
Research Article
Unsteady Flows of a Generalized Fractional Burgers’ Fluid
between Two Side Walls Perpendicular to a Plate

Jianhong Kang, Yingke Liu, and Tongqiang Xia

Key Laboratory of Gas and Fire Control for Coal Mines, School of Safety Engineering, China University of Mining and Technology,
Xuzhou 221116, China

Correspondence should be addressed to Jianhong Kang; jhkang@cumt.edu.cn

Received 13 December 2014; Accepted 26 March 2015

Academic Editor: Pavel Kurasov

Copyright © 2015 Jianhong Kang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The unsteady flows of a generalized fractional Burgers’ fluid between two side walls perpendicular to a plate are studied for the
case of Rayleigh-Stokes’ first and second problems. Exact solutions of the velocity fields are derived in terms of the generalized
Mittag-Leffler function by using the double Fourier transform and discrete Laplace transform of sequential fractional derivatives.
The solution for Rayleigh-Stokes’ first problem is represented as the sum of the Newtonian solutions and the non-Newtonian
contributions, based on which the solution for Rayleigh-Stokes’ second problem is constructed by the Duhamel’s principle. The
solutions for generalized second-grade fluid, generalized Maxwell fluid, and generalized Oldroyd-B fluid performing the same
motions appear as limiting cases of the present solutions. Furthermore, the influences of fractional parameters and material
parameters on the unsteady flows are discussed by graphical illustrations.

1. Introduction

Basic understanding of the flows for non-Newtonian fluids
are of great importance in a number of practical engineer-
ing applications, such as the extrusion of polymer fluids,
exotic lubricant, animal bloods, heavy oils, and colloidal and
suspension solutions [1]. The essential difference between
non-Newtonian and Newtonian fluids is that the constitutive
relation connecting stress and strain rate in Newtonian
fluids is linear but in non-Newtonian fluids is nonlinear.
In order to characterize this special property exhibited by
non-Newtonian fluids many models have been proposed,
among which the differential type and rate type models are
especially interesting and acquired a special status [2, 3].
There have been a growing body of researches on this topic
in the literature [4–8]. As one of the rate type models, the
Burgers’ model which was firstly presented by Burgers [9]
is a kind of viscoelastic models. Its mechanical analogy is a
Maxwell model and a Vogit model connected in series. The
Maxwell and Oldroyd-B fluids which are frequently used in
the viscoelastic theory can be treated as the special cases
of Burgers’ fluid. So it is expected that the Burgers’ model
can better capture the complex rheological characteristics of

many real fluids than other models. Until now, the Burgers’
model has been successfully applied in many studies [10–15].

More recently, the fractional calculus has achieved much
success in the description of complex dynamic system and
is widely applied to many fields [16–18], especially to non-
Newtonian fluids. The starting point of the fractional deriva-
tive model of non-Newtonian fluids is usually a classical
differential equation which is modified by replacing the time
derivative of an integer order by a fractional derivative. This
generalization has been found to be very flexible and useful in
describing the viscoelastic behavior [19–21]. So far there has
been a great deal of references concerning non-Newtonian
fluids with fractional derivative model [22–27].

The availability of exact solutions for non-Newtonian
fluids is of significance because such solutions not only can
explain the physics of some fundamental flows, but also can
be used as a benchmark for complicated numerical codes that
have been developed formuchmore complex flows.However,
exact solutions for the unsteady flows of viscoelastic fluids
are very rare and difficult to obtain due to the nonlinearity
of their constitutive equations. When the fractional calculus
approach is introduced in the constitutive equations, the
solvability becomes more difficult even though the problems
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are one-dimensional in case of simple geometries such as
single plate or disk. The literature survey indicates that the
Rayleigh-Stokes’ first and second problems for flows between
two side walls perpendicular to a plate are two of few
problems that can be analytically solved. Fetecau et al. [28]
presented some exact solutions of this problem for a second
grade fluid, which was then extended to a generalized second
grade fluid with a fractional derivative model by Khan [29].
The similar problem for a Maxwell fluid was discussed by
Hayat et al. [30] and was extended to a fractional generalized
Maxwell fluid by Vieru et al. [31].

