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By employing the monotone iterative method, this paper not only establishes the existence of the minimal and maximal positive
solutions for multipoint fractional boundary value problem on an unbounded domain, but also develops two computable explicit
monotone iterative sequences for approximating the two positive solutions. An example is given for the illustration of the main
result.

1. Introduction

The fractional calculus has been recognized as an effective
modeling methodology for describing hereditary properties
of various materials and processes widely. For a lot of appli-
cations, we refer the reader to the books [1–5]. For some
new development on the topic, see [6–17] and the references
therein.

Recently, there has been a significant development on
boundary value problems for fractional differential equations
on infinite intervals; see papers [18–26], in which authors
are devoted to investigating the existence of solutions and
positive solutions by employing some fixed point theorems,
Leray-Schauder nonlinear alternative theorem, or fixed point
index theory.

By using Schauder’s fixed point theorem combined with
the diagonalization method, Arara et al. [18] studied the
existence of the bounded solution of the following problem
on infinite intervals:

𝐶
𝐷
𝛼

0+
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 1 < 𝛼 ≤ 2,

𝑦 (0) = 𝑦
0, 𝑦 is bounded on 𝐽,

(1)

where 𝑡 ∈ 𝐽 = [0, +∞), 𝑓 ∈ 𝐶(𝐽 × R,R), 𝑦
0
∈ R, and 𝐶𝐷𝛼

0+

is the Caputo fractional derivative of order 𝛼.

In [19], Zhao and Ge investigated the existence of pos-
itive solutions for the following fractional boundary value
problem by employing the Leray-Schauder nonlinear alter-
native theorem:

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 1 < 𝛼 ≤ 2,

𝑢 (0) = 0, lim
𝑡→+∞

𝐷
𝛼−1

0+
= 𝛽𝑢 (𝜉) ,

(2)

where 𝑡 ∈ 𝐽 = [0, +∞), 𝑓 ∈ 𝐶(𝐽 × R, [0, +∞)), 0 ≤ 𝜉,
𝜂 < ∞, and𝐷

𝛼

0+
is the standard Riemann-Liouville fractional

derivative.
Liang and Zhang [20] were concerned with the following

nonlinear fractional differential equations with multipoint
fractional boundary conditions on an unbounded domain:

𝐷
𝛼
𝑢 (𝑡) + 𝑎 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < ∞,

𝑢 (0) = 𝑢

(0) = 0,

𝐷
𝛼−1

𝑢 (+∞) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑢 (𝜉
𝑖
) ,

(3)

where 𝐽 = [0, +∞), 2 < 𝛼 ≤ 3, 𝐷𝛼 denotes the Rie-
mann-Liouville fractional derivative, 0 < 𝜉

1
< 𝜉
2

< ⋅ ⋅ ⋅ <

𝜉
𝑚−2

< +∞, and 𝛽
𝑖

> 0, 𝑖 = 1, 2, . . . , 𝑚 − 2, satisfy
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0 < ∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑖
< Γ(𝛼). By using the fixed point index

theory, authors gave sufficient conditions for the existence of
multiple positive solutions to the abovemulti-point fractional
boundary value problem.

However, very interesting and important question is “If
we know the existence of the solution, how can we find it?”
This question motivates us to reconsider problem (3). In this
paper, we not only establish the existence of two positive
solutions for problem (3), but also develop two computable
explicit monotone iterative sequences for approximating the
minimal and maximal positive solutions of (3), which is
indeed an important and useful contribution to the existing
literature on the topic. In addition, to start our work, we
employ the monotone iterative method, which is different
from the ones used in [18–26]. Let us state that this method
was widely used for nonlinear problem; see, for instance, [27–
38].

2. Preliminaries and Several Lemmas

In this section, we present some useful definitions and related
theorems.

Definition 1 (see [2]). The Riemann-Liouville fractional deri-
vative of order 𝛿 for a continuous function 𝑓 is defined by

𝐷
𝛿
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛿)
(

𝑑

𝑑𝑡
)

𝑛

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛿−1

𝑓 (𝑠) 𝑑𝑠, 𝑛 = [𝛿] + 1,

(4)

provided the right-hand side is pointwise defined on (0,∞)

and [𝛿] is the integer part of 𝛿.

