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Flyrock is one of themajor disturbances induced by blastingwhichmay cause severe damage to nearby structures.This phenomenon
has to be precisely predicted and subsequently controlled through the changing in the blast design to minimize potential risk of
blasting. The scope of this study is to predict flyrock induced by blasting through a novel approach based on the combination
of imperialist competitive algorithm (ICA) and artificial neural network (ANN). For this purpose, the parameters of 113 blasting
operations were accurately recorded and flyrock distances were measured for each operation. By applying the sensitivity analysis,
maximum charge per delay and powder factor were determined as the most influential parameters on flyrock. In the light of this
analysis, two new empirical predictors were developed to predict flyrock distance. For a comparison purpose, a predeveloped
backpropagation (BP) ANN was developed and the results were compared with those of the proposed ICA-ANN model and
empirical predictors.The results clearly showed the superiority of the proposed ICA-ANNmodel in comparison with the proposed
BP-ANNmodel and empirical approaches.

1. Introduction

Blasting is the process of using explosives to excavate,
break down, or remove the rock. It is the most frequently
used method for fragmentation of rock mass in smining,
quarrying, and civil engineering applications such as dam or
road construction. Rock is fragmented into smaller pieces
in different mining operations such as quarrying or into
large blocks for some civil engineering applications [1]. In
quarry blasting, only 20 to 30 percent of the produced energy
is utilized to fragment and move the rock mass [2]. The
remained energy is wasted to create unwanted environmental
impacts, for example, air-overpressure, ground vibration,
flyrock, dust, and back-break [3]. Flyrock is defined as the
excessive random throw of rock fragments from a blast that
can travel distances beyond the blast safety area [4, 5]. This

phenomenon of the blasting operation can result in human
injuries, fatalities, and structural damage [4, 6].

Various empirical relationships have been established to
predict flyrock resulted from blasting [7–10]. Nevertheless,
the existing empirical methods only consider limited num-
bers of effective parameters on flyrock distance, whereas this
phenomenon is also affected by other parameters such as
blast geometry and geological conditions [11]. As a result, the
empirical methods are not accurate enough in many cases,
even though prediction of the exact values of the flyrock
distance is crucial to estimate the blast safety area [12]. Apart
from that, statistical methods such as multiple regression
for flyrock prediction have drawn attention mainly due to
their ease of use [13]. However, the implementation of the
regression prediction methods is not reliable if new available
data are different from the original ones as the form of
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the obtained equation needs to be updated. Meanwhile, the
feasibility of artificial intelligence techniques such as artificial
neural networks (ANNs) in predicting the flyrock distance
has been reported in many studies [14–16].

ANNs are one of the most dynamic areas of research
in advanced and diverse applications of science and engi-
neering. Although ANNs are able to directly map input
to output patterns and utilize all influential parameters in
prediction of flyrock, there are still some limitations, the
slow rate of learning and getting trapped in local minima
[17, 18]. To overcome these shortcomings, employing impe-
rialist competitive algorithm (ICA) is of advantage. ICA is a
population-based evolutionary algorithm inspired by human
being’s sociopolitical evolution [19]. This algorithm has been
successfully utilized in the various optimization engineering
problems [20–24]. This paper presents a hybrid ICA-ANN
predictive model for flyrock prediction in Putri Wangsa
quarry in Johor, Malaysia. For the sake of comparison, the
results of the developed model are compared to the results of
an empirical equation and multivariate regression analysis.

2. Flyrock and Effective Parameters

Flyrock is unwanted rock fragments thrown during bench
blasting inmines and civil constructions [5]. Flyrock,which is
propelled rock fragments by energy of explosive beyond the
blast zone, is one of the undesirable environmental impacts
of blasting operations [25]. In flyrock mechanism, there is
an affective relationship among explosive energy distribution,
rock mass mechanical strength, and charge confinement.
According to Bajpayee et al. [26], any mismatch between
these parameters can produce flyrock. When this happens,
much of the explosive energy is used to throw the rock rather
than produce fragmented rock [6].

There are numerous causes for flyrock occurrence rang-
ing from abnormalities in blast pattern or their implemen-
tation, explosive use, and known or unknown rock mass
conditions [27–29]. There are several researches that report
the effects of abovementioned factors on flyrock distance.
Fletcher and D’Andrea [11] explained that excessive flyrock
gets projected beyond the blast safety area and is created due
to much explosive energy for the amount of burden, insuf-
ficient stemming, and venting of explosive energy through
a weak plane. According to Bhandari [1] and Hemphill [30],
inadequate burden and spacing, inadequate stemming, inac-
curate drilling, overloaded holes, excessive powder factor,
and unfavorable geological conditions are the main causes of
flyrock.

