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We utilize the realized jump components to explore a new jump (including nonsystematic jump and systematic jump) risk factor
model. After estimating daily realized jumps from high-frequency transaction data of the Chinese A-share stocks, we calculate
monthly jump size, monthly jump standard deviation, and monthly jump arrival rate and then use those monthly jump factors to
explain the return of the following month. Our empirical results show that the jump tail risk can explain the equity return. For the
large capital-size stocks, large cap stock portfolios, and index, one-month lagged jump risk factor significantly explains the asset
return variation. Our results remain the same even when we add the size and value factors in the robustness tests.

1. Introduction

Jump is a source which attributes to the fat tail of a return
distribution. If a market is incomplete and thus investors
cannot form amarket portfolio to diversify the nonsystematic
risk away, firm-specific and industry-level risk may have the
influence over return premiumand affect asset prices,making
the classical capital asset pricing model (CAPM) unable to
explain the returns as perfectly as the theory says. Inspired by
this idea, this paper considers the jump, the tail risk, and a
good supplemental factor to explain the asset returns.

After CAPM model was proposed, how well this model
performs has been always challenged. Fama and French [1, 2]
demonstrate that the CAPMmodel is unable to explain cross-
sectional stock returns well and find that value premium
(HML) and size (SMB) factors outperform themarketmodel.
As a result, they proposed the well-known Fama-French
three-factor model which subsequently was extended to
the models with liquidity and momentum factors. Further,
Harvey and Siddique [3] and Wen and Yang [4] argue
that conditional coskewness, which could capture similar
information contained in the size and book-to-market ratio,
complements market beta to explain the return. Merton [5]
also supplements a theoretical argument tomarket model. As
CAPMmodel does not price idiosyncratic risk (IV), he claims
that incomplete information, which hinders the investors

to diversify their portfolios, leads to the positive relation
between idiosyncratic risk and expected stock return.

According to the studies, the empirical results of cross-
sectional relation between the idiosyncratic volatility and
expected return are mixed. Ang et al. [6] show that
high idiosyncratic volatility in one lagged month predicts
abysmally low average returns in the next month. Similarly,
Guo and Robert [7] propose that, in addition to stock market
volatility, the aggregate idiosyncratic volatility (IV) could be
the source of risk that determines the equity return. In their
preposition, IV may be considered as a proxy for variance of
the risk factors of a multiple-factor or intertemporal capital
asset pricing model (ICAPM). Guo and Robert [8] further
used the average idiosyncratic volatility (AV-IV) as proxy for
investment opportunity cost on G7 countries and concluded
that IV contributes, as well as the book-to-market factor,
to explaining the cross-sectional stock returns. In addition
to empirical works, Campbell et al. [9] also provide a very
noticeable argument for the declining explanatory power
of traditional market model. In their paper, they find the
increase of firm-level volatility level and market volatility
level, making correlations between the stock returns lower
and diversification difficult. Therefore, seeking firm-specific
or aggregate level risk factors becomes amore important issue
for asset pricing.
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Recently, several studies have presented the empirical
evidence in favor of jump risk effects on financial asset
prices by using nonparametric method and high-frequency
database. Since the realized volatility (RV), the realized range
volatility (RRV), and realized jump volatility (RJV) were
proposed, those nonparametric measures have been applied
extensively, even for the researches in volatility parametric
models, for example, GARCH-RV and the heterogeneous
autoregressive with realized volatility (HAR-RV) model.
Those nonparametric measures not only can be used to
depict the volatility dynamic nature, such as clustering,
long memory, asymmetric leverage effect, and the price-
volume relation in financial market microstructure theory
[10–18], but also can be considered as the risk indications.
Therefore, investigating those risks’ influences on asset pric-
ing is of great interest. Adrian and Rosenberg [19] explore
a new three-factor pricing model, including the long-run
volatility component, the short-run volatility component,
and the market return, and they conclude that their model
outperforms the Fama-French model through reducing the
pricing biased errors. Apparently, volatility can be a risk factor
which accounts the return premium. Following Adrian and
Rosenberg [19], Kelly and Jiang [20] develop a tail risk factor
model. Both models are based on the structural model by
theoretical derivationwith explicit economicalmeanings. For
tail risk model by Kelly, the bivariate calibration of tail risk
factors withmacrovariables can be based on the long-run risk
model proposed byBansal andYaron [21] and the disaster risk
model proposed by Rietz [22] and Barro [23].

Though there are a large number of researches seeking
different risk factors for the returns, all of them focus on the
returns of index, bond market, and credit spread. Moreover,
most of those works are using high-frequency data in the
United States. Inspired by those works, we propose a jump-
based model to examine the relations between the realized
jump components and equity returns at China market. We
will begin with an illustration of the nonparametric jump
estimation method. After daily realized jump volatility is
estimated from 5-minute high-frequency trading data, we
then calculate monthly jump size, jump standard deviation,
and jump arrival intensity. Finally, these jump components
are used to investigate their predicting and explaining power
over one-month-ahead equity return.

The remaining parts of this paper are organized as follows.
Section 2 introduces the identification method for the high-
frequency realized jump and presents the jump risk factor
model, and Section 3 describes our sample data and its
descriptive statistics. Empirical results are demonstrated in
Section 4, and Section 5 is robustness tests analysis. Finally,
the conclusion is in Section 6.

