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An inverse heat problem of finding an unknown parameter p(t) in the parabolic initial-boundary value problem is solved with
variational iteration method (VIM). For solving the discussed inverse problem, at first we transform it into a nonlinear direct
problem and then use the proposed method. Also an error analysis is presented for the method and prior and posterior error
bounds of the approximate solution are estimated.Themain property of the method is in its flexibility and ability to solve nonlinear
equation accurately and conveniently. Some examples are given to illustrate the effectiveness and convenience of the method.

1. Introduction

The parameter determination in a parabolic partial differ-
ential equation from the overspecified data plays a crucial
role in applied mathematics and physics. This technique has
been widely used to determine the unknown properties of a
region by measuring data only on its boundary or a specified
location in the domain. These unknown properties, such
as the conductivity medium, are important to the physical
process, but they usually cannot be measured directly, or the
process of their measurement is very expensive [1]. These
problems are often ill-posed [2] and a direct inversion of the
data for the unknown function is not possible. As a result,
a number of researchers have developed various methods
to overcome the ill-posed nature of the inversion problem.
These methods include Born approximation [3], neural-
networks [4], and Levenberg-Marquardt method [5].

In this paper, we solve an inverse problem to a class
of reaction-diffusion equation using variational iteration
method. The method is capable of reducing the size of calcu-
lations and handles both linear and nonlinear equations,
homogeneous or inhomogeneous, in a direct manner. The
method gives the solution in the form of a rapidly con-
vergent successive approximation that may give the exact
solution if such a solution exists. For concrete problems
where exact solution is not obtainable, it was found that a

small number of approximations can be used for numerical
purposes.

1.1. Reaction-Diffusion Systems. Reaction-diffusion systems
are mathematical models which explain how the concen-
tration of one or more substances distributed in space
changes under the influence of two processes: local chemical
reactions in which the substances are transformed into each
other and diffusion which causes the substances to spread
out over a surface in space. This description implies that
reaction-diffusion systems are naturally applied in chemistry.
However, the system can also describe dynamical processes
of nonchemical nature. Examples are found in biology, geol-
ogy, physics, and ecology [6, 7]. Mathematically, reaction-
diffusion systems take the form of semilinear parabolic
partial differential equations. They can be represented in the
general form:

𝑢
𝑡
= ∇ ⋅ (𝐷 (𝑥, 𝑡, 𝑢) ∇𝑢) + 𝑓 (𝑢, ∇𝑢; 𝑥, 𝑡) , (1)

where 𝑢 = 𝑢(𝑥, 𝑡) represents the concentration of one
substance, 𝐷 is a diffusion coefficient, and 𝑓 is the reaction
term.

1.2. A Class of Reaction-Diffusion Systems. In this paper,
we consider an inverse problem of simultaneously finding
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unknown coefficients 𝑝(𝑡) and 𝑢(𝑥, 𝑡) satisfying reaction-
diffusion equation

𝑢
𝑡
= 𝑎 (𝑡) 𝑢

𝑥𝑥
+ 𝑝 (𝑡) 𝑢

𝑥
+ 𝑓 (𝑥, 𝑡) ; in 𝑄

𝑇
, (2)

with the initial-boundary conditions

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ; 0 ≤ 𝑥 ≤ 1,

𝐵
1
𝑢 (0, 𝑡) = 𝑔

0
(𝑡) ; 0 ≤ 𝑡 ≤ 𝑇,

𝐵
2
𝑢 (1, 𝑡) = 𝑔

1
(𝑡) ; 0 ≤ 𝑡 ≤ 𝑇,

(3)

where 𝑢(𝑥, 𝑡) is the concentration, 𝑎(𝑡) is a diffusion coef-
ficient, 𝑝(𝑡)𝑢

𝑥
(𝑥, 𝑡) + 𝑓(𝑥, 𝑡) is the reaction term, 𝑄

𝑇
=

{(𝑥, 𝑡), 0 < 𝑥 < 1, 0 < 𝑡 < 𝑇}, 𝑇 > 0, 𝐵
1
and 𝐵

2
are boundary

operators (i.e., 𝐵
1
, 𝐵
2

= 𝜕
𝑖
/𝜕𝑥
𝑖, 𝑖 = 0 or 1), and 𝑎, 𝑓, 𝑢

0
, 𝑔
0
,

and 𝑔
1
are known functions.

