+1

, as shown in Figure 4.
Then

𝑍
1
= 𝑍 + 𝑓 (𝑠) (𝛽 (𝑛 − 𝑖) − 𝛼𝑖 − 𝛾) ,

𝑍
2
= 𝑍 − 𝑝

𝑖+1
(𝛽 (𝑛 − 𝑖) − 𝛼𝑖 − 𝛾) .

(2)

Ji Ji+1

Ci+1s s + f(s)

VM

Figure 4: The case 𝑠 ≤ 𝑑 ≤ 𝑠 + 𝑓(𝑠).
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Figure 5: The maintenance starts at time 𝑠 (>0).
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Figure 6: The maintenance starts at time 0.

Thus, we have 𝑍
1
≤ 𝑍 if 𝛽(𝑛 − 𝑖) − 𝛼𝑖 − 𝛾 ≤ 0 and 𝑍

2
≤ 𝑍

otherwise.
With the above discussion, we conclude that in an optimal

solution the optimal common due-date 𝑑 is the completion
time of some job.

Now, we assume that the common due-date 𝑑 is the
completion time of job in the 𝑚th location; that is, 𝑑 = 𝐶

𝑚
.

To prove that 𝑚 = ⌈(𝛽𝑛 − 𝛾)/(𝛼 + 𝛽)⌉, let 𝑍 be the objective
value of optimal solution. Applying𝑍

1
and𝑍

2
to the situation

that 𝑥 = 𝑑−𝐶
𝑚−1

and 𝑦 = 𝐶
𝑚+1

−𝑑, respectively, we conclude
that

𝛽 (𝑛 − 𝑚 + 1) − 𝛼 (𝑚 − 1) − 𝛾 ≥ 0,

𝛽 (𝑛 − 𝑚) − 𝛼𝑚 − 𝛾 ≤ 0.

(3)

Thus, we have𝑚 = ⌈(𝑛𝛽 − 𝛾)/(𝛼 + 𝛽)⌉.

Lemma 3. In an optimal solution, the maintenance is sched-
uled either at time 0, or after the common due-date.

Proof. Suppose that there exists a solution in which themain-
tenance starts at time 𝑠, where 𝑠 > 0 and is scheduled before
the common due-date 𝑑. Then the maintenance occupies the
time interval [𝑠, 𝑠 + 𝑓(𝑠)] with 𝑠 ≤ 𝑠

𝑔
and 𝑠 + 𝑓(𝑠) ≤ 𝑑.

Furthermore, we assume that the job 𝐽
𝑖
is just prior to the

maintenance and the completion time of job 𝐽
𝑚
is equal to

the due-date, as shown in Figure 5.
Now we construct a new solution as follows. Starting

the maintenance at time zero and scheduling all the jobs
according to their original order just after the maintenance.
Setting the common due-date to the new completion time of
job 𝐽
𝑚
. As shown in Figure 6, then we have the following.

(i) The duration of the maintenance decreases as it starts
earlier.

(ii) The earliness of jobs 𝐽
𝑖
and its predecessors are

reduced.
(iii) The common due-date 𝑑 is reduced.

The above (i), (ii), and (iii) imply that the total earliness cost of
job 𝐽
𝑖
and its predecessors and the due-date cost are reduced,

and the earliness and tardiness cost of other jobs remain
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unchanged. Thus, we conclude that the maintenance should
be scheduled either at time 0, or after the due-date.

4. A Special Case 1,

VM|𝑝
𝑗
= 𝑝|∑

𝑗
(𝛼𝐸
𝑗
+ 𝛽𝑇
𝑗
) + 𝛾𝑑

In this section we consider a special case for our problem.
We assume all the jobs are identical; that is, 𝑝

𝑗
= 𝑝. Next,

we propose a polynomial time algorithm for this special case
based on the previous properties on an optimal solution.

Recall that the due-date is the completion time of job in
the 𝑚th location, where 𝑚 = ⌈(𝛽𝑛 − 𝛾)/(𝛼 + 𝛽)⌉. Because
the jobs are identical jobs, by Lemma 3 we claim that the
maintenance must be started at time 0 if 𝑑 = 𝑚𝑝 > 𝑠

𝑔
and

the maintenance is started after the due-date otherwise.Then
there are at most 𝑛−𝑚+1 choices for the starting time of the
maintenance.

With the above analysis, we propose our algorithm as
follows.

Algorithm H.

Step 1. If 𝑑 = 𝑚𝑝 > 𝑠
𝑔
, where 𝑚 = ⌈(𝛽𝑛 − 𝛾)/(𝛼 + 𝛽)⌉,

construct schedule 𝜋 = (VM, 𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
). Output it as our

solution by setting the due-date as the completion time of job
𝐽
𝑚
and stop. Otherwise go to Step 2.

