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For the generator excitation control system which is equipped with static var compensator (SVC) and unknown parameters, a
novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function
with the following features: (1) the transformation of the excitation generator model to the linear systems is omitted; (2) the
prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function;
(3) the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the
weighted vector itself; therefore, it is more suitable for the real time control; and (4) the explosion of complicity problem inherent in
the backstepping control can be eliminated. It is proved that the new scheme canmake the system semiglobally uniformly ultimately
bounded. Simulation results show the effectiveness of this control scheme.

1. Introduction

With the development of power system, the requirements
of the load are increasing. However, the ability of the
transmission network is limited and the electric power
system has gradually reached its operating limit; the world
power systems tend to extend power grid scale and develop
larger power system. However, the power systems are more
likely to encounter some problems such as oscillations and
complex nonlinear phenomena due to the extension of
power grid scale and some emergencies. Therefore, ways of
maintaining the reliability and stability of power system are
attracting more and more research interest [1–4]. Moreover,
the promotion of the control ability of the generator exci-
tation system can help us to monitor the states of system
and predict system performance; it is the most effective way
to improve the performance of the whole excitation control
system and it has been widely of concern in recent years
[5–7].

The most common method for designing generator exci-
tation system controller is the direct-feedback-linearization,
which transforms the nonlinear model into a linear one
by some mathematical ways. However, it is only effective

to the system when special conditions are satisfied [8, 9].
Now, more and more nonlinear control techniques are being
applied to the generator excitation systems. In [10], an output
feedback controller combined with high-order sliding-mode
techniques is proposed to guarantee the transient stability of
the power systems. In [11], for the nonlinear characteristics
of the transient process in power system whose parameters
are known, Colbia-Vega and his collaborators designed a
controller for steam-valving and excitation system, which
can stabilize the voltage and improve power quality. In [12],
an adaptive fuzzy zero dynamic and sliding model control
is proposed to cope with the unknown parameters, and
the fuzzy logic rules are used to approximate the unknown
nonlinear functions. For the time-varying and uncertainties
of the reactance and voltage in one-machine infinite-bus
power system, Zhang and Zhu in [13] designed an adaptive
excitation controller by using strong tracking filter in the
design procedure of excitation controller of generators, and
the stability of the control system is improved when it is
accompanied with some disturbances; however, it has the
explosion of complicity problem inherent in the backstepping
control. In [14], an adaptive filter control for generator
excitation system was proposed based on IEEE 14-bus.
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Figure 1: Single machine infinite bus system with SVC.

Motivated by the previous work ([12, 13], etc.) this paper
has successfully fused adaptive dynamic surface control with
neural network and tracking error transformed function to
design a robust adaptive controller for the nonlinear power
system. The features of our control scheme are as follows:

(i) the tracking error of the power angle and voltage at
the SVC can be transformed to an arbitrarily prespec-
ified performance by an error transformed function;

(ii) the neural network based adaptive dynamic surface
controller is designed without doing any linearization
to the excitation generator model. Therefore, the
design procedures and the final control law are greatly
simplified and the control accuracy is improved;

(iii) by using the neural network, the structure and the
parameters of the control system can be totally
unknown;

(iv) by estimating the norm of the weighted vector of
neural network instead of the weighted vector itself,
the computational burden is greatly reduced and it is
more suitable for the real time control.

This paper is organized as follows. In Section 2, the
mathematical model of excitation system of power generator
is introduced and the control purpose is formulated. In
Section 3, the design procedure of the neural network and
the tracking error transformed function based adaptive DSC
scheme is presented. Section 4 gives the stability analysis
for the proposed scheme. Finally, simulation examples are
given to demonstrate the effectiveness of the proposed design
method.

2. The Excitation System of Power Generator

2.1. Mathematical Model. Assume that the SVC device is
installed in a single-machine infinite-bus system; the struc-
ture and the equivalent circuit diagram are shown in Figure 1
[15].

To proceed, the following assumptions are made.

Assumption 1. Ignoring the dynamic process of rapid excita-
tion equipment means the control voltage 𝑢𝑓 is equal to the
generator excitation voltage 𝐸𝑓, 𝐸𝑓 = 𝑢𝑓.

Assumption 2. The mechanical power of generators remains
unchanged in transient stability process; that is, Δ𝑃𝑚 = 0.