An additional boundary condition which can be the
integral overspecification is given in the following form:

∫

𝑠(𝑡)

0

𝑘 (𝑥) 𝑢 (𝑥, 𝑡) 𝑑𝑥 = 𝐸 (𝑡) ; 0 < 𝑡 ≤ 𝑇, 0 < 𝑠 (𝑡) < 1,

(4)

where 𝐸, 𝑠, and 𝑘 are known functions and for some 𝜌 > 0,
the kernel 𝑘(𝑥) satisfies

∫

1

0

|𝑘 (𝑥)| 𝑑𝑥 ≤ 𝜌. (5)

Without the extrameasurement (4), problem (2)-(3) is under-
determined and may have many solutions infinitely. On the
other hand, if too many additional conditions are imposed,
the solution may not exist. The existence and uniqueness
of the solution of this problem and more applications and
background of the problem are discussed in [8–10]. Also, to
interpret integral equation (4), the reader can refer to [11].

1.3. A Brief Discussion on Some Inverse Problems. Inverse
problems in partial differential equations can be used to
model many real problems in engineering and other physical
sciences (cf. [12, 13] for examples). Studying these prob-
lems has a great deal of importance both theoretically and
practically. We give a quick review of the previous work
related to our problems. For the inverse problem (2)-(3) of
simultaneously finding unknown coefficients 𝑎(𝑡) and 𝑢(𝑥, 𝑡)

with 𝑝(𝑡) = 𝑓(𝑥, 𝑡) = 0 and additional condition

𝑎 (𝑡) 𝑢
𝑥
(0, 𝑡) = 𝐸 (𝑡) ; 0 ≤ 𝑡 ≤ 𝑇. (6)

Jones [14] obtains the global solvability via an integral
equation and Schauder fixed point theorem. Moreover, in
[15] the numerical solution by the finite difference method
is discussed. Similar problems in different regions are also
treated in [16, 17]. By employing the heat potential andGreen’s
representation, the authors in [18] give the explicit solution
for inverse problem of finding 𝑓(𝑡) in the equation

𝑢
𝑡
= 𝑢
𝑥𝑥

+ 𝑓 (𝑡) . (7)

These examples motivate us to consider the following general
problem:

𝑢
𝑡
= 𝑎 (𝑥, 𝑡, 𝑢, 𝑢

𝑥
, 𝑢
𝑥
(𝑥
⋆
, 𝑡)) 𝑢
𝑥𝑥

+ 𝑏 (𝑥, 𝑡, 𝑢, 𝑢
𝑥
, 𝑢
𝑥
(𝑥
⋆
, 𝑡)) ,

(8)

subject to initial-boundary conditions (3), where 0 < 𝑥
⋆

< 1

is a fixed point. The global solvability for this problem is
established in [19].

This paper is organized as follows. In Section 2, the
variational iteration method is recapitulated. In Section 3,
an error analysis is presented for the proposed method and
prior and posterior error bounds of the approximate solution
are estimated. In Section 3, at first we transform the inverse
problem (2)–(4) into a nonlinear direct problem and then
the VIM is used for solving this problem. To present a clear
overview of the new method, some examples are given in
Section 4. A conclusion is presented in the last section.

2. Basic Idea of the Variational
Iteration Method

The variational iteration method is a powerful tool to search
for both analytical and approximate solutions of nonlinear
equation without requirement of linearization or perturba-
tion [20, 21]. The method was first proposed by He in 1998
[22]. Also it was successfully applied to various engineering
problems [23–27]. In 1978, Inokuti et al. [28] proposed a
general Lagrange multiplier method to solve nonlinear prob-
lems, which was first proposed to solve problems in quantum
mechanics (see [28] and the references cited therein). The
main feature of the method is as follows: the solution of a
mathematical problem with linearization assumption is used
as initial approximation or trial-function; then a more highly
precise approximation at some special point can be obtained.

Consider the following general nonlinear system:

𝐿𝑢 (𝑡) + 𝑁𝑢 (𝑡) = 𝑓 (𝑡) , (9)

where 𝐿 and 𝑁 are linear and nonlinear operators, respec-
tively, and 𝑓 is source or sink term.