Several empirical equations have been established by
some researchers to predict flyrock distance. Lundborg et al.
[7] suggested an empirical equation based on hole and rock
diameters to predict flyrock distance as follows:

𝐿
𝑚

= 260 × 𝐷
2/3

,

𝑇
𝑏
= 0.1 × 𝐷

2/3

,

(1)

in which 𝐿
𝑚
is the maximum rock throw in meters, 𝐷 is

hole diameter in inches, and 𝑇
𝑏
is the size of rock fragment

in meters. Gupta [10] proposed an empirical equation for
prediction of flyrock based on stemming length and burden,
as given below:

𝐿 = 155.2 × 𝑑
−1.37

, (2)

where 𝐿 is the ratio of length of stemming column to burden
and 𝑑 is the distance travelled by the flying fragments in
meters. McKenzie [31] suggested equations to predict the
maximum range of flyrock and the particle size (achieving
the maximum range) for blasts of varying rock density, hole
diameter, explosive density, and state of confinement. He
demonstrated that the flyrock travel range is based on hole
diameter, shape factor, and size of rock fragment that achieves
maximum projection distance in terms of rock density and
shape factor. This study was very significant in defining the
danger zone of blasting.

Apart from empirical methods, many researchers have
been working on prediction of flyrock distance using soft
computing techniques. Monjezi et al. [32] used ANN to
predict flyrock that resulted from blasting operations. They
employed 192 datasets to train and evaluate ANN simulations
and showed the high performance of ANN model to predict
flyrock. Based on their results, it was found that blast ability
index, charge per delay, hole diameter, stemming length, and
powder factor are the most effective parameters on flyrock
distance. Rezaei et al. [13] applied a fuzzy interface system
(FIS) to predict flyrock and compared the FIS results with
conventional statistical approaches and indicated that the
efficiency of the developed FIS model is much better than
that of statistical models. Ghasemi et al. [16] developed
two predictive models based on ANN and FIS models in
predicting flyrock distance and showed that both models
are able to predict flyrock distance in which the FIS model
yielded higher performance compared to the ANN model.
Monjezi et al. [33] used neurogeneticmodel to predict flyrock
and back-break and found that the stemming length and
powder factor are the most influential parameters on flyrock.
In other study of flyrock prediction, Jahed Armaghani et al.
[12] predicted flyrock distance using hybrid particle swarm
optimization (PSO) and ANN. They used PSO to improve
the performance of ANN in predicting flyrock that resulted
from blasting operations in granite quarry sites. Finally, their
results indicated the applicability of the proposed model to
predict flyrock distance.

3. Case Study

The data used in this study was collected from the Putri
Wangsa quarry in Johor, Malaysia. The quarry lies geograph-
ically in latitude 1∘35󸀠32󸀠󸀠N and longitude 103∘48󸀠4󸀠󸀠E and is
located at north of Johor. This quarry produces aggregates
for various construction applications with capacity of 40000–
50000 tonnes per month. 10 to 12 blasting operations were
conducted monthly in the quarry depending on the weather
condition. A complete range of mass weathering grades
from fresh to completely weathered rock was observed [34].
Blasting parameters such as burden, spacing, stemming
length, hole depth, and number of holes were recorded for
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each blasting. Besides, for each blasting, rock density and
Schmidt hammer rebound value were measured as strength
parameters of rock mass. Diameter of blast-holes used in this
quarry was 115mm. Ammonium nitrate and fuel oil (ANFO)
and dynamite were used as the main explosive material
and initiation, respectively. The blast-holes were stemmed
using fine gravels. To measure the flyrock distance in the
Putri Wangsa, the bench surface was colored and two video
cameras were placed to record the flyrock projection. After
each blasting, the relevant videos were reviewed to find the
locations of the traveled rocks.

4. Model Development for Flyrock Prediction

4.1. Artificial Neural Network. An artificial neural network is
amathematicalmodel whichworks on the basis of simulating
the cortical configuration of the human brain. In other words,
an ANN is a flexible nonlinear function approximation
that comprehends a relationship between desired input and
output data. ANNs require training to learn and consequently
map a relationship from the data.The ability of ANNs to learn
from samples and to improve their performance through
learning is the property that makes them different from other
networks. This ability comes from training algorithm. The
details of different ANNmethods and training algorithm can
be found in Simpson [35] and Galushkin [36].

An interconnected group of artificial neurons forms the
ANN structure. An artificial neuron is a simple processor
which is connected to other neurons. The artificial neurons
get the data and implement simple processing on the received
data. Subsequently, the artificial neurons pass the processed
information to other neurons through an activation function
that usually is a nonlinear function. By this process, a
computational model is created for the information pro-
cessing. According to Fausett [37], artificial neurons have
been developed as generalizations of mathematical models
of biological neurons on the foundation of the following
assumptions:

(i) neurons which are simple elements conduct data
processing;

(ii) connection links transfer the data between neurons;
(iii) a weight is assigned to each connection link which is

multiplied in transmitted signal;
(iv) an activation function is used by each neuron to

determine its output signal.

McCulloch and Pitts [38] introduced the earliest neuron
called “Threshold Logic Unit” which was a linear function.
Nevertheless, the first ANN was developed by Rosenblatt
[39], called the “perceptron,” based on thework ofMcCulloch
and Pitts [38]. A set of parallel interconnected processing
units named nodes or neurons forms the basis of an ANN.
At the final step of data processing, the network output
is verified with the actual values and error correction is
performed. In feed-forward ANNs, the neurons are usually
classified into several layers. Using the connections, a signal
moves throughout the input to the output layers. Multilayer

perceptron (MLP) is the most well-known type of feed-
forward ANN [32, 33].