Then, themathematical model of the generator excitation
control system equipped with SVC can be described as
follows [16–18]:
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where 𝛿 is the power angle of the generator running rotor; 𝜔
is the rotor speed of the generator (rad/s); 𝐷 is the damping
constant; 𝐻 is the inertia constant; 𝜔0 = 2𝜋𝑓0 is the
synchronousmachine speed (rad/s);𝑓0 is the rated frequency
(Hz); 𝑃𝑚 is the mechanical power of motor output; 𝑇𝑑0 is
the direct axis transient short circuit time constant (s); 𝑇𝐶
is the time constant of adjusting system and SVC (s); 𝐸𝑞
is the transient electromotive force (EMF) of the generator;
𝑉𝑠 = 1 is the voltage of the system; 𝑢𝑓 is the control
voltage of excitation equipment; 𝑢𝐵 is the input of SVC; 𝐵𝐿
is the adjustable equivalent susceptance in SVC; 𝐵𝐶 is the
initial value of adjustable susceptance; 𝑑1 is position bounded
torque interference of the rotor; and 𝑑2 is electromagnetic
transient interference of the stator:

𝑋1 = 𝑋

𝑑 + 𝑋𝑇,

𝑋3 = 𝑋𝑑 + 𝑋𝑇,

𝑋𝑑Σ = 𝑋3 + 𝑋2 + 𝑋3𝑋2 (𝐵𝐿 − 𝐵𝐶) ,

𝑋

𝑑Σ = 𝑋1 + 𝑋2 + 𝑋1𝑋2 (𝐵𝐿 − 𝐵𝐶) ,

(2)

where 𝑋2 is the transmission line reactance; 𝑋𝑑 is the
generator direct axis reactance;𝑋

𝑑 is the direct axis transient
reactance of the generator; and 𝑋𝑇 is the transformer reac-
tance.

When the system encounters the external disturbances,
the stability of the power angle and SVC access point voltage
can be effectively improved by combining the regulation of
SVC with generator-excitation adjustment. In this paper, we
take increment of the power angle and accessing point voltage
as the output value of the system to design our adaptive
dynamic surface controller; that is,

𝑦1 = 𝛿 − 𝛿0,

𝑦2 = 𝑉𝑚 − 𝑉ref,
(3)



Mathematical Problems in Engineering 3

where 𝑉𝑚 is the accessing point voltage and 𝑉ref is the
reference voltage. According to the circuit, we have

𝑉𝑚 =
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Based on the above descriptions, let 𝑥1 = 𝛿 − 𝛿0, 𝑥2 =

𝜔−𝜔0, 𝑥3 = 𝐸

𝑞, and 𝑥4 = 𝑉𝑚 −𝑉ref; then, (1) can be expressed

as the following form:
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where 𝑥𝑖 := [𝑥1, . . . , 𝑥𝑖]
𝑇
∈ 𝑅

𝑖, 𝑖 = 1, . . . , 4, are state vectors.
Then, the system (5) can be converted into the following two
independent subsystems (7) and (8), whose relative degree is
3 and 1, respectively:

�̇�1 = 𝑥2,

�̇�2 = 𝑔2𝑥3 + 𝑓2 (𝑥2) + 𝑑1,

�̇�3 = 𝑔3𝑢𝑓 + 𝑓3 (𝑥3) + 𝑑2,

𝑦1 = 𝑥1,

(7)

�̇�4 = 𝑔4𝑢

𝐵 + 𝑓4 (𝑥4) ,

𝑦2 = 𝑥4.

(8)

Now, we can design our adaptive dynamic surface control
law of the power system based on the following assumptions.

Assumption 3. The value of 𝑔2 is unknown but the sign of 𝑔2
is known; it is assumed that there exist two constants 𝑔𝑚 and
𝑔2max satisfying

0 < 𝑔𝑚 ≤




𝑔2




≤ 𝑔2max. (9)

Assumption 4. The reference signal 𝑦𝑟 is smooth and
bounded; [𝑦𝑟, ̇𝑦𝑟, ̈𝑦𝑟]

𝑇 belong to a compact set for all 𝑡 ≥ 0.

Remark 5. Assumptions 1 and 2 which are the same as those
in [15] are used to construct the model of the excitation
systemof power generator. Assumption 3 is used in Section 4,
such as in the proof of (59), (65), and (67).We also emphasize
that 𝑔𝑚 and 𝑔2max are not required in the implementa-
tion of our control law but are required for analysis only.
Assumption 4 is common in all dynamic surface control
schemes.

2.2. RBF Neural Network. In general, the neural network is
a multi-input single-output system [19]; the mathematical
expression is

𝑌 = 𝜗
𝑇
𝜓 (𝜉) , (10)

where 𝜉 ∈ R𝑛 is the input of RBF neural network;𝑌 ∈ R is the
output of RBFNN, 𝜗 ∈ R𝑁 is an 𝑁-dimensional parameter
vector, and here 𝑁 is the number of neurons; 𝜓(𝜉) : R𝑛

→

R𝑁 is nonlinear vector function and 𝜓(𝜉) = [𝜓1(𝜉), . . . ,

𝜓𝑁(𝜉)]
𝑇 and 𝜓𝑘(𝜉) is the Gauss function.