2. Preliminaries and Theories

2.1. Realized Jump Risk. While jumps are known to be
very crucial in the asset pricing [32], estimation of jump
components by parametricmodel has been questioned for the
stability over different sample time periods. With the avail-
ability of high-frequency data, nonparametric estimation

method has been developed rapidly. Andersen and Bollerslev
[33], Barndorff-Nielsen and Shephard [34, 35], and Meddahi
[36] have presented the use of the so-called realized variance
measures by utilizing the information in the intraday data for
measuring and forecasting volatilities. Barndorff-Nielsen and
Shephard [37, 38] developed a series of the seminal work on
bipower variation measure, which is then used to divide the
RV into continuous diffusion volatility and jump volatility
(see Andersen et al. [39] and Huang and Tauchen [40]).
Under the reasonable presumption that jumps on financial
markets are usually rare and large, we follow Huang and
Tauchen [40] to assume that there is at most one jump per
day and that the jump size dominates the daily return when a
jump occurs. These assumptions allow us to extract the daily
realized jumps and further to explicitly calculate the monthly
jump intensity, size, and standard deviation. Tauchen and
Zhou [29] have demonstrated that jump parameters can be
precisely estimated and that the statistic inference is reliable.

Compared to parametric models, in which jump is
estimated by the maximum likelihood, MCMC or GMM
methods, nonparametric estimation has merit of convenient
estimation without assuming specifying underlying drift,
diffusion, and jump functions. The assumption of one jump
per day fits to the compound Poisson jump process ([41]
also utilizes the Poisson jump process to describe rare and
large return jumps which are presumably the responses to the
arrivals of important news), and it should be pointed out that
bipower variation also works for the infinite activity jumps
despite the fact that we focus only on the case of rare and large
jumps. The following presents the details of jump estimation
and detection.

Let 𝑝
𝑡
= log(𝑃

𝑡
) denote the time 𝑡 logarithmic price of

the asset, and assume that it evolves in continuous time as a
jump-diffusion process:
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where 𝑀 is the total number of trades during time 𝑡 and
𝑡 + 1 and 𝑗 is the indication for each trade. In the realistic
financial markets, the price volatility of financial asset is
not continuous but contains jumps due to the influence
aroused by information shock on market. Barndorff-Nielsen
and Shephard [37, 38] proposed two general measures for
the quadratic variation process-realized variance and realized
bipower variation; this is presented in the following:
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where √𝜋/2 = Ε(Π
𝑡
), Π
𝑡
is a standardized normal distribu-

tion random variable, and 𝑀/(𝑀 − 1) is the amendment to
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sample size. According to Barndorff-Nielsen and Shephard,
the difference between RV

𝑡
and BV

𝑡
is just the consistent

estimator of the discrete jump variation when𝑀 → ∞; that
is,

RV
𝑡
− BV
𝑡

𝑀→∞

󳨀󳨀󳨀󳨀󳨀󳨀→ RJV
𝑡
. (4)

A variety of jump detection techniques are proposed and
studied by Barndorff-Nielsen and Shephard [37], Huang and
Tauchen [40], and Andersen et al. [14]. In fact, in the process
of calculating the discrete jump variation, the existence of
different intraday sampling frequency may lead to some kind
of calculation errors. Here, we adopt the ratio statistic favored
by their findings:
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(6)

The test statistic has an asymptotical normal distribution.
Under the significance level, 1 − 𝛼, we can get the estimate
of the discrete jump variation:
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whereΦ is the cumulative distribution function of a standard
normal and 𝐼(𝑍
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−1
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) is the resulting indicator function

on whether there is a jump during the day; 𝐼(𝑍
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> Φ
−1
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)

equals 1 when a jump is detected at day 𝑡 and 0 otherwise.
In the process of actual operation, we need to choose an
appropriate𝛼, and Tauchen and Zhou [29] propose that when
jump contributions are 10% and 80%, the significance level
should be 0.99 and 0.999, respectively.

With the above test of𝑍
𝑡
statistic and the related bipower

variation theory, we can get the estimator of RJV
𝑡
and then

calculate the monthly jump size (Size RJVmonth), monthly
jump size mean (Mean RJVmonth), monthly jump arrival rate
(Arr RJVmonth), and monthly jump size standard deviation
(Std RJVmonth).The jump components are defined as follows:

Size RJVmonth = ∑ Size RJVday, (8)

Mean RJVmonth =
Size RJVmonth
𝑁 RJV days

, (9)

Arr RJVmonth =
𝑁 RJV days

days
, (10)

Std RJVmonth = [∑((Size RJVday −Mean RJVday)
2

)]
1/2

,

(11)

where𝑁 RJV days is the total number of days when realized
jump occurs and “days” denotes the trading days in a month.
We follow the previous studies of China stock market to set
the confidence level 𝛼 at 0.95 in this paper. Our results show
that, among 5 different capital-size portfolios, monthly jump
size for the largest-cap portfolio is 8%, and it is 9% for the
smallest-cap portfolio. The jump size mean is significantly
larger than 0 for all portfolios. Standard deviation is about
0.32∼0.36%, and jump arrival rate is about 19% for all
portfolios.

2.2. JumpComponents Risk FactorModel under the Incomplete
Market. There are a fewmethods formeasuring time-varying
tail risk. First, Kelly and Jiang [20] devise a panel approach
to estimate economy-wide conditional tail risk by using
common fluctuation of the stocks. The framework is based
on the long-run risk literature by Bansal and Yaron [21] and
time-varying rare disaster model by Gabaix [24] as well as by
Wachter [25]. Secondly, Bollerslev et al. [26] examine how
the variance risk premium (VRP) implied in index option
prices relates to the equity premium. As VRP is an ex-ante
measure that represents investors’ expectation for future risk,
the realized jump is ex-post measure for tail risk.