Assuming 𝑢
0
(𝑡) is the solution of 𝐿𝑢 = 0, according to

[28], we can write down an expression to correct the value of
some special point, for example, at 𝑡 = 1:

𝑢cor (1) = 𝑢
0
(1) + ∫

1

0

𝜆 (𝜏) {𝐿𝑢
0
(𝜏) + 𝑁𝑢

0
(𝜏) − 𝑓 (𝜏)} 𝑑𝜏,

(10)

where 𝜆 is general Lagrange multiplier [28], which can
be identified optimally via the variational theory [29]. The
second term on the right is called the correction. He in 1998
[22] modified the above method into an iteration method
[20–22] in the following way:

𝑢
𝑛+1

(𝑡
0
) = 𝑢
𝑛
(𝑡
0
) + ∫

𝑡0

0

𝜆 (𝜏) {𝐿𝑢
𝑛
(𝜏) + 𝑁�̃�

𝑛
(𝜏) − 𝑓 (𝜏)} 𝑑𝜏.

(11)

The subscript 𝑛 denotes the 𝑛th order approximation and �̃�
𝑛
is

considered as restricted variation [29] which means 𝛿�̃�
𝑛
= 0.
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For arbitrary 𝑡
0
, we can rewrite the above equation as

follows:
𝑢
𝑛+1

(𝑡) = 𝑢
𝑛
(𝑡)

+ ∫

𝑡

0

𝜆 (𝜏) {𝐿𝑢
𝑛
(𝜏) + 𝑁�̃�

𝑛
(𝜏) − 𝑓 (𝜏)} 𝑑𝜏; 𝑛 ⩾ 0.

(12)

Equation (12) is called a correction functional. It is required
first to determine the Lagrange multiplier. Employing the
restricted variation in correction functional and using inte-
gration by part make it easy to compute the Lagrange
multiplier; see, for instance, [30]. For linear problems, its
exact solution can be obtained by only one iteration step
due to the fact that no nonlinear operator exists so the
Lagrange multiplier can be exactly identified. Having 𝜆

determined, then several approximations 𝑢
𝑛+1

(𝑡), 𝑛 ⩾ 0, can
be determined. Under reasonable choice of 𝑢

0
, the fixed point

of the correction functional is considered as an approximate
solution of the above general differential equation. Generally
one iteration leads to high accurate solution by variational
iteration method if the initial solution is carefully chosen
with some unknown parameters. Comparison of the method
with Adomian method was conducted by many authors via
illustrative examples, and especially Wazwaz gave a complete
comparison between the two methods [31], revealing the
variational iteration method has many merits over Adomian
method: it can completely overcome the difficulty arising in
the calculation of Adomian polynomial.

3. Convergence Analysis and
Error Bound of VIM

This section covers the error analysis of the proposedmethod.
Also the sufficient conditions are presented to guarantee the
convergence of VIM, when applied to solve the differential
equations.

3.1. Convergence Analysis. First, we will rewrite (12) in the
operator form as follows:

𝑢
𝑛+1

= 𝐴 [𝑢
𝑛
] , (13)

where the operator 𝐴 takes the following form:

𝐴 [𝑢 (𝑡)] = 𝑢 (𝑡) + ∫

𝑡

0

𝜆 (𝜏) {𝐿𝑢 (𝜏) + 𝑁𝑢 (𝜏) − 𝑓 (𝜏)} 𝑑𝜏.

(14)

Theorem 1. Let (𝑋, ‖ ⋅ ‖) be a Banach space and 𝐴 : 𝑋 → 𝑋

is a nonlinear mapping and suppose that

‖𝐴 [𝑢] − 𝐴 [�̃�]‖ ≤ 𝛾 ‖𝑢 − �̃�‖ , 𝑢, �̃� ∈ 𝑋, (15)

for some constant 𝛾 < 1. Then, 𝐴 has a unique fixed point.
Furthermore, sequence (12) using VIMwith an arbitrary choice
of 𝑢
0
∈ 𝑋 converges to the fixed point of 𝐴 and





𝑢
𝑛
− 𝑢
𝑚





≤





𝑢
1
− 𝑢
0






𝑛−2

∑

𝑗=𝑚−1

𝛾
𝑗
. (16)

Proof (see [32]). According to the above theorem, a sufficient
condition for the convergence of the variational iteration
method is strictly contraction of 𝐴. Furthermore, sequence
(12) converges to the fixed method of 𝐴, which is also the
solution of (9). Also, the rate of convergence depends on
𝛾.