Lemma 6. RBFNN is a universal approximator in the sense
that, given any real continuous functionF(⋅) : Ω𝜉 → R with
Ω𝜉 ⊆ R𝑛 a compact set and any 𝛿𝑚 > 0, by appropriately
choosing 𝜎𝑘 and 𝜁𝑘, 𝑘 = 1, . . . , 𝑁, for some sufficiently large
integer 𝑁, there exists an RBF network [20], ∀𝜉 ∈ Ω𝜉 ⊆ R𝑛,
|𝛿| ≤ 𝛿𝑚,

F (𝜉) = 𝜗
∗𝑇
𝜓 (𝜉) + 𝛿 (𝜉) , (11)
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where 𝜗∗ is the optimal weight vector of 𝜗 and 𝛿(𝜉) is approxi-
mation error and can be defined as

𝜗
∗
= argmin

𝜗∈R𝑛
{sup
𝜉∈Ω
𝜉





𝑌 (𝜉) −F (𝜉)





} ,

𝛿 (𝜉) = F (𝜉) − 𝜗
∗𝑇
𝜓 (𝜉) .

(12)

2.3. Error Transformed Function. We define the tracking
error:

𝑒 := 𝑦 − 𝑦𝑟, (13)

where 𝑦𝑟 is the desired trajectory. According to [21, 22], the
performance function and error transformed function are
defined as follows: a performance function 𝜛(𝑡) : R+ →

R− − {0} is defined as a positive smooth decreasing function,
such that, for all 𝑡 ≥ 0,

−𝜎𝜛 (𝑡) < 𝑒 (𝑡) < 𝜛 (𝑡) , if 𝑒 (0) > 0,

−𝜛 (𝑡) < 𝑒 (𝑡) < 𝜎𝜛 (𝑡) , if 𝑒 (0) < 0,
(14)

where 0 < 𝜎 < 1 and lim𝑡→∞ = 𝜛∞ > 0 and 𝜛∞ is the
maximumallowable tracking error of steady-state. To convert
(14) into an equivalent unconstrained one, define the error
transformed function

𝑒 (𝑡) := 𝜛 (𝑡)Φ (𝑆1) , (15)

where 𝑆1 is the transformed error and Φ(𝑆1) is a smooth and
strictly monotone increasing function; the inverse function
has the following properties:

−𝜎 < Φ (𝑆1) < 1, if 𝑒 (0) > 0,

−1 < Φ (𝑆1) < 𝜎, if 𝑒 (0) < 0,
(16)

where

lim
𝑆
1
→−∞

Φ(𝑆1) = −𝜎, lim
𝑆
1
→∞

Φ(𝑆1) = 1, if 𝑒 (0) > 0,

lim
𝑆
1
→−∞

Φ(𝑆1) = −1, lim
𝑆
1
→∞

Φ(𝑆1) = 𝜎, if 𝑒 (0) < 0.

(17)

As (17) shows, if 𝑆1 ∈ L∞, (16) holds. Take 𝜛(𝑡) >

0 and (15) into consideration, and we can have −𝜎𝜛(𝑡) <

𝜛(𝑡)Φ(𝑆1) < 1 (if 𝑒(0) > 0) or −𝜛(𝑡) < 𝜛(𝑡)Φ(𝑆1) < 𝜎𝜛(𝑡) (if
𝑒(0) < 0); that is, (14) holds. Hence, from the above analysis,
to achieve the prespecified tracking performance, we just only
need to show that 𝑆1 ∈ L∞, where the strictly increasing
property ofΦ(𝑆1) guarantees that we can obtain

𝑆1 = Φ
−1
(

𝑒 (𝑡)

𝜛 (𝑡)

) . (18)

Note that the case 𝑒(0) = 0 can be incorporated into
𝑒(0) > 0 or 𝑒(0) < 0. At the same time, 𝜎 cannot be chosen to
be zero due to 𝑆1(0) being infinite.

3. Adaptive Dynamic Surface Control of
Generator Excitation System

According to themathematicalmodel of the generator excita-
tion system that is shown in (7), we design adaptive dynamic
surface controller about power angle subsystem as follows.