Owing to the trading constraints, including short-
selling constraint, liquidity issue, and budget constraint, the
investors are not able to formmarket portfolio effectively and
cannot diversify the nonsystematic risk away. As a result, the
risk of the individual stock may need to be priced, and the
risk information could be contained in the historical return
characteristics (e.g., skewness and kurtosis.). This paper
considers the jump the resource of stock risk and should affect
the asset prices. We thus do an extensive investigation on the
relation between jump risk and equity returns. Our empirical
works cover the index returns, return of portfolios, and stock
returns.

Guo and Robert [8] argue that it is the omitted variables
problem that results in the failure of the CAPM, and they
derive the equation about the effect of the idiosyncratic
volatility on risk premium. Their argument is analogous to
our reasoning on the tail risk of individual stock and can be
expressed in following expression:
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It says that the expected return on any asset is a function of
conditional variances of stock market returns, 𝑟

𝑀,𝑡+1
, and the

risk factor, 𝑟
𝐻,𝑡+1

, is omitted in the CAPM.
Under some moderate conditions, average idiosyncratic

volatility (IV
𝑡
) is the proxy for volatility of 𝑟
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, and MV

𝑡
is
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the proxy of aggregatemarket volatility at time 𝑡+1; therefore,
we can write

𝑟
𝑖,𝑡+1

= 𝛼
𝑖,𝑡
+ 𝛾
𝑀
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. (13)

For simplicity, we assume constant betas in (13), as Bollerslev
et al. [27] do. Suppose that the intercept is zero; in (13), the
loading on stock market volatility is equal to the market beta
scaled by the price of market risk, 𝛾

𝑀
. Similarly, the loading

on idiosyncratic volatility is equal to the beta on the omitted
risk factor scaled by its risk price, 𝛾

𝐻
. Therefore, we can use

(13) to explain the cross-sectional stock returns, even though
we donot observe the risk factor, 𝑟

𝐻,𝑡+1
.Thismethod provides

a direct link between time series and cross-sectional stock
return predictability. If the value premium is an omitted risk
factor, as argued by Fama and French [28], we can expect
that its volatility should have predictive power for the stock
returns similar to that of average idiosyncratic volatility.

Jump volatility risk shares similar characteristics regard-
ing what generates IV. For example, Bollerslev et al. [27]
provide a new framework for estimating the systematic and
idiosyncratic jump tail risks in financial asset pricing. In their
paper, the opinion dispersion is subsequently related to the
jump, and it should be pointed out that their concept is
also relevant to incomplete market hypothesis.Therefore, the
theoretical argument over idiosyncratic volatility and jump
volatility risk on equity returns is based on incompletemarket
foundation.

For an individual stock, the jump could result from
nonsystematic information as well as systematic information.
According to the theory, the index jump carries the systematic
information, which also leads to the jump of individual
stocks.Therefore, when investigating the nonsystematic jump
effect on the returns, we also do both regressions with
market jumps as well as without market jumps separately.
In Section 4, we examine the nonsystematic and systematic
jump effects on the returns of index, portfolios, and stocks.
Our regression models for the stock return and portfolio are
the following:

𝑟
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As for index return, the estimation model is given as follows:

𝑟
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(16)

For each individual stock, Size RJV, Std RJV, and Arr RJV
denote monthly jump size, jump standard deviation, and
jump arrival rate, respectively. 𝑃Size RJV, 𝑃Std RJV, and
𝑃Arr RJV represent monthly market index jump size, index

jump standard deviation, and index jump arrival rate.𝑚 is the
indication ofmonth. 𝑖 and𝑝 are notations for individual stock
(portfolio) and index (market portfolio). In the robustness
tests, we run the regression models incorporating Fama-
French factors and regression models with nonlinear jump
components. Those models are given as follows:
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When (17) expands (14) to include the nonlinear jumpmulti-
ple terms, Size RJV

𝑚
∗Arr RJV

𝑚
, Std RJV

𝑚
∗Arr RJV

𝑚
, into

repressors, (18) extends (17), so we can test nonlinearity effect
of jump components under the control of the index jump
components. Finally, (19) is used to investigate the nonlinear
jump effect on return with control of Fama-French factors.

3. Estimation of Jump Components

3.1. Data and Summary Statistics. Intraday high-frequency
trading contains noises. On the one hand, low sampling
frequency may fail to depict the actual volatility information
on that day. On the other hand, high sampling frequency
may lead to the problem of micronoise which may affect
the results. As suggested by the former literature, we use
five-minute high-frequency data for return calculation. To
minimize the noise, we then divide 200 randomly selected
stocks into 5 portfolios based on the stock market value
and then use the equally weighted return for realized jump
estimation.The data comes from the CSMARhigh-frequency
database, and sampling period begins from January 4, 2007,
and ends on October 31, 2013. There are 82 months and
49 transactions per day (including one overnight trading
data and 48 intraday trading data). The individual stocks’
monthly returns and the index returns are directly from the
CSMAR financial database. We calculate all monthly jump
components from high-frequency transaction and run the
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Figure 1: Time series characteristic of index jump components.

Table 1: Descriptive statistics for index jump components.