3.2. Approximation Error. In the following theorem, we
introduce an estimation of the error of the approximate
solution of problem (9) and prior and posterior error bounds
of the approximate solution are estimated. The prior error
bound can be used at the beginning of a calculation for
estimating the number of steps necessary to obtain a given
accuracy and the posterior error bound can be used at
intermediate stages or at the end of a calculation.

Theorem 2. Under the conditions of Theorem 1, error esti-
mates are the prior estimate





𝑢 − 𝑢
𝑛





≤

𝛾
𝑛

1 − 𝛾





𝑢
1
− 𝑢
0






(17)

and the posterior estimate





𝑢 − 𝑢
𝑛





≤

𝛾

1 − 𝛾





𝑢
𝑛
− 𝑢
𝑛−1





. (18)

Also, if one supposes that 𝐴[0] = 0 then the error of the
approximate solution 𝑢

𝑛
to problem (9) can be obtained as

follows:





𝑢 − 𝑢
𝑛





≤

1 + 𝛾

1 − 𝛾

𝛾
𝑛 



𝑢
0





. (19)

Proof. Consider





𝑢
𝑛+1

− 𝑢
𝑛





=





𝐴 [𝑢
𝑛
] − 𝐴 [𝑢

𝑛−1
]





≤ 𝛾




𝑢
𝑛
− 𝑢
𝑛−1






≤ 𝛾
2 



𝑢
𝑛−1

− 𝑢
𝑛−2






.

.

.

≤ 𝛾
𝑛 



𝑢
1
− 𝑢
0





.

(20)

Therefore, for any 𝑚 > 𝑛, we have

‖𝑢
𝑚

− 𝑢
𝑛
‖ ≤ ‖𝑢

𝑚
− 𝑢
𝑚−1

‖

+ ‖𝑢
𝑚−1

− 𝑢
𝑚−2

‖ + ⋅ ⋅ ⋅ + ‖𝑢
𝑛+1

− 𝑢
𝑛
‖

≤ 𝛾
𝑚−1

‖𝑢
1
− 𝑢
0
‖ + 𝛾
𝑚−2

‖𝑢
1
− 𝑢
0
‖

+ ⋅ ⋅ ⋅ + 𝛾
𝑛
‖𝑢
1
− 𝑢
0
‖

= (𝛾
𝑚−1

+ 𝛾
𝑚−2

+ ⋅ ⋅ ⋅ + 𝛾
𝑛
) ‖𝑢
1
− 𝑢
0
‖

= 𝛾
𝑛 1 − 𝛾

𝑚−𝑛

1 − 𝛾

‖𝑢
1
− 𝑢
0
‖.

(21)
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Since 0 < 𝛾 < 1, in the numerator, we have 1 − 𝛾
𝑚−𝑛

< 1.
Consequently,





𝑢
𝑚

− 𝑢
𝑛





≤

𝛾
𝑛

1 − 𝛾





𝑢
1
− 𝑢
0





; 𝑚 > 𝑛. (22)

The first statement follows from (22) by using Theorem 1, as
𝑚 → ∞. We derive (18). Taking 𝑛 = 1 and writing V

0
for 𝑢
0

and V
1
for 𝑢
1
, we have from (17)





V
1
− 𝑢





≤

𝛾

1 − 𝛾





V
1
− V
0





. (23)

Setting V
0
= 𝑢
𝑛−1

, we have V
1
= 𝐴[V

0
] = 𝑢
𝑛
and obtain (18).

Also, we have





𝑢
1
− 𝑢
0





≤










∫

𝑡

0

𝜆 (𝜏) {𝐿𝑢
0
(𝜏) + 𝑁𝑢

0
(𝜏) − 𝑓 (𝜏)} 𝑑𝜏










=




𝐴 [𝑢
0
] − 𝑢
0





≤





𝐴 [𝑢
0
]




+





𝑢
0





.

(24)

We can write




𝐴 [𝑢
0
]




=





𝐴 [𝑢
0
] − 𝐴 [0]





≤ 𝛾





𝑢
0





. (25)

Therefore




𝑢
1
− 𝑢
0





≤ (𝛾 + 1)





𝑢
0





. (26)

From Theorem 1, as 𝑚 → ∞, then 𝑢
𝑚

→ 𝑢 and by using
(22)-(26), inequality (19) can be obtained.