Step 1. Let the first surface error and the tracking error as (18)
be defined:

̇𝑆1 = Ψ[−

�̇�

𝜛

𝑒 + 𝑥2 − ̇𝑦𝑟] ,

Ψ :=

1

𝜛

𝜕Φ
−1

𝜕 (𝑒/𝜛)

,

(19)

where 𝑦𝑟 is an ideal output of the power angle; we suppose
that 𝑦𝑟 is a smooth and continuous function, 𝑒 := 𝑦1 − 𝑦𝑟 =

𝑥1 − 𝑦𝑟.
Consider the following quadratic function:

𝑉1 =
1

2

𝑆
2
1. (20)

We can obtain that

�̇�1 = 𝑆1 [Ψ(−

�̇�

𝜛

𝑒 − ̇𝑦𝑟) + Ψ (𝑥2 − 𝑥2𝑑) + Ψ𝑥2𝑑] , (21)

where 𝑥2𝑑 is the virtual control signal that will be designed;
choose the virtual control law as follows to stabilize (21):

𝑥2𝑑 =
[−𝑘1𝑆1 − Ψ (− (�̇�/𝜛) 𝑒 + Ψ𝑆1 − ̇𝑦𝑟)]

Ψ

. (22)

In order to avoid “differential explosion,” the new variable
𝑧2 is obtained by first-order low pass filter:

𝜏2�̇�2 + 𝑧2 = 𝑥2𝑑, (23)

where 𝜏2 is the filter time constant.

Step 2. Define the second surface error:

𝑆2 = 𝑥2 − 𝑧2. (24)

Consider the following quadratic function:

𝑉2 =
1

2

(𝑆
2
2 +

𝑔𝑚

𝛾V
2
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The time derivative of 𝑉2 is
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𝑔𝑚

𝛾V
2
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We need to use neural network to approximate the unknown
terms on a compact set Ω𝜉

2

:

1
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where 𝜉2 := (𝑥1, 𝑥2, 𝑥2𝑑, 𝑧2) ∈ Ω𝜉
2

⊂ R4; define 𝜐2 = 𝜐2 − 𝜐
∗
2 ,

and 𝛾𝜐
2

is a positive design parameter. Let the estimated value
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1
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2
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1

2

𝛿
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From (27) and (28), we have

�̇�2 ≤ 𝑆2 [𝑔2 (𝑥3 − 𝑥3𝑑) + 𝑔2𝑥3𝑑 +
𝑔𝑚𝛼
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𝛾V
2
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(30)

where 𝑥3𝑑 is the virtual control signal to be designed; let the
power angle actual control law andparameter adjustment law,
respectively, be as follows:

𝑥3𝑑 = sgn (𝑔2) (−𝑘2𝑆2 −
𝛼
2
2𝑆2𝜐2𝜓

𝑇
2 𝜓2

2

) , (31)

̇V̂2 = 𝛾V
2

[

𝛼
2
2𝑆

2
2𝜓

𝑇
2 𝜓2

2

− 𝜎V
2

V̂2] . (32)

The new variable 𝑧3 is obtained by first-order low pass filter:
𝜏3�̇�3 + 𝑧3 = 𝑥3𝑑, (33)

where 𝜏3 is the filter time constant. In order to avoid “differ-
ential explosion” problem brought by backstepping control,
we use 𝑧3 instead of 𝑥3𝑑 in the following.

Step 3. Define the third surface error:
𝑆3 = 𝑥3 − 𝑧3. (34)

Consider the following quadratic function:

𝑉3 =
1

2

(

1

𝑔3

𝑆
2
3 +

1

𝛾V
3

Ṽ23) . (35)

The time derivative of 𝑉3 is

�̇�3 = 𝑆3 [𝑢𝑓 +
𝑓3 (𝑥3)

𝑔3

+

𝑑2

𝑔3

−

�̇�3

𝑔3

] +

1

𝛾V
3

Ṽ3 ̇V̂3. (36)

Similar to second step, we use neural network to approximate
the unknown term in a compact set:

1

𝑔3

[𝑓3 (𝑥3) − �̇�3 + 𝑑2] = 𝜃
∗𝑇
𝛿
3

𝜓3 (𝜉3) + 𝛿
∗
2 (𝜉3) , (37)

where 𝜉3 := (𝑥1, 𝑥2, 𝑥3, 𝑥3𝑑, 𝑧3) ∈ Ω𝜉
3

⊂ R5; let 𝜐3 = 𝜐3 − 𝜐
∗
3 ,

𝛾𝜐
3

is positive design parameter, and 𝜐3 is the estimate value
of 𝜐∗3 = ‖𝜃

∗𝑇
𝛿
3

‖

2. Consider the hypothesis; we have

�̇�3 ≤ 𝑆3 [𝑢𝑓 +
𝛼
2
3𝑆3𝜐

∗
3𝜓

𝑇
3 𝜓3

2

+

𝑆3

2

]

+

1

2

𝛿
∗2
3 (𝜉3) +

1

2𝛼
2
3

+

1

𝛾V
3

Ṽ3 ̇V̂3.
(38)

Let the power angle actual control law and parameter adjust-
ment law be, respectively, as follows:

𝑢𝑓 = −𝑘3𝑆3 −
𝛼
2
3𝑆3𝜐3𝜓

𝑇
3 𝜓3

2

−

𝑆3

2

, (39)

̇V̂3 = 𝛾V
3

[

𝛼
2
3𝑆

2
3𝜓

𝑇
3 𝜓3

2

− 𝜎V
3

V̂3] . (40)

Similarly, we design controller for the voltage subsystem
(8); surface error is defined in (18):

̇𝑆4 = Ψ2 [−
�̇�2

𝜛2

𝑒2 + 𝑔4𝑢

𝐵 + 𝑓4 (𝑥4) − ̇𝑦𝑟2] ,

Ψ2 :=
1

𝜛2

𝜕Φ
−1

𝜕 (𝑒2/𝜛2)
,

(41)

where 𝑒2 := 𝑦2 − 𝑦𝑟2 = 𝑥4 − 𝑦𝑟2, 𝑦𝑟2 is the ideal voltage
reference signal; consider the following quadratic function:

𝑉4 =
1

2

(

1

𝑔4

𝑆
2
4 +

1

𝛾V
4

Ṽ24) . (42)

The time derivative of 𝑉4 is

�̇�4 = 𝑆4 [
Ψ2

𝑔4

(−

�̇�2

𝜛2

𝑒2 − ̇𝑦𝑟2) +
Ψ2𝑓4 (𝑥4)

𝑔4

+ Ψ2𝑢

𝐵]

+

1

𝛾V
4

Ṽ4 ̇V̂4.
(43)

We use neural network to approximate 𝑓4(𝑥4):

1

𝑔4

Ψ2 [𝑓4 (𝑥4) −
�̇�2

𝜛2

𝑒2 − ̇𝑦𝑟2] = 𝜃
∗𝑇
𝛿
4

𝜓4 (𝜉4) + 𝛿
∗
4 (𝜉4) , (44)

where 𝜉4 := (𝑥4, 𝜛2, �̇�2, 𝑒2, ̇𝑦𝑟2) ∈ Ω𝜉
4

⊂ R5; let 𝜐4 = 𝜐4 − 𝜐
∗
4 ,

𝛾𝜐
3

is a positive design parameter, and 𝜐4 is an estimate value
of 𝜐∗4 = ‖𝜃

∗𝑇
𝛿
4

‖

2:

�̇�4 ≤ 𝑆4 [
𝛼
2
4𝑆4𝜐

∗
4𝜓

𝑇
4 𝜓4

2

+ Ψ2𝑢

𝐵 +

1

2

𝑆4]

+

1

2

𝛿
∗2
4 (𝜉4) +

1

2𝛼
2
4

+

1

𝛾V
4

Ṽ4 ̇V̂4.
(45)

Design voltage control law and parameter adjustment law are,
respectively, as follows:

𝑢

𝐵 =

1

Ψ2

[−𝑘4𝑆4 −
1

2

𝑆4 −
𝛼
2
4𝑆4𝜐4𝜓

𝑇
4 𝜓4

2

] ,

̇V̂4 = 𝛾V
4

[

𝛼
2
4𝑆

2
4𝜓

𝑇
4 𝜓4

2

− 𝜎V
4

V̂4] .

(46)

Remark 7. We emphasize our dynamic surface control
scheme which, combined with tracking error transformed
function (15), is also suitable for the half-car active suspension
system that is described in [23, 24].
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4. Stability Analysis

This section will conduct stability analysis for dynamic sur-
face control scheme on the generator excitation system.
Although the control law is simple, the stability analysis is
relatively complex due to the introduction of first-order low-
pass filters. For the first subsystem in (7), to begin with, we
define

𝑦𝑒2 = 𝑧2 − 𝑥2𝑑

= 𝑧2 +
[𝑘1𝑆1 + Ψ (− (�̇�/𝜛) 𝑒 + Ψ𝑆1 − ̇𝑦𝑟)]

Ψ

,

(47)

𝑦𝑒3 = 𝑧3 − 𝑥3𝑑 = 𝑧3 ± (𝑘2𝑆2 +
𝛼
2
2𝑆2𝜐2𝜓

𝑇
2 𝜓2

2

) , (48)

where 𝑥2𝑑 and 𝑥3𝑑 are designed in (22) and (31), respectively.
From (23) and (33), we have

�̇�2 =
(𝑥2𝑑 − 𝑧2)

𝜏2

= −

𝑦𝑒2

𝜏2

,

�̇�3 =
(𝑥3𝑑 − 𝑧3)

𝜏3

= −

𝑦𝑒3

𝜏3

.