Index 000002 Size Mean Arr Std
Mean 0.0864 0.0124 0.2608 0.0019
Median 0.0437 0.0096 0.2247 0.0013
Maximum 0.9120 0.0570 0.8947 0.0118
Minimum 0.0000 0.0000 0.0000 0.0000
Std. dev. 0.1361 0.0096 0.1990 0.0021
Skewness 3.6540 2.1444 1.2761 2.2811
Kurtosis 19.4318 9.0465 4.5444 9.2647
Jarque-Bera 1104.99 187.76 30.40 205.21
Probability 0.0000 0.0000 0.0000 0.0000

regression on monthly return over monthly jump compo-
nents.

For market-level (systematic) realized jump estimation,
our sample data is high-frequency return of Shanghai com-
posite index. Table 1 demonstrates descriptive statistics of
index jump components, and Figure 1 shows the time series
of index jump components.

In comparison with the study of Tauchen and Zhou
[29] on S&P, the A-share index jump size mean is 1.24%,
while it is 6.5% for S&P index. The jump arrival rates are
26.08% for Shanghai index and 13.3% for S&P index; standard
deviations are 0.19% for Shanghai index and 0.525% for
S&P index. The difference is mainly due to the different
significant level selected for jump filtration. Our paper sets

𝛼 equal 0.95, allowing smaller jumps and increasing the
jump arrival rate. Therefore, we have a larger sample size of
realized jumps, and larger sample size leads to lower jump size
variance. Additionally, as self-evident in Figure 1, the jump
components are apparently time varying.

Table 2 shows the jump statistics of the largest-cap and
second largest-cap portfolios, each of which contains 40
stocks. And Figure 2 demonstrates time series of jump com-
ponents for size 1 portfolio.

Compared with jump components of index return, the
magnitude ofmonthly jump sizemean is larger for portfolios,
and the arrival rate tends to be lower. The way we sort the
portfolios by the size of capitalization is inspired not only
by traditional cross-sectional return researches but also by
Bollerslev et al. works in [27, 30], in which they show that
their model works better for large cap stocks or for stocks
traded actively (descriptive statistics for other portfolios are
listed in the appendix). While the statistics of portfolio with
smaller size stocks are shown in the appendix, we find very
interesting pattern over jump components of 5 portfolios. As
seen in Table 3 and Figure 3, monthly jump size, jump mean,
jump intensity, and jump size variance tend to be lower for
larger capitalization stocks.Therefore, jump componentsmay
capture the similar information of the size factor.

3.2. Jump Components of the Index and of the Individual Stock.
In Figure 4, we compare jump components of individual
stock, the largest-cap portfolio, and index over our sample
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Table 2: Descriptive statistics of jump components for size 1 and size 2 portfolios.

SZ1 Size Mean Arr Std SZ2 Size Mean Arr Std
Mean 0.0803 0.0199 0.1899 0.0032 Mean 0.0887 0.0225 0.1895 0.0035
Median 0.0617 0.0187 0.1713 0.0023 Median 0.0656 0.0202 0.1707 0.0029
Maximum 0.2813 0.0442 0.4134 0.0106 Maximum 0.3011 0.0488 0.4264 0.0097
Minimum 0.0304 0.0108 0.0870 0.0013 Minimum 0.0429 0.0119 0.1065 0.0014
Std. dev. 0.0553 0.0077 0.0786 0.0019 Std. Dev. 0.0596 0.0082 0.0744 0.0018
Skewness 2.0477 1.2664 1.7262 1.5554 Skewness 2.0234 1.1964 1.9767 1.3557
Kurtosis 6.2403 4.3168 5.3520 5.3717 Kurtosis 6.0927 4.1452 6.1131 4.5256
Jarque-Bera 93.181 27.843 59.623 52.283 Jarque-Bera 88.634 24.043 86.513 33.071
Probability 0.0000 0.0000 0.0000 0.0000 Probability 0.0000 0.0000 0.0000 0.0000

Table 3: Descriptive statistics of jump components for portfolios.

Portfolio mean Size Mean Arr Std
SZ1 0.0803 0.0199 0.1899 0.0032
SZ2 0.0887 0.0225 0.1895 0.0035
SZ3 0.0918 0.0230 0.1918 0.0035
SZ4 0.0939 0.0229 0.1982 0.0036
SZ5 0.0933 0.0230 0.1947 0.0037
Observations 82 82 82 82
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Figure 4: Jump size mean for a stock, a size 1 portfolio, and an A-
share index.

period. The stock is one randomly picked stock in size 1
portfolio, and we can find the jump comovements between
the stock, portfolio, and index. In this quick glance, the
monthly jump size mean is the largest for the individual
stock and the lowest for the index.The figure strongly implies
that index jump components could also be a proxy for the
systematic risk.

4. Forecasting One-Month-Ahead
Equity Returns

Realize that jump components have been applied for pre-
dicting and explaining the return of market in the USA
and China. However, for the return of stock and portfolio,
no empirical work has been done by using the realized
jump measure. The existing researches for stock market in
China mainly have been focusing on either macroeconomic

Table 4: Forecasting one-month-ahead index returns using realized
jump risk factor model.

Variables 𝐶 𝑃Size 𝑃Arr 𝑃Std Adj.𝑅2

Coefficients 0.027 0.278∗∗ −0.055 −18.695∗∗∗ 0.080
Note: The numbers in the table are coefficients, and “∗”, “∗∗”, “∗∗∗”
represents 10%, 5% and 1% significance level, same for the following tables.

Table 5: Forecasting one-month-ahead individual stock returns
using realized jump volatility-based factor model.