In this work, we study the unsteady flows of a Burgers’
fluid between two side walls perpendicular to a plate with
a fractional derivative model. The following two cases are
studied: (i) the flow induced by the impulsive motion of
the bottom plate (Rayleigh-Stokes’ first problem) and (ii) the
flow induced by the periodic oscillation of the bottom plate
(Rayleigh-Stokes’ second problem). The exact solutions for
the two problems are obtained in terms of generalizedMittag-
Leffler function by using integral transform technique.

2. Governing Equations

Themomentum and continuity equations for an incompress-
ible fluid are given by

𝜌
𝑑V
𝑑𝑡

= −∇𝑝 + ∇ ⋅ S, (1)

∇ ⋅ V = 0, (2)

where 𝜌 is the density of the fluid, V the velocity, 𝑝 the
pressure, S the extra stress tensor, and 𝑑/𝑑𝑡 the material time
derivative.

For an ordinary Burgers’ fluid, the extra stress tensor S
satisfies

(1 + 𝜆
1

𝛿

𝛿𝑡
+ 𝜆

2

𝛿
2

𝛿𝑡2
) S = 𝜇(1 + 𝜆

3

𝛿

𝛿𝑡
)A

1
, (3)

where 𝜇 is the dynamic viscosity, A
1
= ∇V + (∇V)𝑇 is the

first Rivlin-Ericksen tensor with𝑇 as the transpose operation,
𝜆
1
and 𝜆

3
are relaxation and retardation times with the

dimension of time, and 𝜆
2
is a material parameter with the

dimension of time square. The operator 𝛿/𝛿𝑡 is the upper
convected time derivative defined by

𝛿S
𝛿𝑡
=
𝜕S
𝜕𝑡
+ V ⋅ ∇S − ∇V ⋅ S − S ⋅ (∇V)𝑇 ,

𝛿
2S
𝛿𝑡2

=
𝛿

𝛿𝑡
(
𝛿S
𝛿𝑡
) .

(4)

We consider an incompressible Burgers’ fluid occupying
the space above an infinite flat plate and between two side
walls perpendicular to this plate, as shown in Figure 1. The
side walls are extended to infinity in the 𝑥- and 𝑦-directions
and are located at 𝑧 = 0 and 𝑧 = 𝑑. The velocity and extra
stress tensor of fluids under consideration should have the
following forms:

V = [𝑢 (𝑦, 𝑧, 𝑡) , 0, 0] , S = S (𝑦, 𝑧, 𝑡) (5)
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z
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Figure 1: The schematic diagram of system considered here.

in the Cartesian coordinate system, where 𝑢(𝑦, 𝑧, 𝑡) is the
velocity component in the 𝑥-direction.

According to (5), the continuity equation (2) is automat-
ically satisfied and the constitutive equation (3) yields the
following equations:

(1 + 𝜆
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2

𝜕
2

𝜕𝑡2
) [𝑆
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, 𝑆
𝑦𝑧
, 𝑆
𝑧𝑧
] = 0, (6)
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. (8)

Assuming the fluids to be at rest initially, from (6) we can
conclude that 𝑆

𝑦𝑦
= 𝑆

𝑦𝑧
= 𝑆

𝑧𝑧
= 0.