(49)

Then, the time derivative of (47) and (48) is

̇𝑦𝑒2 = −
𝑦𝑒2

𝜏2

+

𝑘1
̇𝑆1

Ψ

+

𝑘1𝑆1Ψ̇

Ψ
2

+ (

�̈�

𝜛

𝑒 −

�̇�
2

𝜛
2
𝑒 +

�̇�

𝜛

̇𝑒)

+ (Ψ̇𝑆1 + Ψ
̇𝑆1) − ̈𝑦𝑟

= −

𝑦𝑒2

𝜏2

+ 𝐵2 (𝑆1, 𝑆2, 𝑦2, 𝜛, �̇�, �̈�, 𝑦𝑟, ̇𝑦𝑟, ̈𝑦𝑟) ,

̇𝑦𝑒3 = −
𝑦𝑒3

𝜏3

±
[

[

𝑘2
̇𝑆2 +

𝛼
2
2
̇𝑆2𝜐2𝜓

𝑇
2 𝜓2

2

+

𝛼
2
2𝑆2

̇
�̂�2𝜓

𝑇
2 𝜓2

2

+𝛼
2
2𝑆2

̇
�̂�2𝜓2 × (

2

∑

𝑗=1

𝜕𝜓2

𝜕𝑥𝑗

�̇�𝑗 +
𝜕𝜓2

𝜕𝑆2

)
]

]

= −

𝑦𝑒3

𝜏3

+ 𝐵3 (𝑆1, 𝑆2, 𝑆3, 𝑦2, 𝑦3, 𝜐2, 𝜛, �̇�, �̈�, 𝑦𝑟, ̇𝑦𝑟, ̈𝑦𝑟) ,

(50)

where 𝐵2 and 𝐵3 are continuous functions.

Theorem8. Consider the closed-loop control system composed
by object (7), first-order low-pass filter (23), (33), the actual
control law (39), and parameter adjustment law (40):

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 +
1

2

𝑦
2
𝑒2 +

1

2

𝑦
3
𝑒3, (51)

where𝑉1,𝑉2, and𝑉3, respectively, are defined by (20), (25), and
(35). We suppose that for the given positive constant 𝛿∗𝑖 , (27),
(37), and (44) meet |𝛿𝑖(𝜉𝑖)| ≤ 𝛿

∗
𝑖 , 𝑖 = 2, 3, 4, in a compact set.

For any given positive parameter 𝑝, if

𝑉 (0) ≤ 𝑝, (52)

then through the proper selection of the design parameters 𝑘1,
𝑘2, 𝑘3,𝛾𝜐

2

,𝛾𝜐
3

, 𝜎𝜐
2

, and 𝜎𝜐
3

all the variables in the closed-loop
system are uniformly ultimately bounded. The tracking perfor-
mance of the system can be specified in advance.

Proof. The derivative of 𝑉 by considering (51) is

�̇� = �̇�1 + �̇�2 + �̇�3 + 𝑦𝑒2 ̇𝑦𝑒2 + 𝑦𝑒3 ̇𝑦𝑒3. (53)

From (24) and (47), we have

𝑥2 = 𝑆2 + 𝑦𝑒2 + 𝑥2𝑑. (54)

And consider the inequality

Ψ𝑆1𝑆2 ≤
1

2

Ψ
2
𝑆
2
1 +

1

2

𝑆
2
2,

Ψ𝑆1𝑦𝑒2 ≤
1

2

Ψ
2
𝑆
2
1 +

1

2

𝑦
2
𝑒2.

(55)

Substituting (54) and (55) and virtual control law (22) into
(21), we have

�̇�1 ≤ −𝑘1𝑆
2
1 +

1

2

𝑆
2
2 +

1

2

𝑦
2
𝑒2. (56)

Using (34) and (48),

𝑥3 = 𝑆3 + 𝑦𝑒3 + 𝑥3𝑑. (57)

At the same time,

𝑔2𝑆2𝑆3 ≤
1

2

𝑔
2
2𝑆

2
2 +

1

2

𝑆
2
3,

𝑔2𝑆2𝑦𝑒3 ≤
1

2

𝑔
2
2𝑆

2
2 +

1

2

𝑦
2
𝑒3.

(58)

Substitute (57) and (58), virtual control law (31), and param-
eter adjustment law (32) into (30):

�̇�2 ≤ −𝑘2




𝑔2




𝑆
2
2 +

1

2

𝑆
2
3 +

1

2

𝑦
2
𝑒3

+

1

2

𝛿
∗2
2 +

𝑔
2
2max
2𝛼

2
2

− 𝑔𝑚𝜎V
2

V̂2Ṽ2.
(59)

From (39) and (40), (38) can be transformed as

�̇�3 ≤ −𝑘3𝑆
2
3 +

1

2

𝛿
∗2
3 +

1

2𝛼
2
3

− 𝜎V
3

V̂3Ṽ3. (60)