Definition 2 (see [2]). The Riemann-Liouville fractional inte-
gral of order 𝛿 for a function 𝑓 is defined as

𝐼
𝛿
𝑓 (𝑡) =

1

Γ (𝛿)
∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝑓 (𝑠) 𝑑𝑠, 𝛿 > 0, (5)

provided that such integral exists.

Lemma 3 (see [20]). Let ℎ ∈ 𝐶([0, +∞)). For 2 < 𝛼 < 3, the
fractional boundary value problem

𝐷
𝛼
𝑢 (𝑡) + ℎ (𝑡) = 0,

𝑢 (0) = 𝑢

(0) = 0,

𝐷
𝛼−1

𝑢 (+∞) =

𝑚−2

∑

𝑖=1

𝛽𝑖𝑢 (𝜉𝑖)

(6)

has a unique solution

𝑢 (𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (7)

where

𝐺 (𝑡, 𝑠) = 𝐺
∗
(𝑡, 𝑠) + 𝐺

∗∗
(𝑡, 𝑠) , (8)

with

𝐺
∗
(𝑡, 𝑠) =

1

Γ (𝛼)
{
𝑡
𝛼−1

− (𝑡 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝑡 < +∞,

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 < +∞,

𝐺
∗∗

(𝑡, 𝑠) =
∑
𝑚−2

𝑖=1
𝛽𝑖𝑡
𝛼−1

Γ (𝛼) − ∑
𝑚−2

𝑖=1
𝛽𝑖𝜉
𝛼−1

𝑖

𝐺
∗
(𝜉
𝑖
, 𝑠) .

(9)

Lemma 4 (see [20]). For (𝑠, 𝑡) ∈ [0, +∞) × [0, +∞), then
Green’s function 𝐺(𝑡, 𝑠) has the following properties:

(1)

0 ≤ 𝐺 (𝑡, 𝑠) ≤ 𝐿𝑡
𝛼−1

, (10)

(2)

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1
≤ 𝐿, (11)

where

𝐿 =
1

Γ (𝛼)
+

∑
𝑚−2

𝑖=1
𝛽𝑖𝜉
𝛼−1

𝑚−2

Γ (𝛼) (Γ (𝛼) − ∑
𝑚−2

𝑖=1
𝛽𝑖𝜉
𝛼−1

𝑖
)

. (12)

For the forthcoming analysis, we will use a Banach space:

𝑋 = {𝑢 ∈ 𝐶 (𝐽,R) : sup
𝑡∈𝐽

|𝑢 (𝑡)|

1 + 𝑡𝛼−1
< +∞} , (13)

equipped with the norm

‖𝑢‖𝑋 = sup
𝑡∈𝐽

|𝑢 (𝑡)|

1 + 𝑡𝛼−1
. (14)

Define a cone 𝑃 ⊂ 𝑋 by

𝑃 = {𝑢 ∈ 𝑋 : 𝑢 (𝑡) ≥ 0, 𝑡 ∈ 𝐽} (15)

and an operator 𝑄 : 𝑋 → 𝑋 as follows:

𝑄𝑢 (𝑡) = ∫

∞

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠. (16)

Observe thatmulti-point fractional boundary value prob-
lem (3) has a solution if and only if the integral operator𝑄 has
a fixed point.

3. Main Results

In this section, we shall construct two explicit monotone
iterative sequences which converge to the minimal and
maximal positive solutions of (3).