The governing equations corresponding to a generalized
fractional Burgers’ fluid performing the same motion can be
obtained from (7) and (8) by substituting the time derivatives
with fractional derivatives [32, 33], that is,
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(9)

where 𝜕𝛼/𝜕𝑡𝛼 is the fractional derivative of order 𝛼 with
respect to 𝑡, which is defined as [34]

𝜕
𝛼
𝑓 (𝑡)

𝜕𝑡𝛼
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(𝑘 − 1 ≤ 𝛼 < 𝑘) ,

(10)

and Γ(⋅) is the Gamma function.
Then, from (1) together with (9) one can obtain the final

governing equation for a generalized fractional Burgers’ fluid
in the absence of pressure gradient as follows:
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) ,

(11)

where ] = 𝜇/𝜌 is the kinematic viscosity.
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3. Exact Solutions of Unsteady Flows

3.1. Flow Induced by the Impulsive Motion of the Plate.
Initially, the fluid is at rest and then the plate is suddenly
brought to a steady velocity 𝑈

0
at the moment 𝑡 = 0+. Such

a motion is termed as the Rayleigh-Stokes’ first problem in
the literature. In this case, the flow is governed by (11) and the
initial-boundary conditions can be expressed as

𝑢 (𝑦, 𝑧, 0) = 0, 𝑦 > 0, 0 ≤ 𝑧 ≤ 𝑑,

𝑢 (0, 𝑧, 𝑡) = 𝑈
0

0 < 𝑧 < 𝑑, 𝑡 > 0,

𝑢 (𝑦, 0, 𝑡) = 𝑢 (𝑦, 𝑑, 𝑡) = 0, 𝑦 > 0, 𝑡 > 0.

(12)

Introducing the dimensionless parameters

𝑢
∗
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𝑈
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, 𝑡
∗
=
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0

, (𝑥
∗
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∗
, 𝑧
∗
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𝑑
,

(13)

we can obtain the following dimensionless problem:
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∗
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∗
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where 𝜆∗
1
, 𝜆∗

2
, and 𝜆∗

3
and Re are the dimensionless relaxation

time, material parameter, retardation time, and Reynolds
number, respectively, defined as
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(18)

It should be noted that in order to solve a well-posed
problem for (14) additional conditions apart from (15)–(17)
are supposed to be attached, that is

𝜕𝑢
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∗
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(19)

𝑢
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∗
, 𝑡
∗
) ,

𝜕𝑢
∗
(𝑦

∗
, 𝑧
∗
, 𝑡
∗
)

𝜕𝑦∗
󳨀→ 0

as 𝑦∗ 󳨀→ ∞, 𝑡
∗
> 0.

(20)

The additional condition (19) is adopted for the derivation of
analytical solution and has no explicit physical significance.
However, without loss of generality, the adoption of such

condition does not detract from overall conclusions for the
comparison of flow behavior for different rheological models
[27].

For the sake of brevity and convenience, we omit the
asterisks “∗” and keep the same notation for all variables from
here on.

To solve the partial differential equation (14) subject
to conditions (15)–(17), (19), and (20), the Fourier sine
transform with respect to 𝑦 and the finite Fourier sine
transformwith respect to 𝑧will be applied.The transform and
its inversion are defined as

𝑢 (𝜉, 𝜁
𝑛
, 𝑡) = √

2

𝜋
∫

∞

0

∫

1

0

𝑢 (𝑦, 𝑧, 𝑡) sin𝑦𝜉 sin 𝑧𝜁
𝑛
𝑑𝑦𝑑𝑧, (21)

𝑢 (𝑦, 𝑧, 𝑡) = 2√
2

𝜋
∫

∞

0

∞

∑

𝑛=1
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𝑛
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𝑛
𝑑𝜉 (22)

in which 𝜁
𝑛
= 𝑛𝜋.

Taking the transform (21) to both sides of (14) and taking
into account the initial-boundary conditions, one can find
that
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𝑛
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𝜋

𝜉
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𝑛

[1 − (−1)
𝑛
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(23)

𝑢 (𝜉, 𝜁
𝑛
, 0) =
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𝑛
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𝜕
2
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𝑛
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𝜕𝑡2
= 0. (24)

To obtain an exact solution of (23) subject to the initial
condition (24), the Laplace transform with respect to 𝑡 is
further applied.