4.2. Imperialist Competitive Algorithm. Imperialist compet-
itive algorithm (ICA) is a computational method which is
utilized to solve different types of optimization problems
[19]. ICA, as a new sociopolitically motivated global search
algorithm, indicated great performance in the convergence
rate [19, 40–42]. Similar to most of the methods in the area of
evolutionary computation, ICA does not require the gradient
of the function in its optimization process.

Figure 1 shows the flowchart of the ICA. According to
this figure, the optimization process starts with producing the
population. In this algorithm, each particle of the population
is called a “country.” The countries are divided into two
sections; the best countries (countries with the minimum
cost) are considered the “imperialists” and the rest of the
countries form the “colonies.” All colonies are distributed
among the existing imperialists on the basis of their power.
The combination of each imperialist togetherwith its colonies
forms an empire. Following the establishment of initial
empires, the colonies move toward their relevant imperialists
and simulate the assimilation policy of imperialist states. The
following steps describe the ICA optimization procedure.

4.2.1. Establishment of Initial Empires. The ICA optimization
procedure starts with initializing the individuals which are
called countries. In a multivariate optimization problem, a
country consists of 1 × 𝑁var array. This array is defined as
follows:

Country = [𝑃
1
, 𝑃
2
, 𝑃
3
, . . . , 𝑃

𝑁variable] , (3)

in which 𝑃
𝑖
s are the parameters which need to be optimized.

In a country, each parameter can be considered as a sociopo-
litical characteristic such as culture and language, in which
ICA makes an attempt to find the best combination of these
characteristics.The cost function of each country𝑓(Country)
is determined as follows:

𝑓 (Country) = [𝑃
1
, 𝑃
2
, 𝑃
3
, . . . , 𝑃

𝑁variable] . (4)

The procedure of ICA optimization starts with initializing
of countries of size 𝑁country and selecting the most pow-
erful countries as the imperialists (𝑁imperialist). The remain-
ing countries are considered as the colonies (𝑁colony). The
colonies are divided among imperialists based on their power
to generate the initial empires.Therefore, the normalized cost
of an imperialist is defined as follows:

𝐶
𝑛
= 𝑐
𝑛
−max
𝑖

{𝑐
𝑖
} , (5)

in which 𝑐
𝑛
is the cost of the 𝑛th imperialist and 𝐶

𝑛
is its

normalized cost. The normalized power of each imperialist
is defined as follows:

𝑝
𝑛
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐶
𝑛

∑
𝑁imp
𝑖=1

𝐶
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (6)
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Figure 1: Flowchart of the ICA.

The number of initial colonies for each empire is obtained by

N.C.
𝑛
= round {𝑝

𝑛
⋅ 𝑁col} (7)

in which N.C.n is the initial number of colonies of the 𝑛th
empire and𝑁col is the total number of initial colonies.

To distribute the colonies among imperialists, N.C.n of
the colonies is accidentally selected and yielded to the 𝑛th
imperialist and therefore generates the 𝑛th empire.

4.2.2. Assimilation, Revolution, and Uniting. In this step,
assimilation and revolution are conducted. Assimilation is
the movement of colonies toward the imperialists where
imperialists try to absorb their colonies and make them a
part of themselves. This process is simulated by moving all
colonies toward the imperialist along different optimization
axis. Figure 2(a) illustrates the movement of a colony toward
its relevant imperialist by 𝑥 units. The parameter 𝑥 is
determined as follows:

𝑥 ∼ 𝑈 (0, 𝛽 × 𝑑) , (8)

where𝑑 is the distance between the colony and the imperialist
and 𝛽 is a number greater than 1. In assimilation process,
the movement direction is not essentially a vector from the
colony to the imperialist. Hence, to increase the searching
ability around the imperialist, a random amount of devia-
tion (𝜃) is added to the movement direction, as shown in
Figure 2(b). 𝜃 is a parameter with uniform distribution and
is obtained as follows:

𝜃 ∼ 𝑈 (−𝛾, 𝛾) , (9)

in which 𝛾 is a parameter that adjusts the deviation from the
original direction.

Following the assimilation, revolution happens. Revo-
lution is defined as changes in the power and structure
that happen quickly. In ICA optimization process, revolution
makes a sudden change in the sociopolitical characteristics
of a country. This action increases the exploration of the
algorithm and impedes the quick convergence of countries to
local minima. Figure 3 illustrates the revolution in sociopo-
litical characteristics of a country. Throughout the moving
of colonies toward the imperialist, a colony may obtain a
position with lower cost compared to its imperialist. In this
case, the positions of the colony and the imperialist are altered
and ICA procedure will be continued by the new imperialist
in the new position.

Uniting similar empires happens when the distance
between two imperialists becomes lesser than threshold
distance. On this occasion, these imperialists are united and
a new empire is formed. The total power of an empire is
obtained as follows:

T.C.
𝑛
= Cost (imperialist

𝑛
)

+ 𝜉mean {cost (colonies of empire
𝑛
)} ,

(10)

in which T.C.n is the total cost of the 𝑛th empire and 𝜉 is a
positive small number. The value of 0.1 for 𝜉 has shown good
results in most of the implementations [19].