According to Assumption 4,

Π := {(𝑦𝑟, ̇𝑦𝑟, ̈𝑦𝑟) : 𝑦
2
𝑟 + ̇𝑦

2
𝑟 + ̈𝑦𝑟 ≤ 𝐵0} (61)

is a compact set inR3, and𝐵0 > 0.𝑀2 is themaximumof |𝐵2|
in Π;𝑀3 is the maximum of |𝐵3| at Π. For any 𝑝 > 0, using
inequality, we can obtain that





𝑦𝑒2𝐵2





≤

𝑦
2
𝑒2𝐵

2
2

2𝜇

+

𝜇

2

≤

𝑦
2
𝑒2𝑀

2
2

2𝜇

+

𝜇

2

, (62)





𝑦𝑒3𝐵3





≤

𝑦
2
𝑒3𝐵

2
3

2𝜇

+

𝜇

2

≤

𝑦
2
𝑒3𝑀

2
3

2𝜇

+

𝜇

2

, (63)
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where 𝜇 is a positive constant parameter

1

𝜏2

=

1

2

+

𝑀
2
2

2𝜇

+ 𝛼0,

1

𝜏3

=

1

2

+

𝑀
2
3

2𝜇

+ 𝛼0.

(64)

Furthermore,

−𝑔𝑚𝜎V
2

V̂2Ṽ2 ≤ −
𝜎V
2

𝑔𝑚

2

Ṽ22 +
𝜎V
2

𝑔𝑚

2

V∗22 , (65)

−𝜎V
3

V̂3Ṽ3 ≤ −
𝜎V
3

2

Ṽ23 +
𝜎V
3

2

V∗23 . (66)

Taking (56), (59), (60), and (62)–(66) into consideration, (53)
can be transformed into the following equation:

�̇� ≤ −𝑘1𝑆
2
1 − (𝑘2𝑔𝑚 −

1

2

) 𝑆
2
2 − (𝑘3 −

1

2

) 𝑆
2
3

− 𝛼0𝑦
2
𝑒2 − 𝛼0𝑦

2
𝑒3 −

𝜎V
2

𝑔𝑚

2

Ṽ22 −
𝜎V
3

2

Ṽ23 + 𝐶,
(67)

where

𝐶 =

𝜎V
2

𝑔𝑚

2

V∗22 +

𝜎V
3

2

V∗23 + 𝜇 +

1

2

𝛿
∗2
2

+

1

2

𝛿
∗2
3 +

𝑔
2
2max
2𝛼

2
2

+

1

2𝛼
2
3

.

(68)

And 𝛼0 is a positive design parameter:

𝛼0 ≤ min {𝑘1, 𝑘2𝑔𝑚 −

1

2

, 𝑘3 −
1

2

,

𝛾V
2

𝜎V
2

2

,

𝛾V
3

𝜎V
3

2

} . (69)

From (67), we have

�̇� ≤ −2𝛼0𝑉 + 𝐶. (70)

Let

𝛼0 >
𝐶

2𝑝

. (71)

We can see that when𝑉 = 𝑝, �̇� ≤ 0. So,𝑉 ≤ 𝑝 is an invariant
set. If 𝑉(0) ≤ 𝑝, then, for all 𝑡 ≥ 0, 𝑉(𝑡) ≤ 𝑝. From (70),
∀𝑡 ≥ 0,

0 ≤ 𝑉 (𝑡) ≤

𝐶

2𝛼0

+ {𝑉 (0) −

𝐶

2𝛼0

} 𝑒
−2𝛼
0
𝑡
. (72)

Then,

lim
𝑡→∞

𝑉 (𝑡) =

𝐶

2𝛼0

. (73)

Similar to the second subsystems, we substitute (46) into
(45):

�̇�4 ≤ −𝑘4𝑆
2
4 −

𝜎𝜐
4

2

𝜐
2
4 +

1

2

𝛿
∗2
4 +

1

2𝛼
2
4

+

𝜎𝜐
4

2

𝜐
∗2
4 . (74)

E
q

VS∠0
∘

BL
Bc

G

X1 X2

Figure 2: The equivalent circuit diagram.

Let

𝑘4 ≥
𝑎

𝑔4

, (75)

𝜎V
4

≥

2𝑎

𝛾V
4

, (76)

𝐶2 =
𝜎V
4

2

V∗24 +

1

2

𝛿
∗2
4 +

1

2𝛼
2
4

. (77)

We have

�̇�4 ≤ −2𝑎𝑉 + 𝐶2, (78)

lim
𝑡→∞

𝑉4 (𝑡) =
𝐶

2𝑎

. (79)

As a result, all the signals such as 𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑘1, 𝑘2,
𝑘3, 𝑘4, 𝜎V

2

, 𝜎V
3

, 𝜎V
4

, 𝛼0, and 𝑎 in the closed-loop system are
uniformly bounded. In addition, (69), (75), and (76) show
that, by selecting appropriate design parameters, 𝛼0, 𝑎 can
be infinite; (73) and (79) show that the tracking error can
converge to an arbitrary small value.