Theorem 5. Assume that the following conditions hold:

(H1) 𝑓 ∈ 𝐶(𝐽 × 𝐽, 𝐽), 𝑓(𝑡, 0) ̸≡ 0 on any subinterval of 𝐽,
and when 𝑢 is bounded, 𝑓(𝑡, (1+𝑡

𝛼−1
)𝑢) is bounded on

𝐽;
(H
2
) 𝑎 : 𝐽 → 𝐽 does not identically vanish on any subinte-
rval of 𝐽 and 0 < ∫

+∞

0
𝑎(𝑡)𝑑𝑡 < ∞;



Journal of Function Spaces 3

(H
3
) 𝑓(𝑡, ⋅) is nondecreasing for any 𝑡 ∈ 𝐽, and there
exists a constant 𝑏 > 0, such that 𝑓(𝑡, (1 + 𝑡

𝛼−1
)𝑢) ≤

𝑏/𝐿 ∫
∞

0
𝑎(𝑡)𝑑𝑡 for (𝑡, 𝑢) ∈ 𝐽 × [0, 𝑏].

Then the multi-point fractional boundary value problem
(3) has the minimal and maximal positive solutions V∗, 𝑢∗ in
(0, 𝑏𝑡
𝛼−1

], which can be obtained by the following two explicit
monotone iterative sequences:

V
𝑛+1

= ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, V
𝑛 (𝑠)) 𝑑𝑠

𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 V𝑎𝑙𝑢𝑒 V
0 (𝑡) = 0,

𝑢
𝑛+1

= ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑢
𝑛 (𝑠)) 𝑑𝑠

𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 V𝑎𝑙𝑢𝑒 𝑢
0 (𝑡) = 𝑏𝑡

𝛼−1
.

(17)

Moreover,

V
0
≤ V
1
≤ ⋅ ⋅ ⋅ ≤ V

𝑛
⋅ ⋅ ⋅ ≤ V∗ ≤ ⋅ ⋅ ⋅

≤ 𝑢
∗
⋅ ⋅ ⋅ ≤ 𝑢

𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝑢

1
≤ 𝑢
0
.

(18)

Proof. By a similar process used in [20], it is easy to show that
𝑄 : 𝑃 → 𝑃 is completely continuous.

Now denote 𝐵 = {𝑢 ∈ 𝑃, ‖𝑢‖
𝑋

≤ 𝑏}; then we have 𝑄(𝐵) ⊂

𝐵. In fact, let 𝑢 ∈ 𝐵; then by (H
3
) and (12), we have

‖𝑄𝑢‖𝑋 = sup
𝑡∈𝐽

∫

+∞

0

𝐺 (𝑡, 𝑠)

1 + 𝑡𝛼−1

𝑎 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠))
 𝑑𝑠

≤ 𝐿∫

+∞

0

𝑎 (𝑠) 𝑑𝑠 ⋅
𝑏

𝐿 ∫
+∞

0
𝑎 (𝑠) 𝑑𝑠

= 𝑏.

(19)

That is, 𝑄(𝐵) ⊂ 𝐵.
Denote that V

0(𝑡) = 0, V1 = 𝑄0 = 𝑄V0, and V2 = 𝑄
2
0 =

𝑄V1, for all 𝑡 ∈ 𝐽. Since V0(𝑡) = 0 ∈ 𝐵 and 𝑄 : 𝐵 → 𝐵, then
V1 ∈ 𝑄(𝐵) ⊂ 𝐵 and V2 ∈ 𝑄(𝐵) ⊂ 𝐵. So, we have

V
1 (𝑡) = (𝑄0) (𝑡) ≥ 0 = V

0 (𝑡) , ∀𝑡 ∈ 𝐽. (20)

By condition (H
3
), for 𝑢, V ∈ 𝐵 and 𝑢 ≥ V, we have

𝑄𝑢 (𝑡) = ∫

∞

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≥ ∫

∞

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, V (𝑠)) 𝑑𝑠 = 𝑄V (𝑡) .