4.2.3. Imperialistic Competition. In ICA optimization proce-
dure, all empires make an attempt to possess the colonies
of other empires. In ICA terminology, this action is called
“imperialistic competition” which is the final optimization
step. In this regard, the power of the weaker empires is
decreased and the power of more powerful empire is grad-
ually increased. The imperialistic competition is shown in
Figure 4.
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Figure 2: Movement of colonies (a) toward their relevant imperialist and (b) in a randomly deviated direction [19].
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Figure 3: Sudden changes in sociopolitical characteristics of a
country [19].

To start the imperialistic competition, the weakest colony
of the weakest empire is selected and subsequently the pos-
session probability of each empire is found. The possession
probability of an empire (𝑃

𝑃
) is related to the total power of

the empire.Thenormalized total cost of an empire is obtained
as follows:

N.T.C.
𝑛
= T.C.

𝑛
−max {T.C.

𝑖
} , (11)

in which T.C.n and N.T.C
𝑛
are the total cost and the normal-

ized total cost of the 𝑛th empire, respectively. The possession
probability of each empire is obtained as follows:

𝑃
𝑃
𝑛

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

N.T.C.
𝑛

∑
𝑁

𝑖=1
N.T.C.

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (12)

in which 𝑃
𝑃
𝑛

is the possession probability. Vector 𝑃 is created
to distribute the colonies among empires as follows:

𝑃 = [𝑃
𝑃
1

, 𝑃
𝑃
2

, 𝑃
𝑃
3

, . . . , 𝑃
𝑃
𝑁

] . (13)

Subsequently, vector 𝑅 with uniform distributed random
elements is created as follows:

𝑅 = [𝑟
1
, 𝑟
2
, 𝑟
3
, . . . , 𝑟

𝑁
] 𝑟
1
, 𝑟
2
, 𝑟
3
, . . . , 𝑟

𝑁
∼ 𝑈 (0, 1) , (14)

in which𝑅 is a chromatic vector with the same size as𝑃.Then
vector 𝐷 is created by subtracting vector 𝑅 from vector 𝑃 as
follows:

𝐷 = 𝑃 − 𝑅 = [𝑃
𝑃
1

− 𝑟
1
, 𝑃
𝑃
2

− 𝑟
2
, 𝑃
𝑃
3

− 𝑟
3
, . . . , 𝑃

𝑃
𝑁

− 𝑟
𝑁
] .

(15)

Referring to vector 𝐷, the colonies are handed to an empire
whose relevant index in 𝐷 is maximized. Continuing the
aforementioned steps may lead to finding the global mini-
mum.

4.3. Model Development. Various optimization algorithms
have been utilized for training ANNs to achieve a set of
weights and biases that minimize the error functions. Here,
ICA was used to determine the optimum weights and biases
of a feed-forward MLP ANN in order to obtain the best
correlation in flyrock prediction. Therefore, a three-layered
ANN that consisted of an input layer, a hidden layer, and one
output layer was employed. The most influential parameters
on flyrock were utilized as input parameters and flyrock
distance was set as the output parameter. The input and
output parameters used in the modelling are tabulated in
Table 1.

Determining the optimal weights and biases of ANN can
be formulated as a global search problem in ICA. In this
regard, a Matlab code was prepared to train ANN using
ICA and the weights and biases of ANN were considered
as the variables of optimization problem. A criterion is
required to evaluate the modelling performance. Therefore,
root mean square error (RMSE) was proposed as the cost
function of ICA optimization algorithm, whereas the aim of
modelling is to minimize the cost function. In ICA optimiza-
tion procedure, the problem’s solution can be obtained by
choosing adequate amount of the number of countries and
imperialists. Therefore, 20 models with different number of
countries and imperialists were employed to determine the
optimum number of countries and imperialists. The results
of modelling are tabulated in Table 2. According to this table,
with 56 countries and 9 imperialists, the best results were
obtained among all models and therefore this model was
selected to be used in flyrock prediction. Figure 5 illustrates
the minimum and mean costs of all imperialists in the
selected model.

To obtain the best results of ANN trained by ICA, it is
essential to find the optimum network architecture which is
the placement of various components of a network. ICA can
only adjust the weights and biases of anANN tominimize the
learning error and cannot determine the optimum network
architecture. According to Hornik et al. [43], a network
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Figure 4: Imperialistic competition [19].

Table 1: Input and output parameters used in the predictive model.

Parameter Category Unit Symbol Minimum Maximum Average
Hole depth Input (m) A 7.5 22 15.434
Burden to spacing Input — B 0.410 0.913 0.763
Stemming length Input (m) C 1.5 3.5 2.632
Maximum charge per delay Input (Kg) D 74.8 234.3 159.6
Powder factor Input (Kg/m3) E 0.31 0.96 0.7
Rock density Input (g/cm3) F 2.15 2.86 2.574
Schmidt hammer rebound number Input — G 15 44 32.611
Flyrock distance Output (m) H 43.7 205.5 135.75

Table 2: Mean and minimum cost of imperialists for different models.