4. The Application of VIM in Inverse Parabolic
Problem (2)–(4)

To use the variational iteration method for solving the
problem (2)–(4), at first we use the following transformation.

4.1. The Employed Transformation. By differentiation with
respect to the variable 𝑡 in (4), one obtains

𝐸

(𝑡) = 𝑠


(𝑡) 𝑘 (𝑠 (𝑡)) 𝑢 (𝑠 (𝑡) , 𝑡) + ∫

𝑠(𝑡)

0

𝑘 (𝑥) 𝑢
𝑡
(𝑥, 𝑡) 𝑑𝑥.

(27)

Substituting (2) into the above equation yields

𝐸

(𝑡) = 𝑠


(𝑡) 𝑘 (𝑠 (𝑡)) 𝑢 (𝑠 (𝑡) , 𝑡)

+ ∫

𝑠(𝑡)

0

𝑘 (𝑥) [𝑢
𝑥𝑥

(𝑥, 𝑡) + 𝑝 (𝑡) 𝑢
𝑥
(𝑥, 𝑡) + 𝑓 (𝑥, 𝑡)] 𝑑𝑥,

(28)

and it follows that

𝑝 (𝑡) = (𝐸

(𝑡) − 𝑠


(𝑡) 𝑘 (𝑠 (𝑡)) 𝑢 (𝑠 (𝑡) , 𝑡)

−∫

𝑠(𝑡)

0

𝑘 (𝑥) [𝑢
𝑥𝑥

(𝑥, 𝑡) + 𝑓 (𝑥, 𝑡)] 𝑑𝑥)

× (∫

𝑠(𝑡)

0

𝑘(𝑥)𝑢
𝑥
(𝑥, 𝑡)𝑑𝑥)

−1

,

(29)

provided that, for any 𝑡 ∈ [0, 𝑇], ∫

𝑠(𝑡)

0
𝑘(𝑥)𝑢

𝑥
(𝑥, 𝑡)𝑑𝑥 and

∫

𝑠(𝑡)

0
𝑘(𝑥)[𝑢

𝑥𝑥
(𝑥, 𝑡) + 𝑓(𝑥, 𝑡)]𝑑𝑥 are exit; also ∫

𝑠(𝑡)

0
𝑘(𝑥)𝑢

𝑥

(𝑥, 𝑡)𝑑𝑥 ̸= 0.
Therefore, the inverse parabolic problem (2)–(4) is equiv-

alent to the following nonlocal parabolic equation:

𝑢
𝑡
= 𝑢
𝑥𝑥

+ (𝐸

(𝑡) − 𝑠


(𝑡) 𝑘 (𝑠 (𝑡)) 𝑢 (𝑠 (𝑡) , 𝑡)

−∫

𝑠(𝑡)

0

𝑘 (𝑥) [𝑢
𝑥𝑥

(𝑥, 𝑡) + 𝑓 (𝑥, 𝑡)] 𝑑𝑥)

× (∫

𝑠(𝑡)

0

𝑘 (𝑥) 𝑢
𝑥
(𝑥, 𝑡) 𝑑𝑥)

−1

𝑢
𝑥

+ 𝑓 (𝑥, 𝑡) ; in 𝑄
𝑇
,

(30)

with the initial-boundary conditions

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ; 0 ≤ 𝑥 ≤ 1,

𝐵
1
𝑢 (0, 𝑡) = 𝑔

0
(𝑡) ; 0 ≤ 𝑡 ≤ 𝑇,

𝐵
2
𝑢 (1, 𝑡) = 𝑔

1
(𝑡) ; 0 ≤ 𝑡 ≤ 𝑇.

(31)

Therefore, for solving the inverse problem (2)–(4), we will
investigate the direct problem (30)-(31).