Stock 𝐶 Size RJV Arr RJV Std RJV Adj.𝑅2

600362 0.115∗∗∗ 0.977∗ −0.760∗∗ −9.494 0.047
600100 0.044 0.533 −0.357 −3.494∗ 0.010
600859 0.037 0.602∗ −0.206 −14.241∗∗ 0.039

variables or Fama-French multifactor models. Our paper
thus makes the contribution of applying jump components
to study the equity return and exploring their power to
predict the return. By aggregating the daily realized jump
into monthly jump size, we then use the monthly realized
jump components as risk factors to explain one-month-
ahead equity return. Meanwhile, we also consider index
jump components systematic risks and add them as control
variables in our tests.

4.1. Forecasting One-Month-Ahead Index Return. For the
market-level realized jump, our sample is the return of
Shanghai composite A-share index (000002). Because the
calculations of monthly jump size and monthly jump size
mean are highly related, we use monthly jump size as one
of the explanatory variables. Table 4 shows the results of
regression. In linear model, the monthly jump size (𝑃size)
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Table 6: Forecasting one-month-ahead individual stock portfolio returns using realized jump volatility-based factormodel withmarket-level
jump components.

Stock 𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Std 𝑃Arr Adj.𝑅2

600362 −0.04 6.024∗∗ −0.02 −12.957∗∗ 5.045 −0.042 −33.608∗∗ 0.113
600100 0.072∗∗ 0.654∗ −0.39 −3.818∗ 0.305 −0.108 −15.798 0.015
600859 0.057∗ 0.890∗∗ −0.251 −15.176∗∗∗ 0.135 −0.014 −22.315∗∗∗ 0.104

Table 7: Forecasting one-month-ahead individual-based portfolio returns using realized jump volatility-based factor model.

Size 𝐶 Size RJV Std RJV Arr RJV Adj.𝑅2

1 0.073∗∗ 0.725 −13.634∗ −0.379 0.011
2 0.120∗∗ 1.390∗∗ −20.060 −0.823∗∗ 0.024
3 0.107∗∗ 1.132∗ −26.017∗ −0.539 0.016
4 0.099 1.117 −19.607 −0.588∗ —
5 0.079 0.848 −11.404 −0.517 —

and monthly jump standard deviation (𝑃std) are significant,
while the coefficients are positive for the jump size and
negative for jump standard deviation. It is quite intuitive that
the larger jump size implies higher tail risk such that investors
require higher return. However, the negative sign for jump
standard deviation is not easy to comprehend.

While Guo and Robert [7, 8] also find that the average
idiosyncratic volatility has negative coefficients on future
index return, they claim that the average idiosyncratic
volatility may capture the information of opportunity cost.
When higher opportunity lowers the return, the increase
of idiosyncratic volatility decreases the returns. We thus
conjecture that the jump standard deviation may also catch
the information of opportunity cost.

4.2. Forecasting One-Month-Ahead Stock Return. Following
Bollerslev et al. [27, 30], using top 40 large cap stocks or stocks
traded actively for empirical analysis, we also pick up large
cap stocks among our randomly selected stocks for predicting
power tests. For each stock, we first regress the individual
stock’s return on its realized jump components and then add
market components into explanatory variables for advanced
investigation. Tables 5 and 6 demonstrate the results of two
regressions for 3 large cap stocks. The results of more stocks
listed in our largest-cap portfolio are shown in the appendix.
According to the results for stock, we find that jump size is
commonly a tail risk factor in explaining the future return,
and at least one jump component is a significant factor in
regression.

Moreover, the coefficient signs for jump size and jump
standard deviation are consistent with the results of index
return. From the general equilibrium perspective, if the tail
risk cannot be diversified away, higher jump size implies
higher tail risk and requires higher return for compensation.
As for negative relation between return and jump standard
deviation, we think that the jump standard deviation is
highly negatively correlated with book-to-market ratio for
the success or failure of a project, leading to the jump, has
stronger impact on stocks with lower book-to-market ratio.
Hence, higher jump size deviation implies lower book-to-
market ratio. While Gou and Robert [7, 8] empirically show

the negative correlation between idiosyncratic volatility and
book-to-market ratio, we are collecting more accounting
information for another further work. Table 6 shows the
results with the control of market jump components. The
Adj.𝑅2 increases after we include index jump components
into the regression model.

4.3. Forecasting One-Month-Ahead Portfolio Return. For
portfolio return analysis, we apply the convention of cross-
section return research which divides the total sample into
5 portfolios based on the stock market capital size. Using
the portfolio return helps us to reduce the trading noise of
the individual stock. As a few researches apply realized jump
to study the index return, we supplement the first empirical
study of realized jump effect on the portfolio and the stock
return. Similar to our empirical work on stocks, we first
estimate portfolio return over the portfolio jump components
and show the results in Table 7. Then, we include the market
index jump components as the control variables and list the
results in Table 8.

According to Table 7, the jump components work better
to explain the future return for larger-cap portfolios, includ-
ing size 1 to size 3. For smaller size portfolios (size 4 and size
5), the jump components perform marginally in predicting
return. The Adj.𝑅2 is also very low for small cap portfolio.
Those results are consistent with the paper by Bollerslev et al.
[27, 30], in which they show that their model performs better
for large cap stocks. In addition, the signs of the coefficients
agree with results of index and stocks. Our conclusion does
not alter if we add market-level jump components into
the regression model; however, the explaining power of the
model increases greatly. With the control of market jump
components, all of jump components, including monthly
jump size (Size RJV), jump standard deviation (Std RJV),
and arrival rate (Arr RJV), become significant for size 2
portfolios. Finally, we find that jump arrival rate also has
significantly negative impact on return for large cap portfolio.
However, the role of jump arrival rate should not be overem-
phasized, because size has correlations with jump arrival rate
owing to jump detection statistics design. In this paper, we
set 𝛼 equal to 0.95, leading to jump size mean ranging from
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Table 8: Forecasting one-month-ahead individual-based portfolio returns using realized jump volatility-based factor model with market-
level jump components.