5. Simulation Analysis

The single machine infinite bus power system with SVC is
shown in Figures 1 and 2, assuming that the amplitude and
frequency of receiving end bus voltage are not changed.

Systemparameters are𝑋
𝑑 = 0.344,𝑋𝑑 = 0.982,𝑋𝑇 = 0.1,

𝐷 = 2, 𝑋
𝑑Σ = 0.6967, 𝐵𝐿 = 1.55, 𝐵𝐶 = 0.5, 𝑇𝑑0 = 5, 𝑇𝐶 = 2,

𝐻 = 13, 𝐸𝑞 = 1.059, 𝛿0 = 40, 𝜔0 = 100𝜋 rad/s, 𝑃𝑚0 = 1,
𝑉𝑠 = 1, 𝑉ref = 1,𝑋2 = 0.35, and𝑋𝑑Σ = 1.4.

In the simulation the initial values of the states are𝑥1(0) =
40, 𝑥2(0) = 100𝜋, 𝑥3(0) = 1.05, and 𝑥3(0) = 1. For NN
Gaussian function 𝜓𝑗(𝜉𝑖) = exp[−(𝜉𝑖 − 𝜁𝑗)

𝑇
(𝜉𝑖 − 𝜁𝑗)/𝜂

2
𝑗 ],

𝑖 = 2, 3, 4, we choose 21 nodes with the centers of the basis
functions 𝜁𝑗 evenly spaced in [−40, +40] × [−314, +3144] ×
[−2, +2] × [−1, +1] and width 𝜂𝑗 = 1, for 𝑗 = 1, . . . , 21.
Also, we choose a smooth and strictly monotone increasing
function, Φ2(𝑆4) = (2/𝜋) arctan(𝑆4), 𝜛(𝑡) = 0.65𝑒

−8𝑡
+ 0.002

and 𝑆4 = tan((𝜋/2) ⋅ (𝑒2(𝑡)/𝑤2(𝑡))), which means that Ψ2 =
(𝜋/2) ⋅ (1/𝜛2) ⋅ cos

−2
((𝜋/2) ⋅ (𝑒2/𝜛2)).
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Figure 3: Tracking error and the performance function.
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Figure 4: The actual control law 𝑢𝑓 of power angle.

We suppose that three-phase short-circuit occurred on
the terminal of the line at 𝑡 = 8 s and eliminate the fault at
𝑡 = 9 s; the simulation results are shown in Figures 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, and 13. Figure 3 shows that, by introducing
the error transformed function, the system can be stabi-
lized promptly when it encountered some emergencies such
as three-phase short-circuit which means that our control
scheme makes the generator excitation control system have
strong robustness. The tracking error of power angle can
be prespecified by using the performance function 𝜛(𝑡) =

0.65𝑒
−8𝑡

+ 0.002. Figures 4 and 5 are actual control of power
angle and actual voltage control law of the access point
voltage, respectively. From Figure 6–Figure 8 we can know
that all the states in the control system recover to their desired
values in a short time by using our dynamic surface control
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Figure 5: The actual voltage control law 𝑢
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scheme. Figure 9 to Figure 11 show the estimations of weight
vector norm of the neural network. Figure 12 is the access
point voltage increment𝑉𝑚−𝑉ref, whose tracking process can
also be arbitrarily prespecified by using performance function
as that in Figure 3.

Remark 9. The controllers that have been proposed in [12, 13]
are based on backstepping technique, which can cause the
explosion of complicity problem that means the controller
will become complex when the relative degree of the control
system is high. Also, our novel neural network based adaptive
dynamic surface controller is designed without doing any
linearization to the excitation generator model. Therefore,
the design procedures and the final control law are greatly
simplified and the control accuracy is improved. Figure 13
has shown the comparison of the tracking error between our
control scheme and backstepping control scheme.
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6. Conclusion

This paper proposed a novel neural network and tracking
error transformed function based on adaptive dynamic
surface control scheme for the generator excitation control
system which is equipped with SVC. In this scheme, both
the designing procedures and the control law are simplified
because it does not need to make any transformation to the
excitation generator model. The prespecified tracking per-
formance can be guaranteed by using the tracking error
transformed function. The norm of the weighted vector of
neural network is estimated which replaces the estimation
of the weighted vector itself; therefore, the computational
burden is greatly reduced. Also, the explosion of complicity
problem inherent in the backstepping control can be elimi-
nated. It is proved that the new scheme can make the system
semiglobally uniformly ultimately bounded.
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