(21)

This proves that 𝑄 is a nondecreasing operator.
So, we have

V
2 (𝑡) = (𝑄V1) (𝑡) ≥ (𝑄V0) (𝑡) = V

1 (𝑡) , ∀𝑡 ∈ 𝐽. (22)

By the induction, define V
𝑛+1

= 𝑄V
𝑛
, 𝑛 = 0, 1, 2, . . .. Then

the sequence {V
𝑛
}
∞

𝑛=1
⊂ 𝑄(𝐵) ⊂ 𝐵 and satisfies the following

relation:

V
𝑛+1 (𝑡) ≥ V

𝑛 (𝑡) , ∀𝑡 ∈ 𝐽, 𝑛 = 0, 1, 2, . . . . (23)

In view of the complete continuity of the operator 𝑄 and
V
𝑛+1

= 𝑄V
𝑛
, then {V

𝑛
}
∞

𝑛=1
is relative compact. That is, {V

𝑛
}
∞

𝑛=1

has a convergent subsequence {V
𝑛𝑘
}
∞

𝑘=1
and there exists a V∗ ∈

𝐵 such that V
𝑛𝑘

→ V∗ as 𝑘 → ∞. This, together with (23),
holds lim

𝑛→∞
V
𝑛
= V∗.

Since 𝑄 is continuous and V
𝑛+1

= 𝑄V
𝑛
, then we have

𝑄V∗ = V∗. That is, V∗ is a fixed point of the operator 𝑄.
Denote that 𝑢0(𝑡) = 𝑏𝑡

𝛼−1, 𝑢1 = 𝑄𝑢0, and 𝑢2 = 𝑄
2
𝑢0 =

𝑄𝑢1, for all 𝑡 ∈ 𝐽. Since 𝑢
0
(𝑡) ∈ 𝐵 and 𝑄 : 𝐵 → 𝐵, then

𝑢1 ∈ 𝑄(𝐵) ⊂ 𝐵 and 𝑢
2
∈ 𝑄(𝐵) ⊂ 𝐵. By (H

3
), we have

𝑢
1 (𝑡) = ∫

+∞

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑢
0 (𝑠)) 𝑑𝑠

≤ ∫

+∞

0

𝐿𝑡
𝛼−1

𝑎 (𝑠) 𝑑𝑠 ⋅
𝑏

∫
+∞

0
𝐿𝑎 (𝑠) 𝑑𝑠

= 𝑏𝑡
𝛼−1

= 𝑢0 (𝑡) , ∀𝑡 ∈ 𝐽.

(24)

Since 𝑄 is nondecreasing, then we have

𝑢
2 (𝑡) = (𝑄𝑢

1
) (𝑡) ≤ (𝑄𝑢

0
) (𝑡) = 𝑢

1 (𝑡) , ∀𝑡 ∈ 𝐽. (25)

By the induction, define 𝑢𝑛+1 = 𝑄𝑢𝑛, 𝑛 = 0, 1, 2, . . .. Then
the sequence {𝑢𝑛}

∞

𝑛=1
⊂ 𝑄(𝐵) ⊂ 𝐵 and satisfies the following

relation:

𝑢
𝑛+1 (𝑡) ≤ 𝑢

𝑛 (𝑡) , ∀𝑡 ∈ 𝐽, 𝑛 = 0, 1, 2, . . . . (26)

With an analysis exactly parallel to the proving process of
lim
𝑛→∞

V
𝑛
= V∗, we have that there exists a 𝑢

∗
∈ 𝐵 such that

lim𝑛→∞𝑢𝑛 = 𝑢
∗.

Since𝑄 is continuous and𝑢𝑛+1 = 𝑄𝑢𝑛, we have𝑄𝑢
∗
= 𝑢
∗.

That is, 𝑢∗ is a fixed point of the operator 𝑄.
Now, we are in a position to show that 𝑢∗ and V∗ are the

maximal and minimal positive solutions of (3) in (0, 𝑏𝑡
𝛼−1

].
Let 𝑤 ∈ [0, 𝑏𝑡

𝛼−1
] be any solution of (3). That is 𝑄𝑤 =

𝑤. Noting that 𝑄 is nondecreasing and V0(𝑡) = 0 ≤ 𝑤(𝑡) ≤

𝑏𝑡
𝛼−1

= 𝑢
0
(𝑡), then we have V

1
(𝑡) = 𝑄V

0
(𝑡) ≤ 𝑤(𝑡) ≤ 𝑄𝑢

0
(𝑡) =

𝑢
1
(𝑡), for all 𝑡 ∈ 𝐽.
Similarly, we can obtain

V
𝑛 (𝑡) ≤ 𝑤 (𝑡) ≤ 𝑢

𝑛 (𝑡) , ∀𝑡 ∈ 𝐽, 𝑛 = 0, 1, 2, . . . . (27)