Size 𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Adj.𝑅2

1 0.083∗∗ 1.237∗ −0.581∗ −9.260 −0.170 0.033 0.033 0.047
2 0.139∗∗ 2.022∗∗ −1.092∗∗ −16.304∗∗ −0.171 0.042∗∗ 0.042∗∗ 0.108
3 0.099∗ 1.184 −0.597 −12.683 0.246 −0.036∗ −0.036∗ 0.040
4 0.088 1.649∗ −0.728 −7.980 −0.272 −0.009 −0.009 0.057
5 0.088 1.389 −0.620 −7.020 0.112 −0.086 −0.086 0.015

Table 9: Forecasting one-month-ahead individual returns using realized jump volatility-based factor model with FF factors.

𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std SMB HML Adj.𝑅2

600362 0.150∗∗∗ 1.280∗∗ −0.806∗∗ −11.864 0.484∗ −0.089 −35.944∗∗∗ −0.049 −0.671 0.103
600100 0.067∗ 0.643∗ −0.382 −3.764∗ 0.300 −0.110 −14.427 0.258 0.027 0.015
600859 0.047 0.882∗ −0.260 −15.119∗∗ 0.118 −0.011 −19.235∗∗ 0.597∗ 0.133 0.123

Table 10: Forecasting one-month-ahead individual returns using realized jump volatility-based factor model with cross-term.

𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Std ∗ Arr Size ∗ Arr Adj.𝑅2

600362 0.167∗∗∗ 1.842∗∗ −0.837∗∗ −40.387∗ 0.513∗ −0.112 −40.058∗∗ 129.012 −2.333 0.115
600100 0.087∗∗ −0.185 −0.31 3.484 0.256 −0.113 −8.573 −51.175 2.044 0.018
600859 0.047 0.761 −0.249 −2.221 0.138 −0.009 −22.127∗∗∗ −69.190 1.124 0.096

Table 11: Forecasting one-month-ahead index returns using realized jump volatility-based factor model with cross-term of its jump
components.

Index 𝐶 𝑃size 𝑃Arr 𝑃Std Std ∗ Arr Size ∗ Arr Adj.𝑅2

0.015 0.691 −0.042 −8.972 −56.573 −0.162 0.058
000002 𝐶 𝑃size 𝑃Arr 𝑃Std Adj.𝑅2

0.027 0.278∗∗ −0.055 −18.695∗∗∗ 0.080

1 to 3% and jump arrival rate ranging from 15 to 25%. If
the confidence level 𝛼 increases to 0.99, the stricter criteria
naturally discriminate against smaller jumps. As a result, out
data contains only larger jumps, leading to lower arrival rate.
This paper follows the previous study, using the ease criteria
to filter the jump. Compared with Tauchen and Zhou [29],
documenting 6% jump size mean, our jump size mean is 2%
and is more practical for nature of jump dynamics.

In summary of 4.1, 4.2, and 4.3, the monthly jump
size (Size RJV) is a significant risk factor which positively
influences one-month-ahead return, while the jump size
standard deviation (Std RJV) has negative impact on the
return. After including market jump components, we derive
the same conclusion andfind the increasedAdj.𝑅2. Overall, as
shown in the appendix, even for the individual stock, at least
one jump component is a significant factor for return with or
without the control of market jump components.

5. Robustness Tests

In this section, we proceed with the robustness tests from
two perspectives. First, because many empirical works use
Fama-French factor models to explain cross-sectional
returns, this paper thus compares jump risk factors together
with size and book-to-market ratio for stock return. Secondly,

we consider jump components’ nonlinear effect on return;
therefore, the multiples of jump risk factors are added to
regression models for advanced tests. If those multiple terms
are significant and greatly improve the predicting power,
then the effect of jump risk factors on return is probably
nonlinear.

Table 9 shows the jump risk factors regression with
control of size (SMB) and book-to-market ratio (HML)
for stocks. The jump size and standard deviation remain
significant, andAdj.𝑅2 does not increase. Additionally, Fama-
French factors are not significant. In other words, the one-
month-ahead return is influenced by the jump effect rather
than FF factors.

Table 10 demonstrates the results of regressions which
incorporate themultiples of jump risk factors.ThoughAdj.𝑅2
improves slightly, the multiple terms are not significant.

Table 11 shows the robustness results for index jump effect
on the returns. As seen, not only nonlinear terms, Std ∗ Arr
and Size ∗ Arr, are insignificant, but also Adj.𝑅2 drops.

Table 12 shows the robustness results for 5 portfolios.
After adding control variables of multiple terms, all jump
components became insignificant for size 1 portfolio. While
Adj.𝑅2 does not increase, the nonlinear terms are not signifi-
cant.
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Table 12: Forecasting one-month-ahead individual-based portfolio returns using realized jump volatility-based factormodel with cross-term
of its jump components.