Model
number Country/imperialist Number of

countries
Number of
imperialists

Mean cost of
imperialists

Minimum
cost of

imperialists

Coefficient of
determination

Root mean
square error

1 2.7 8 3 0.073 0.073 0.880 0.241
2 4.0 16 4 0.074 0.074 0.882 0.240
3 4.8 24 5 0.078 0.078 0.856 0.250
4 5.3 32 6 0.092 0.092 0.842 0.255
5 5.7 40 7 0.075 0.073 0.878 0.241
6 6.0 48 8 0.079 0.070 0.896 0.235
7 6.2 56 9 0.063 0.063 0.924 0.224
8 6.4 64 10 0.080 0.073 0.878 0.241
9 6.5 72 11 0.075 0.069 0.899 0.233
10 6.7 80 12 0.077 0.071 0.892 0.236
11 6.8 88 13 0.079 0.074 0.876 0.242
12 6.9 96 14 0.083 0.063 0.922 0.224
13 6.9 104 15 0.083 0.064 0.920 0.225
14 7.0 112 16 0.077 0.070 0.894 0.235
15 7.1 120 17 0.082 0.072 0.886 0.238
16 7.1 128 18 0.077 0.065 0.913 0.228
17 7.2 136 19 0.078 0.063 0.931 0.225
18 7.2 144 20 0.078 0.068 0.899 0.234
19 7.2 152 21 0.079 0.067 0.902 0.232
20 7.3 160 22 0.075 0.067 0.906 0.231
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Figure 5: Mean and minimum cost of all imperialists in various
iterations for the selected model.

with one hidden layer can approximate any continuous
function. Consequently, several networks with one hidden
layer with different number of nodes were trained and tested
to determine the optimum network architecture. Coefficient
of determination (𝑅2) and RMSE (16) were considered the
criteria to evaluate the accuracy of each model. Consider

𝑅
2

= 1 −

∑
𝑁

𝑖=1
(𝑦 − 𝑦

󸀠

)
2

∑
𝑁

𝑖=1
(𝑦 − 𝑦)

2
,

RMSR = √
1

𝑁

𝑁

∑

𝑖=1

(𝑦 − 𝑦󸀠)
2

,

(16)

where 𝑦 and 𝑦
󸀠 are the measured and predicted values,

respectively. 𝑦 represents the mean of 𝑦 values and 𝑁 is the
total number of data.

In the modelling process, 80% of data were used for
training and the rest for testing. The results of analyses for
training and testing datasets for various models are shown in
Figures 6 and 7, respectively. As in these figures, the model
with seven nodes in the hidden layer shows the best results
among all models and therefore was selected to be used in
predicting flyrock distance.

5. Multivariate Regression

Multivariate regression analysis (MRA) can be used to obtain
the best-fit equation when there is more than one input
parameter. The MRA equation takes the form of 𝑦 = 𝑏

1
𝑥
1
+

𝑏
2
𝑥
2
+ 𝑏
𝑛
𝑥
𝑛

+ 𝑐, where {𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
} are the regression

coefficients. The parameter 𝑐 is a constant value of 𝑦 param-
eter, when all the input variables are zero. Ceryan et al.
[44] mentioned that as long as independent parameters have
acceptable correlation or determinationwith output, they can
be selected as inputs in predictive models.

In order to propose a new equation to predict flyrock
distance, a MRA model was applied using the same inputs
in ICA-ANN model (see Table 1). The statistical software
package SPSS (18.0) was used for analysis. The obtained
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Figure 6: 𝑅2 of various models for training and testing datasets.
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Table 3: Statistical information for developed predictive model.

Independent
variable Coefficients St. error 𝑡-value 𝑃 value

Constant 9.665 53.718 0.179 0.857
A −11.872 8.993 −1.320 0.189
B −10.296 20.550 −0.501 0.617
C 0 0 65535 —
D 136.127 14.095 9.657 —
E −14.218 27.777 −0.511 0.609
F 0.282 0.747 0.377 0.706
G 1.562 0.812 1.922 0.057

equation using MVR analysis is shown in (17). More details
on the statistical information of the proposed equation for
flyrock prediction can be found in Table 3. Consider

Flyrock = −11.873A − 10.296B + 136.128D

− 14.218E + 0.282F + 1.562G + 9.665.

(17)
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Table 4: Proposed equations and their performance.

Model input Equation Model performance
𝑅
2 RMSE

Powder factor Flyrock = 191.11 ∗ 𝐸
1.059 0.565 31.935

Maximum
charge per delay Flyrock = 0.883 ∗ 𝐷

0.986 0.544 34.095

6. Empirical Model Development

A sensitivity analysis was performed to establish empirical
equation for flyrock prediction. For this purpose, the cosine
amplitude method was used. To perform this technique, all
data pairs were utilized to build a data array𝑋 as follows:

𝑋 = {𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
} . (18)

The variable 𝑥
𝑖
in the array𝑋 is a length vector of m as

𝑥
𝑖
= {𝑥
𝑖1
, 𝑥
𝑖2
, 𝑥
𝑖3
, . . . , 𝑥

𝑖𝑚
} . (19)

The following equation presents the strength of the relation
(𝑟
𝑖𝑗
) between the datasets𝑋

𝑖
and𝑋

𝑗
:

𝑟
𝑖𝑗
=

∑
𝑚

𝑘=1
𝑥
𝑖𝑘
𝑥
𝑗𝑘

√∑
𝑚

𝑘=1
𝑥
2

𝑖𝑘
∑
𝑚

𝑘=1
𝑥
2

𝑗𝑘

. (20)

Figure 8 shows the strengths of the relations (𝑟
𝑖𝑗
values)

between flyrock distance and input parameters. As shown in
this figure, powder factor and maximum charge per delay are
the most influential parameters on flyrock.