Step 2. Compute 𝑘 such that 𝑝𝑘 ≤ 𝑠
𝑔
≤ 𝑝(𝑘 + 1). Construct a

series of schedules 𝜋0 = (VM, 𝐽
1
, 𝐽
2
, . . . , 𝐽

𝑛
), 𝜋𝑖 = (𝐽

1
, 𝐽
2
, . . . ,

𝐽
𝑖
,VM, 𝐽

𝑖+1
, . . . , 𝐽

𝑛
), 𝑖 = 𝑚,𝑚 + 1, . . . , 𝑘.

Step 3. Output the schedule with the minimal objective value
from all the constructed schedules 𝜋0, 𝜋𝑖, 𝑖 = 𝑚,𝑚 + 1, . . . , 𝑘,
and denote it as 𝜋, where 𝑍(𝜋) = Min

𝑖=0,𝑚,𝑚+1,...,𝑘
𝑍(𝜋
𝑖
).

From the properties on an optimal solution as shown in
Lemmas 1, 2, and 3, we conclude that Algorithm H is correct
since all the possible cases are tried and we select the best
one. For a given schedule, the computation of objective value
requires 𝑂(𝑛) time. There are at most 𝑛 + 1 schedules to be
considered; thus the total running time is 𝑂(𝑛2). Finally we
obtain the following.

Theorem 4. The 1, 𝑉𝑀|𝑝
𝑗
= 𝑝|∑

𝑗
(𝛼𝐸
𝑗
+ 𝛽𝑇
𝑗
) + 𝛾𝑑 problem

can be solved in 𝑂(𝑛
2
) time.

A Numerical Example. To illustrate Algorithm H, a solution
of an instance of 10 jobs is demonstrated in the following.

The job processing times are identical with 𝑝
𝑗
= 3, 𝑗 =

1, 2, . . . , 10.The deadline of maintenance 𝑠
𝑔
is equal to 25 and

the duration ofmaintenance 𝑙 is equal to 2+𝑠/3, where 𝑠 (≤𝑠
𝑔
),

as a decision variable, is the starting time ofmaintenance.The
penalty parameters are as follows: 𝛼 = 2, 𝛽 = 3, and 𝛾 = 4.

Applying Algorithm H, we first compute the parameters
as follows:𝑚 = ⌈(𝛽𝑛−𝛾)/(𝛼+𝛽)⌉ = ⌈(3 × 10−4)/(2+3)⌉ = 6,
𝑑 = 𝑚𝑝 = 6 × 3 = 18, and 𝑘 = 8with 3×𝑘 ≤ 𝑠

𝑔
≤ 3×(𝑘+1).

Because 16 < 25, that is, 𝑑 < 𝑠
𝑔
, we construct a series of

schedules as follows:

𝜋
0
= (VM, 𝐽

1
, 𝐽
2
, . . . , 𝐽

10
) ,

𝜋
6
= (𝐽
1
, 𝐽
2
, . . . , 𝐽

6
,VM, 𝐽

7
, 𝐽
8
, . . . , 𝐽

10
) ,

𝜋
7
= (𝐽
1
, 𝐽
2
, . . . , 𝐽

6
, 𝐽
7
,VM, 𝐽

8
, . . . , 𝐽

10
) ,

𝜋
8
= (𝐽
1
, 𝐽
2
, . . . , 𝐽

6
, 𝐽
7
, 𝐽
8
,VM, 𝐽

9
, 𝐽
10
) .

(4)

Their corresponding objective values are 𝑍(𝜋
0
) = 260,

𝑍(𝜋
6
) = 348, 𝑍(𝜋7) = 324, and 𝑍(𝜋8) = 300.

When comparing the costs in 𝜋
0, 𝜋6, 𝜋7, and 𝜋

8, we
conclude that the global optimum is obtained in 𝜋

0, the
maintenance starts at time zero, the common due-date 𝑑 is
equal to 20, six jobs are early, and four jobs are tardy.The total
cost is 𝑍(𝜋0) = 260.

5. Concluding Remarks

In this paper we consider the common due-date assignment
scheduling problem with a variable maintenance on a single
machine.The goal is tominimize the total earliness, tardiness,
and due-date cost. We derive some properties on an optimal
solution for our problem. For a special casewith identical jobs
we propose an optimal polynomial time algorithm running in
𝑂(𝑛
2
) time.
For the general case with nonuniform processing times of

jobs, whether problem is NP-hard or not is open and deserves
the further research.
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