Size 𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Std ∗ Arr Size ∗ Arr Adj.𝑅2

1 0.091 1.139 −0.612 −10.041 −0.146 0.028 −15.147 5.862 0.194 0.020
2 0.146 4.829∗ −1.439∗ −74.502 −0.734 0.156 −27.168∗∗ 295.313 −9.148 0.103
3 0.058 2.062 −0.491 −18.227 0.070 0.000 −23.763∗ 8.667 −2.071 0.017
4 0.111 3.156 −0.946 −45.107 −0.560 0.032 −23.857∗ 146.138 −4.150 0.040
5 0.099 2.762 −0.756 −40.191 −0.021 −0.054 −28.734∗∗ 145.713 −4.528 0.042
Size 1 to size 5 portfolios are arranged in the order of capitalization. Size 1 is the largest-cap portfolio, while size 5 is the smallest-cap portfolio. The numbers in
the table are coefficients, and “∗”, “∗∗”, and “∗∗∗” represent 10%, 5%, and 1% significance levels.

Table 13: Descriptive statistics of jump components for size 3 to size 5 portfolios.

SZ3 Size Mean Arr Std SZ4 Size Mean Arr Std SZ5 Size Mean Arr Std
Mean 0.0918 0.0230 0.1918 0.0035 Mean 0.0939 0.0229 0.1982 0.0036 Mean 0.0933 0.0230 0.1947 0.0037
Median 0.0690 0.0212 0.1756 0.0030 Median 0.0719 0.0200 0.1778 0.0030 Median 0.0712 0.0210 0.1727 0.0033
Maximum 0.3286 0.0508 0.4283 0.0090 Maximum 0.3002 0.0505 0.4330 0.0089 Maximum 0.2663 0.0499 0.4324 0.0095
Minimum 0.0326 0.0131 0.0855 0.0012 Minimum 0.0447 0.0140 0.1032 0.0018 Minimum 0.0386 0.0147 0.1085 0.0011
Std. dev. 0.0604 0.0081 0.0779 0.0016 Std. dev. 0.0568 0.0079 0.0759 0.0016 Std. dev. 0.0552 0.0077 0.0762 0.0016
Skewness 2.0464 1.3540 1.6768 1.3756 Skewness 1.9224 1.5546 1.7292 1.5800 Skewness 1.6370 1.5211 1.5507 1.4567
Kurtosis 6.6092 4.6886 5.3955 4.5527 Kurtosis 5.8266 5.1466 5.4538 5.1632 Kurtosis 4.8022 5.0022 4.7581 5.1850
Jarque-Bera 101.74 34.799 58.033 34.099 Jarque-Bera 77.807 48.773 61.438 50.105 Jarque-Bera 47.720 45.318 43.423 45.311
Probability 0.0000 0.0000 0.0000 0.0000 Probability 0.0000 0.0000 0.0000 0.0000 Probability 0.0000 0.0000 0.0000 0.0000

Observations 82 82 82 82

Table 14: Descriptive statistics for individual stock average jump
components.

600362 Size Mean Arr Std
Mean 0.106062 0.023454 0.216076 0.003758
Median 0.074818 0.023504 0.195238 0.002885
Maximum 0.528641 0.063170 0.733333 0.018655
Minimum 0.000000 0.000000 0.000000 0.000000
Std. dev. 0.090047 0.011790 0.135851 0.003497
Skewness 1.740065 0.680288 0.938441 1.552614
Kurtosis 7.637096 3.866075 4.460514 6.301100
Jarque-Bera 114.8477 8.887622 19.32393 70.17733
Probability 0.000000 0.011751 0.000064 0.000000

In short, after controlling size and value factors, we find
that the realized jump risk can explain and predict the equity
return. Therefore, jump is an important risk factor needed
to be considered for asset pricing and risk management. We
also find that nonlinearmodels do not work better than linear
models [31].

6. Conclusion

For risk-aversion investors, jump risk, which leads to return
distribution with fat tail, can greatly affect investors’ percep-
tion about how risky a company is or how it captures the risk
information. As long as nonsystematic risk of the individual
stock cannot be diversified away, the firm-level and industry-
level risk should be priced into the return. This paper applies

the realized jump, considers a measure of tail risk, and uses
high-frequency data to estimate jump components including
jump size mean, jump size standard deviation, and jump
intensity. We argue that trading constraints make investors
unable to diversify nonsystematic risk away; hence, the tail
risk should be priced, and jump should be able to explain the
asset return.

Our data contain high-frequency trades of 200 randomly
selected stocks which are the composite stocks for Shanghai
composite index. Our empirical works are divided into 3
parts, including index return, portfolio returns, and stock
returns. Under the control of Fama-French factors, our
results show that jump factors can explain one-month-ahead
return for index, high cap portfolio, and high cap stocks.
Moreover, we also try to use nonlinear combinations of jump
components to explain and predict the returns. However, no
evidence supports that the nonlinear models are better than
linear models.

In our research, the monthly jump size and jump size
standard deviation are generally significant factors for equity
return.The positive coefficient for jump size is quite intuitive
as it is directly linked to the tail risk. However, the negative
coefficient for jump size standard deviation is for the first
time documented in the literature. We claim that the jump
standard deviation is positively related to opportunity cost
which decreases the returns, as similar argument was made
for the idiosyncratic volatility. Obviously, further theoretical
models are needed after we find that jump components can
explain the return. We are also looking forward to the theory
model delivering the insights about how jump components
are prices and looking forward to seeing more empirical
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Table 15

𝐶 Size RJV Arr RJV Std RJV Adj.𝑅2

600066 0.039 −0.162 0.069 −4.371 0.051
𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Adj.𝑅2

600066 0.056∗ 0.145 −0.058 −5.543∗ 0.165 0.017 −17.954∗ 0.069
𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Std ∗ Arr Size ∗ Arr Adj.𝑅2