By using these parameters, two power empirical equa-
tions were developed. 𝑅2 of these equations based on powder
factor and maximum charge per delay are shown in Figures
9 and 10, respectively. It should be mentioned that other
equation models such as linear, exponential, and logarithmic
were also examined and power equations which showed the
higher performance (in terms of 𝑅2 and RMSE) compared
to other models were selected. Table 4 shows the proposed
equations and their performance for flyrock prediction.

Table 5: Performance indices of the predictive models.

Predictive model Performance indices
𝑅
2 RMSE

ICA-ANN 0.981 6.582
BP-ANN 0.919 13.478
MRA 0.743 23.877
Empirical 0.118 109.064
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Figure 9: 𝑅2 of proposed flyrock equation based on powder factor.

7. Results and Discussion

In this study ICA-ANN and MRA models were developed
to predict flyrock distance. These models were constructed
using seven inputs (hole depth, stemming, burden to spacing,
maximum charge per delay, powder factor, rock density,
and Schmidt hammer rebound number) and one output.
The graphs of predicted flyrock using ICA-ANN and MRA
techniques against the measured flyrock are displayed in
Figures 11 and 12, respectively.

It is desirable to increase the accuracy and applicability
of ANN for the prediction of flyrock induced by blasting
by means of changing the learning process. A predeveloped
backpropagation (BP) ANN was utilized to predict flyrock in
order tomake a comparisonwith the ICA-ANNperformance.
Similar to the ICA-ANN models, several BP-ANN models
with different architectures were constructed by using the
same input parameters. The datasets were divided into two
subsets; that is, 80% of the datasets were set for training
purpose and 20% used for testing the network performance.
Finally, a BP-ANN model with one hidden layer and 8
neurons in the hidden layer was selected as the best ANN
model. It should be noted that in the suggested ANN model
themomentum coefficient and learning rate were set to be 0.9
and 0.05, respectively. The graph of predicted flyrock using
the proposed BP-ANN model against the measured flyrock
is shown in Figure 13. In addition, to check the accuracy of
the predeveloped empirical equations, (2) was selected for
prediction of flyrock using the data of Putri Wangsa quarry.
Figure 14 shows the predicted flyrock values using (2) versus
the measured one.

For the sake of comparison, the performance indices of
the predictive models are tabulated in Table 5. The obtained
results by ICA-ANN, BP-ANN, and MRA models as well
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Figure 10: 𝑅2 of proposed flyrock equation based on maximum
charge per delay.
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Figure 11: 𝑅2 of ICA-ANNmodel in predicting flyrock distance.
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Figure 12: 𝑅2 of MRA model in predicting flyrock distance.
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Figure 13: 𝑅2 of BP-ANNmodel in predicting flyrock distance.

0

10

20

30

40

50

60

70

0 50 100 150 200 250

M
ea

su
re

d 
fly

ro
ck

 (m
)

Predicted flyrock (m)

R2 = 0.118

Figure 14: 𝑅2 of (2) in predicting flyrock distance.

as empirical equations reveal that the proposed ICA-ANN
model produced higher performance in predicting flyrock
distance among all methods.

8. Conclusion

A novel approach based on the combination of ICA and
ANN was developed to predict flyrock induced by blasting.
In this regard, 113 blasting operations in Putri Wangsa quarry
site in Malaysia were precisely recorded and collected data
were utilized to train the ICA-ANN model. The most influ-
ential parameters on flyrock including hole depth, burden to
spacing ratio, stemming length, maximum charge per delay,
powder factor, rock density, and Schmidt hammer rebound
number were considered as input parameters, whereas the
flyrock distances were assigned as the output parameter.
Several models were examined using the collected data to
determine the optimum ICA-ANN model and finally an
optimum model was proposed to be used in flyrock predic-
tion. The results demonstrated that the proposed ICA-ANN
model is able to predict flyrock distance with high degree
of accuracy. For a comparison purpose, a predeveloped BP-
ANN model was developed and the results were compared
with the obtained results of proposed ICA-ANN model. By
means of sensitivity analysis, powder factor and maximum
charge per delay were determined as the most influential
parameters on flyrock. By utilizing these parameters as well
as MRA, two empirical predictors were developed to predict
flyrock distance. These predictors provide very quick and
simple prediction, whereas the proposed ICA-ANN model
exhibited higher prediction performance compared to other
methods.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to extend their appreciation to the
Ministry of Science, Technology, and Innovation, Malaysia,
through the provision of research Grant no. 03-01-06-SF1185



10 The Scientific World Journal

(UTM 4S072) to undertake the research. Acknowledgment
is also conveyed to the Universiti Teknologi Malaysia for
providing the required facilities which made this research
possible.