4.2. Application. In order to solve problem (30)-(31) using
VIM, we can write the following correction functional:

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑡)

+ ∫

𝑡

0

𝜆 (𝑡, 𝜏)

×

{

{

{

𝑢
𝑛𝜏

(𝑥, 𝜏) − �̃�
𝑛𝑥𝑥

(𝑥, 𝜏)

− (𝐸

(𝜏) − 𝑠


(𝜏) 𝑘 (𝑠 (𝜏)) 𝑢

𝑛
(𝑠 (𝜏) , 𝜏)

−∫

𝑠(𝜏)

0

𝑘 (𝑥) [𝑢
𝑛𝑥𝑥

(𝑥, 𝜏) + 𝑓 (𝑥, 𝜏)] 𝑑𝑥)

× (∫

𝑠(𝜏)

0

𝑘 (𝑥) 𝑢
𝑛𝑥

(𝑥, 𝜏) 𝑑𝑥)

−1

× �̃�
𝑛𝑥

(𝑥, 𝜏) − 𝑓 (𝑥, 𝜏)

}

}

}

𝑑𝜏.

(32)
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Making the above correction functional stationary, note that
𝛿𝑢
𝑛
(0) = 0; we have

𝛿𝑢
𝑛+1

(𝑥, 𝑡)

= 𝛿𝑢
𝑛
(𝑥, 𝑡)

+ 𝛿∫

𝑡

0

𝜆 (𝑡, 𝜏)

×

{

{

{

𝑢
𝑛𝜏

(𝑥, 𝜏) − �̃�
𝑛𝑥𝑥

(𝑥, 𝜏)

− (𝐸

(𝜏) − 𝑠


(𝜏) 𝑘 (𝑠 (𝜏)) 𝑢

𝑛
(𝑠 (𝜏) , 𝜏)

−∫

𝑠(𝜏)

0

𝑘 (𝑥) [𝑢
𝑛𝑥𝑥

(𝑥, 𝜏) + 𝑓 (𝑥, 𝜏)] 𝑑𝑥)

× (∫

𝑠(𝜏)

0

𝑘(𝑥)𝑢
𝑛𝑥

(𝑥, 𝜏)𝑑𝑥)

−1

× �̃�
𝑛𝑥

(𝑥, 𝜏) − 𝑓 (𝑥, 𝜏)

}

}

}

𝑑𝜏.

(33)

Thus, its stationary condition can be obtained as follows:

𝜆

(𝑡, 𝜏) = 0,

1 + 𝜆(𝑡, 𝜏)|
𝜏=𝑡

= 0;

(34)

therefore 𝜆(𝑡, 𝜏) = −1.
Now, the following iteration formula can be obtained as

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑡)

− ∫

𝑡

0

{

{

{

𝑢
𝑛𝜏

(𝑥, 𝜏) − 𝑢
𝑛𝑥𝑥

(𝑥, 𝜏)

− (𝐸

(𝜏) − 𝑠


(𝜏) 𝑘 (𝑠 (𝜏)) 𝑢

𝑛
(𝑠 (𝜏) , 𝜏)

−∫

𝑠(𝜏)

0

𝑘 (𝑥) [𝑢
𝑛𝑥𝑥

(𝑥, 𝜏) + 𝑓 (𝑥, 𝜏)] 𝑑𝑥)

× (∫

𝑠(𝜏)

0

𝑘 (𝑥) 𝑢
𝑛𝑥

(𝑥, 𝜏) 𝑑𝑥)

−1

𝑢
𝑛𝑥

(𝑥, 𝜏)

− 𝑓 (𝑥, 𝜏)

}

}

}

𝑑𝜏.

(35)

Here, according to Adomian method, we choose its initial
approximate solution as 𝑢

0
(𝑥, 𝑡) = 𝑢(𝑥, 0).

Having 𝑢 = lim
𝑛→∞

𝑢
𝑛
determined, then the value of𝑝(𝑡)

can be computed by using (29).

5. Illustrative Examples

In this section three examples are presented to demonstrate
the applicability and accuracy of the method. These tests are
chosen such that their analytical solutions are known. But
the method developed in this research can be applied to
more complicated problems. The numerical implementation
is carried out in Microsoft Maple13.

Example 1. We consider the following inverse problem:

𝑢
𝑡
= 𝑢
𝑥𝑥

+ 𝑝 (𝑡) 𝑢
𝑥
+ 4𝑡 (

1

2

+ 2𝑥) ; 0 < 𝑥 < 1, 0 < 𝑡 < 1,

𝑢 (𝑥, 0) = (

1

2

− 𝑥) 𝑥; 0 ≤ 𝑥 ≤ 1,

𝑢 (0, 𝑡) = 2𝑡
2
− 2𝑡; 0 ≤ 𝑡 ≤ 1,

𝑢
𝑥
(1, 𝑡) =

−3

2

; 0 ≤ 𝑡 ≤ 1,

∫

1

0

𝑢 (𝑥, 𝑡) 𝑑𝑥 = 2𝑡
2
− 2𝑡 −

1

12

, 0 ≤ 𝑡 ≤ 1.