600066 0.028 0.601 −0.024 5.626 0.147 0.051 −19.204∗∗ −68.284 −0.303 0.062
𝐶 Mean RJV Arr RJV Std RJV Adj.𝑅2

600276 0.003 −1.517 0.138∗ 4.749∗ 0.045
𝐶 Mean RJV Arr RJV Std RJV 𝑃mean 𝑃Arr 𝑃Std Adj.𝑅2

600276 0.009 −1.856 0.122 4.901∗ 4.206∗ −0.117∗ −9.39 0.064
𝐶 Mean RJV Arr RJV Std RJV 𝑃mean 𝑃Arr 𝑃Std Std ∗ Arr Mean ∗ Arr Adj.𝑅2

600276 0.025 −1.484 0.03 −3.703 4.598∗∗ −0.121∗ −10.859 42.980∗∗ −2.751 0.148
𝐶 Size RJV Arr RJV Std RJV Adj.𝑅2

600377 0.115∗∗∗ 0.977∗ −0.760∗∗ −9.494 0.047
𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Adj.𝑅2

600377 −0.04 6.024∗∗ −0.02 −12.957∗∗ 5.045 −0.042 −33.608∗∗ 0.113
𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Std ∗ Arr Size ∗ Arr Adj.𝑅2

600377 0.055 −0.711 −0.268 22.229∗ 0.247∗ −0.043 −16.372∗∗ −141.272∗ 5.712∗ 0.115
𝐶 Mean RJV Arr RJV Std RJV Adj.𝑅2

600079 −0.015 5.303∗∗ −0.181 −11.173∗ 0.073
𝐶 Mean RJV Arr RJV Std RJV 𝑃mean 𝑃Arr 𝑃Std Adj.𝑅2

600079 −0.04 6.024∗∗ −0.02 −12.957∗∗ 5.045 −0.042 −33.608∗∗ 0.112
𝐶 Mean RJV Arr RJV Std RJV 𝑃mean 𝑃Arr 𝑃Std Std ∗ Arr Mean ∗ Arr Adj.𝑅2

600079 −0.116∗ 9.884∗∗ 0.504∗ −2.751 4.86 −0.063 −27.503∗ −34.662 −27.183 0.146
𝐶 Size RJV Arr RJV Std RJV Adj.𝑅2

601006 −0.004 0.177 0.110 −9.650∗ 0.052
𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Adj.𝑅2

601006 0.015 0.358 0.067 −7.748∗ 0.188 −0.071 −12.002 0.053
𝐶 Size RJV Arr RJV Std RJV 𝑃mean 𝑃Arr 𝑃Std Std ∗ Arr Size ∗ Arr Adj.𝑅2

601006 0.031 0.002 0.020 −14.181 0.192 −0.082 −9.975 40.557 0.393 0.044
𝐶 Size RJV Arr RJV Std RJV Adj.𝑅2

600748 0.049 −0.004 −0.178 0.717 —
𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Adj.𝑅2

600748 0.111∗∗ 0.536 −0.187 −2.107 0.642∗∗ −0.253 −47.805∗∗∗ 0.101
𝐶 Size RJV Arr RJV Std RJV 𝑃size 𝑃Arr 𝑃Std Std ∗ Arr Size ∗ Arr Adj.𝑅2

600748 0.119∗ −0.019 −0.226 9.983 0.608∗∗ −0.225 −47.241∗∗∗ −66.184 2.291 0.087

researches on what information is contained in the jump
components.

Appendix

Tables 13, 14, and 15 show the descriptive statistics of
individual-based portfolio 3 to portfolio 5 and individual
stock, respectively. Figure 5 shows the time series of individ-
ual stock’s jump components.

We forecast one-month-ahead stock return using the
following:

𝑟
𝑖,𝑚+1

= 𝐶 + 𝛽
𝑖,SizeSize RJV

𝑚
+ 𝛽
𝑖,StdStd RJV

𝑚

+ 𝛽
𝑖,ArrArr RJV𝑡+𝜁𝑀,𝑚+1,

𝑟
𝑖,𝑚+1

= 𝐶 + 𝛽
𝑖,SizeSize RJV

𝑚
+ 𝛽
𝑖,StdStd RJV

𝑚

+ 𝛽
𝑖,ArrArr RJV𝑚 + 𝛽

𝑃,Size𝑃Size RJV
𝑚

+ 𝛽
𝑃,Size𝑃Size RJV

𝑚
+ 𝛽
𝑃,Std𝑃Std RJV

𝑚

+ 𝜁
𝑀,𝑡+1

,

𝑟
𝑖,𝑚+1

= 𝐶 + 𝛽
𝑖,SizeSize RJV

𝑚

+ 𝛽
𝑖,StdStd RJV

𝑚
+ 𝛽
𝑖,ArrArr RJV𝑚

+ 𝛾
𝑖,size ArrSize RJV

𝑚
∗ Arr RJV

𝑚

+ 𝛾
𝑖,std ArrStd RJV

𝑚
∗ Arr RJV

𝑚



12 Discrete Dynamics in Nature and Society

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.0

0.2

0.4

0.6

0.8

0.000

0.004

0.008

0.012

0.016

0.020

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

10 20 30 40 50 60 70 80

Arr Std

Size Mean

Figure 5: Time series characteristic of individual stock.

+ 𝛽
𝑃,Size𝑃Size RJV

𝑚
+ 𝑃Std RJV

𝑚

+ 𝛽
𝑃,Arr𝑃Arr RJV𝑚 + 𝜁

𝑖,𝑚+1
.
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