References

[1] S. Bhandari, Engineering Rock Blasting Operations, Taylor &
Francis, Boca Raton, Fla, USA, 1997.

[2] T. N. Singh and V. Singh, “An intelligent approach to prediction
and control ground vibration in mines,” Geotechnical and
Geological Engineering, vol. 23, no. 3, pp. 249–262, 2005.

[3] U. Ozer, A. Karadogan, A. Kahriman, and M. Aksoy, “Bench
blasting design based on site-specific attenuation formula in a
quarry,”Arabian Journal of Geosciences, vol. 6, no. 3, pp. 711–721,
2013.

[4] K. Manoj and M. Monjezi, “Prediction of flyrock in open pit
blasting operation using machine learning method,” Interna-
tional Journal of Mining Science and Technology, vol. 23, no. 3,
pp. 313–316, 2013.

[5] A. K. Raina, V. M. S. R. Murthy, and A. K. Soni, “Flyrock in
bench blasting: a comprehensive review,” Bulletin of Engineering
Geology and Environment, 2014.

[6] P. P. Roy, Rock Blasting Effects and Operations, Taylor & Francis,
Boca Raton, Fla, USA, 2005.

[7] N. Lundborg, N. Persson, A. Ladegaard-Pedersen, and R.
Holmberg, “Keeping the lid on flyrock in open pit blasting,”
Engineering andMining Journal, vol. 176, no. 5, pp. 95–100, 1975.

[8] J. A. Roth, “A model for the determination of flyrock range as
a function of shot condition,” NTIS Report PB81222358, US
Department of Commerce, 1979.

[9] R. F. Chiapetta, A. Bauer, P. J. Dailey, and S. L. Burchell, “The use
of high-speed motion picture photography in blast evaluation
and design,” in Proceedings of the 9th Conference on Explosives
and Blasting Techniques, pp. 31–40, Dallas, Tex, USA, 1983.

[10] R. N. Gupta, “Surface blasting and its impact on environment,”
in Impact of Mining on Environment, N. J. Trivedy and B. P.
Singh, Eds., pp. 23–24, Ashish Publishing House, New Delhi,
India, 1990.

[11] L. R. Fletcher and D. V. D’Andrea, “Reducing accident through
improved blasting safety,” in Proceedings of the Bureau of Mines
Technology Transfer Sem, vol. USBM IC 9135, pp. 6–18, Chicago,
Ill, USA, 1987.

[12] D. Jahed Armaghani, M. Hajihassani, E. Tonnizam Mohamad,
A. Marto, and S. A. Noorani, “Blasting-induced flyrock and
ground vibration prediction through an expert artificial neural
network based on particle swarm optimization,” Arabian Jour-
nal of Geosciences, 2013.

[13] M. Rezaei, M. Monjezi, and A. Yazdian Varjani, “Development
of a fuzzy model to predict flyrock in surface mining,” Safety
Science, vol. 49, no. 2, pp. 298–305, 2011.

[14] M.Monjezi, A. Bahrami, andA. YazdianVarjani, “Simultaneous
prediction of fragmentation and flyrock in blasting operation
using artificial neural networks,” International Journal of Rock
Mechanics andMining Sciences, vol. 47, no. 3, pp. 476–480, 2010.

[15] E. T. Mohamad, D. J. Armaghani, M. Hajihassani, K. Faizi,
and A. Marto, “A simulation approach to predict blasting-
induced flyrock and size of thrown rocks,” Electronic Journal of
Geotechnical Engineering, vol. 18, pp. 365–374, 2013.

[16] E. Ghasemi, H. Amini, M. Ataei, and R. Khalokakaei, “Appli-
cation of artificial intelligence techniques for predicting the

flyrock distance caused by blasting operation,” Arabian Journal
of Geosciences, vol. 7, no. 1, pp. 193–202, 2012.

[17] R. C. Eberhart, P. K. Simpson, and R. W. Dobbins, Computa-
tional Intelligence PC Tools, Academic Press Professional, 1996.

[18] M. Hajihassani, D. Jahed Armaghani, H. Sohaei, E. Tonnizam
Mohamad, and A. Marto, “Prediction of airblast-overpressure
induced by blasting using a hybrid artificial neural network and
particle swarm optimization,”Applied Acoustics, vol. 80, pp. 57–
67, 2014.

[19] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive
algorithm: an algorithm for optimization inspired by impe-
rialistic competition,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC ’07), pp. 4661–4667, Singapore,
September 2007.

[20] A. Kaveh and S. Talatahari, “Optimum design of skeletal
structures using imperialist competitive algorithm,” Computers
and Structures, vol. 88, no. 21-22, pp. 1220–1229, 2010.

[21] E. Shokrollahpour, M. Zandieh, and B. Dorri, “A novel impe-
rialist competitive algorithm for bi-criteria scheduling of the
assembly flowshop problem,” International Journal of Produc-
tion Research, vol. 49, no. 11, pp. 3087–3103, 2011.

[22] S. Talatahari, B. F. Azar, R. Sheikholeslami, and A. H. Gandomi,
“Imperialist competitive algorithm combined with chaos for
global optimization,” Communications in Nonlinear Science and
Numerical Simulation, vol. 17, no. 3, pp. 1312–1319, 2012.