(36)

The true solution is 𝑢(𝑥, 𝑡) = (1/2 − 𝑥)𝑥 + 2𝑡
2
− 2𝑡 while

𝑝(𝑡) = 4𝑡. Let 𝑢
0
(𝑥, 𝑡) = 𝑢(𝑥, 0) = (1/2 − 𝑥)𝑥. From (35),

we obtain 𝑢
1
(𝑥, 𝑡) = (1/2 − 𝑥)𝑥 + 2𝑡

2
− 2𝑡, which is the exact

solution. Also from (29), we have 𝑝(𝑡) = 4𝑡, which is equal to
the exact 𝑝(𝑡) of this example.

Example 2. We consider the inverse problem (2)–(4) as
follows:

𝑢
𝑡
= 𝑢
𝑥𝑥

+ 𝑝 (𝑡) 𝑢
𝑥

+ 4𝑒
4𝑡

(

3

2

+ 2𝑥) ; 0 < 𝑥 < 1, 0 < 𝑡 < 1,

𝑢 (𝑥, 0) = (

1

2

− 𝑥) 𝑥 + 2; 0 ≤ 𝑥 ≤ 1,

𝑢 (0, 𝑡) = 2𝑒
4𝑡

− 2𝑡; 0 ≤ 𝑡 ≤ 1,

𝑢
𝑥
(1, 𝑡) =

−3

2

; 0 ≤ 𝑡 ≤ 1,

∫

1

0

𝑥𝑢 (𝑥, 𝑡) 𝑑𝑥 = 𝑒
4𝑡

− 𝑡, 0 ≤ 𝑡 ≤ 1.

(37)

The exact solution for this example is 𝑢(𝑥, 𝑡) = (1/2 − 𝑥)𝑥 +

2𝑒
4𝑡

− 2𝑡 while 𝑝(𝑡) = 4𝑒
4𝑡. Let 𝑢

0
(𝑥, 𝑡) = 𝑢(𝑥, 0) = (1/2 −

𝑥)𝑥 + 2.
Using (35) and (29), we obtain 𝑢

1
(𝑥, 𝑡) = (1/2−𝑥)𝑥+2𝑒

4𝑡
−

2𝑡 and 𝑝(𝑡) = 4𝑒
4𝑡, respectively, which is the exact solution in

this example.

Remark 3. From the above two examples, it can be seen that
the exact solution is obtained by using one iteration step only.
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Table 1: Absolute errors of 𝑢
𝑛
at 𝑡 = 0.1 for Example 3.

𝑥 |𝑢 − 𝑢
40
| |𝑢 − 𝑢

60
| |𝑢 − 𝑢

80
| |𝑢 − 𝑢

100
|

0.0 1.005𝐸 − 6 3.189𝐸 − 9 1.011𝐸 − 11 3.207𝐸 − 14

0.2 1.005𝐸 − 6 3.189𝐸 − 9 1.011𝐸 − 11 3.207𝐸 − 14

0.4 1.005𝐸 − 6 3.189𝐸 − 9 1.011𝐸 − 11 3.207𝐸 − 14

0.6 1.005𝐸 − 6 3.189𝐸 − 9 1.011𝐸 − 11 3.207𝐸 − 14

0.8 1.005𝐸 − 6 3.189𝐸 − 9 1.011𝐸 − 11 3.207𝐸 − 14

1.0 1.005𝐸 − 6 3.189𝐸 − 9 1.011𝐸 − 11 3.207𝐸 − 14

Table 2: Absolute errors of 𝑝
𝑛
for Example 3.