Since 𝑢
∗

= lim𝑛→∞𝑢𝑛 and V∗ = lim𝑛→∞V𝑛, it follows
from (23)∼(27) that

V0 ≤ V1 ≤ ⋅ ⋅ ⋅ ≤ V𝑛 ⋅ ⋅ ⋅ ≤ V∗

≤ 𝑤 ≤ 𝑢
∗
⋅ ⋅ ⋅ ≤ 𝑢

𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝑢

1
≤ 𝑢
0
.

(28)

Since 𝑓(𝑡, 0) ̸≡ 0, for all 𝑡 ∈ 𝐽, then 0 is not a
solution of problem (3). Thus, by (28), we know that 𝑢∗ and
V∗ are the maximal and minimal positive solutions of (3)
in (0, 𝑏𝑡

𝛼−1
], which can be obtained by the corresponding

iterative sequences in (17).
This completes the proof.
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4. Example

Example 1. Take 𝛼 = 5/2, 𝛽1 = 3/10, 𝛽2 = 1/5, 𝜉1 = 1/4, and
𝜉2 = 1. Consider the following boundary value problem:

𝐷
5/2

𝑢 (𝑡) + 𝑒
−𝑡
𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, +∞)

𝑢 (0) = 𝑢

(0) = 0,

𝐷
3/2

𝑢 (+∞) =
3

10
𝑢 (

1

4
) +

1

5
𝑢 (1) ,

(29)

where 𝑎(𝑡) = 𝑒
−𝑡 and

𝑓 (𝑡, 𝑢) =

{{{

{{{

{

1

100 (1 + 𝑡4)
+

1

10
(

𝑢

1 + 𝑡3/2
)

5

, 0 ≤ 𝑢 ≤ 1,

1

100 (1 + 𝑡4)
+

1

10
(

1

1 + 𝑡3/2
)

5

, 𝑢 > 1.

(30)

Now, we show that𝑓(𝑡, (1+𝑡
𝛼−1

)𝑢) is bounded on 𝐽when
𝑢 is bounded. Since

𝑓 (𝑡, (1 + 𝑡
3/2

) 𝑢)

=

{{{

{{{

{

1

100 (1 + 𝑡4)
+

1

10
𝑢
5
, 0 ≤ 𝑢 ≤ 1,

1

100 (1 + 𝑡4)
+

1

10
(

1

1 + 𝑡3/2
)

5

, 𝑢 > 1.

(31)

Then we have 𝑓(𝑡, (1 + 𝑡
3/2

)𝑢) ≤ 11/100. So condition (H
1
)

holds.
In view of ∫+∞

0
𝑎(𝑡)𝑑𝑡 = ∫

+∞

0
𝑒
−𝑡
𝑑𝑡 = 1, condition (H

2
)

holds.
By a simple computation, we have that Γ(𝛼) = Γ(5/2) =

3√𝜋/4 and 𝐿 = (1/Γ(𝛼)) + (∑
𝑚−2

𝑖=1
𝛽𝑖𝜉
𝛼−1

𝑚−2
/Γ(𝛼)(Γ(𝛼) −

∑
𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝛼−1

𝑖
)) ≈ 1.096741. Taking 𝑏 = 1, it follows that

𝑓 (𝑡, (1 + 𝑡
3/2

) 𝑢) ≤ 0.11 <
1

1.0968

≤
𝑏

𝐿 ∫
∞

0
𝑎 (𝑠) 𝑑𝑠

,

for (𝑡, 𝑢) ∈ 𝐽 × [0, 1] .

(32)

Hence, condition (H3) holds. Thus all conditions of
Theorem 5 are satisfied. Therefore, the fractional boundary
value problem (29) has the minimal and maximal positive
solutions in (0, 𝑡

3/2
], which can be obtained by two explicit

monotone iterative sequences.
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