[23] H. Taghavifar, A. Mardani, and L. Taghavifar, “A hybridized
artificial neural network and imperialist competitive algorithm
optimization approach for prediction of soil compaction in soil
bin facility,”Measurement, vol. 46, no. 8, pp. 2288–2299, 2013.

[24] M. A. Ahmadi, M. Ebadi, A. Shokrollahi, and S. M. J. Majidi,
“Evolving artificial neural network and imperialist competitive
algorithm for prediction oil flow rate of the reservoir,” Applied
Soft Computing Journal, vol. 13, no. 2, pp. 1085–1098, 2013.

[25] S. Stojadinović, R. Pantović, and M. Žikić, “Prediction of
flyrock trajectories for forensic applications using ballistic flight
equations,” International Journal of Rock Mechanics and Mining
Sciences, vol. 48, no. 7, pp. 1086–1094, 2011.

[26] T. S. Bajpayee, T. R. Rehak, G. L. Mowrey, and D. K. Ingram,
“Blasting injuries in surface mining with emphasis on flyrock
and blast area security,” Journal of Safety Research, vol. 35, no. 1,
pp. 47–57, 2004.

[27] R. Kuberan and K. K. Prasad, “Environmental effects of blasting
and their control,” in Proceedings of the Workshop on Blasting
Technology for Civil Engineering Projects, vol. 2, pp. 145–159,
ISRMTT, Delhi, India, November 1992.

[28] S. K. Mandal, “Causes of flyrock damages and its remedial
measures,” in Course on: Recent Advances in Blasting Techniques
in Mining and Construction Projects, pp. 130–136, HRD-CMRI,
Dhanbad, India, 1997.

[29] G. R. Adhikari, “Studies on flyrock at limestone quarries,” Rock
Mechanics andRock Engineering, vol. 32, no. 4, pp. 291–301, 1999.

[30] G. B. Hemphill, Blasting Operations, McGraw-Hill, New York,
NY, USA, 1981.

[31] C. K. McKenzie, “Flyrock range and fragment size prediction,”
in Proceedings of the 35th Annual Conference on Explosives and
Blasting Technique, vol. 2, International Society of Explosives
Engineers, 2009.

[32] M. Monjezi, A. Bahrami, A. Y. Varjani, and A. R. Sayadi,
“Prediction and controlling of flyrock in blasting operation
using artificial neural network,” Arabian Journal of Geosciences,
vol. 4, no. 3-4, pp. 421–425, 2011.



The Scientific World Journal 11

[33] M.Monjezi, H. Amini Khoshalan, andA. YazdianVarjani, “Pre-
diction of flyrock and backbreak in open pit blasting operation:
a neuro-genetic approach,” Arabian Journal of Geosciences, vol.
5, no. 3, pp. 441–448, 2012.

[34] S. V. Alavi Nezhad Khalil Abad, E. Tonnizam Mohamad, E.
Komoo, R. Kalatehjari, and R. Kalatehjari, “A typical weathering
profile of granitic rock in Johor, Malaysia based on joint
characterization,” Arabian Journal of Geosciences, 2014.

[35] P. K. Simpson, Artificial Neural System-Foundation, Paradigm,
Application and Implementations, Pergamon Press, New York,
NY, USA, 1990.

[36] A. I. Galushkin, Neural Networks Theory, Springer, Berlin,
Germany, 2007.

[37] L. Fausett, Fundamentals of Neural Networks: Architectures,
Algorithms, and Applications, Prentice-Hall, 1994.

[38] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” The Bulletin of Mathematical
Biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[39] F. Rosenblatt, “The perceptron: a probabilistic model for infor-
mation storage and organization in the brain,” Psychological
Review, vol. 65, no. 6, pp. 386–408, 1958.

[40] E. Rajabioun, E. Atashpaz-Gargari, and C. Lucas, “Colonial
competitive algorithm as a tool for nash equilibrium point
achievement,” in Computational Science and Its Applications—
ICCSA 2008, vol. 5073 of Lecture Notes in Computer Science, pp.
680–695, Springer, Berlin, Germany, 2008.

[41] H. Sepehri Rad and C. Lucas, “Application of imperialistic com-
petition algorithm in recommender systems,” in Proceedings of
the 13th International CSI Computer Conference, Kish Island,
Iran, 2008.

[42] E. Atashpaz Gargari, F. Hashemzadeh, R. Rajabioun, and C.
Lucas, “Colonial competitive algorithm: a novel approach for
PID controller design in MIMO distillation column process,”
International Journal of Intelligent Computing and Cybernetics,
vol. 1, no. 3, pp. 337–355, 2008.

[43] K. Hornik, M. Stinchcombe, and H.White, “Multilayer feedfor-
ward networks are universal approximators,” Neural Networks,
vol. 2, no. 5, pp. 359–366, 1989.

[44] N. Ceryan, U. Okkan, and A. Kesimal, “Prediction of uncon-
fined compressive strength of carbonate rocks using artificial
neural networks,” Environmental Earth Sciences, vol. 68, no. 3,
pp. 807–819, 2013.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