𝑡 |𝑝 − 𝑝
40
| |𝑝 − 𝑝

60
| |𝑝 − 𝑝

80
| |𝑝 − 𝑝

100
|

0.0 7.542𝐸 − 6 2.391𝐸 − 8 7.585𝐸 − 11 2.405𝐸 − 13

0.2 7.542𝐸 − 6 2.391𝐸 − 8 7.585𝐸 − 11 2.405𝐸 − 13

0.4 7.542𝐸 − 6 2.391𝐸 − 8 7.585𝐸 − 11 2.405𝐸 − 13

0.6 7.542𝐸 − 6 2.391𝐸 − 8 7.585𝐸 − 11 2.405𝐸 − 13

0.8 7.542𝐸 − 6 2.391𝐸 − 8 7.585𝐸 − 11 2.405𝐸 − 13

1.0 7.542𝐸 − 6 2.391𝐸 − 8 7.585𝐸 − 11 2.405𝐸 − 13

Example 3. We consider the following inverse problem:

𝑢
𝑡
= 𝑢
𝑥𝑥

+ 𝑝 (𝑡) 𝑢
𝑥
; 0 < 𝑥 < 1, 0 < 𝑡 < 1,

𝑢 (𝑥, 0) = 𝑥; 0 ≤ 𝑥 ≤ 1,

𝑢 (0, 𝑡) = 𝑡; 0 ≤ 𝑡 ≤ 1,

𝑢 (1, 𝑡) = 1 + 𝑡; 0 ≤ 𝑡 ≤ 1,

∫

√𝑡

0

√𝑥 𝑢 (𝑥, 𝑡) 𝑑𝑥 =

2

3

𝑡
7/4

+

2

5

𝑡
5/4

, 0 ≤ 𝑡 ≤ 1.

(38)

The true solution is 𝑢(𝑥, 𝑡) = 𝑥 + 𝑡 while 𝑝(𝑡) = 1. Let
𝑢
0
(𝑥, 𝑡) = 𝑢(𝑥, 0) = 𝑥. According to (35), one can obtain the

successive approximations 𝑢
𝑛
(𝑥, 𝑡) of 𝑢(𝑥, 𝑡) as follows:

𝑢
1
(𝑥, 𝑡) = 𝑥 +

7

4

𝑡,

𝑢
2
(𝑥, 𝑡) = 𝑥 +

7

16

𝑡,

𝑢
3
(𝑥, 𝑡) = 𝑥 +

91

64

𝑡,

𝑢
4
(𝑥, 𝑡) = 𝑥 +

175

256

𝑡,

.

.

. .

(39)

And from (29), one can obtain the successive approximations
of 𝑝(𝑡) as follows:

𝑝
1
(𝑡) =

7

16

,

𝑝
2
(𝑡) =

91

64

,

0 0.2 0.4 0.6 0.8 1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x

t

u
−
u
4
0

×10−5

Figure 1: Graph of |𝑢(𝑥, 𝑡) − 𝑢
40
(𝑥, 𝑡)| at 𝑡 = 0.1 for Example 3.

𝑝
3
(𝑡) =

175

256

,

𝑝
4
(𝑡) =

1267

1024

,

.

.

. .

(40)

And the rest of the components of iteration formula (35)
and (29) are obtained using the Maple Package.The obtained
numerical results are summarized in Tables 1 and 2. In
addition, the graphs of the error functions |𝑢 − 𝑢

40
| and

|𝑝 − 𝑝
40
| are plotted in Figures 1 and 2.

From these results, we conclude that the variational
iteration method for this example gives remarkable accuracy
in comparison with the exact solution.
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0 0.20.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9999

1

1.0001

1.0002

t

p(t)

p40(t)

Figure 2: Graph of |𝑝(𝑡) − 𝑝
40
(𝑡)| for Example 3.

6. Conclusion

In the present work, we have demonstrated the applica-
bility of the VIM for solving a class of parabolic inverse
problem in reaction-diffusion equation and introduce an
estimation of the absolute error of the approximate solution
for the proposed method. The method needs much less
computational work compared with traditional methods and
does not need discretization. The illustrative examples show
the efficiency of the method. By this method, we obtain
remarkable accuracy in comparison with the exact solution.
Moreover, by using only one iteration step, we may get
the exact solution. We expect that, for more general cases,
where the inhomogeneous term, 𝑓(𝑥, 𝑦, 𝑧, 𝑡, 𝑢, 𝑢

𝑥
, 𝑢
𝑦
, 𝑢
𝑧
, 𝑝),

has more complicated structures, the present method works
well. In conclusion wemention that the VIM can be extended
for similar two- and three-dimensional inverse parabolic
problems subject to integral overspecification.
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