Let

𝑢̃ (𝜉, 𝜁
𝑛
, 𝑠) = ∫

∞
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𝑒
−𝑠𝑡
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𝑛
, 𝑡) 𝑑𝑡 (25)

be the Laplace transform image function of 𝑢(𝜉, 𝜁
𝑛
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applying the Laplace transform, we arrive at
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where

sign (1 − 𝛽) =
{{{{

{{{{

{

−1, 𝛽 > 1;

0, 𝛽 = 1;

1, 0 < 𝛽 < 1.

(27)
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For awell presentation of the final results, (26) is rewritten
as an equivalent form

𝑢̃ = √
2

𝜋
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𝐻̃ (𝜉, 𝜁
𝑛
, 𝑠)

=
𝜉
2
+ 𝜁

2

𝑛

Re

⋅
𝜆
2
𝑠
2𝛼
+ 𝜆

1
𝑠
𝛼
+ Re−1𝜀𝜆

3
(𝜉
2
+ 𝜁

2

𝑛
) 𝑠

𝛽−1
− 𝜆

3
sign (1 − 𝛽) 𝑠𝛽

[𝜆
2
𝑠2𝛼+1 + 𝜆

1
𝑠𝛼+1 + 𝑠 + Re−1 (𝜉2 + 𝜁2

𝑛
) (1 + 𝜆

3
𝑠𝛽)]

(29)

and 𝜀 = 1 − sign(1 − 𝛽).
Taking the inverse Laplace transform to (28), we get that
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deriving (31), an important property of generalized Mittag-
Leffler function is used as follows:
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𝑘𝛼+𝛽+1

𝐸
(𝑘)

𝛼,𝛽
(±𝑐𝑡

𝛼
) 𝑑𝑡 =

𝑘!𝑠
𝛼−𝛽

(𝑠𝛼 ∓ 𝑐)
𝑘+1
. (32)

Finally, inverting (30) by means of the inverse transform
(22), we obtain the exact solution of the problem

𝑢 (𝑦, 𝑧, 𝑡) =
8

𝜋

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

∫

∞

0

𝜉 sin𝑦𝜉
𝜉2 + 𝜎2

𝑛

[1 − 𝑒
−((𝜉
2
+𝜎
2

𝑛
)/Re)𝑡

] 𝑑𝜉

−
8

𝜋

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

∫

∞

0

𝜉 sin𝑦𝜉
𝜉2 + 𝜎2

𝑛

∫

𝑡

0

𝑒
−((𝜉
2
+𝜎
2

𝑛
)/Re)(𝑡−𝜏)

⋅ 𝐻 (𝜉, 𝜎
𝑛
, 𝜏) 𝑑𝜏 𝑑𝜉,

(33)

where 𝜎
𝑛
= (2𝑛 − 1)𝜋.

In view of the following formulae [27]:

∫

∞

0

𝜉 sin𝑦𝜉
𝜉2 + 𝑎2

𝑑𝜉 =
𝜋

2
𝑒
−𝑎𝑦
,

∫

∞

0

𝜉 sin𝑦𝜉
𝜉2 + 𝑏2

𝑒
−𝑎𝜉
2

𝑑𝜉

=
𝜋

4
𝑒
𝑎𝑏
2

[𝑒
−𝑏𝑦 erfc(𝑏√𝑎 −

𝑦

2√𝑎
)

−𝑒
𝑏𝑦 erfc(𝑏√𝑎 +

𝑦

2√𝑎
)] ,

(34)

where erfc(⋅) is the complementary error function, the
solution (33) can be simplified as

𝑢 (𝑦, 𝑧, 𝑡)

= 𝑢
𝑁
(𝑥, 𝑦, 𝑦) −

8

𝜋

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

⋅ ∫

∞

0

𝜉 sin𝑦𝜉
𝜉2 + 𝜎2

𝑛

∫

𝑡

0

𝑒
−((𝜉
2
+𝜎
2

𝑛
)/Re)(𝑡−𝜏)

𝐻(𝜉, 𝜎
𝑛
, 𝜏) 𝑑𝜏 𝑑𝜉

(35)

in which

𝑢
𝑁
(𝑥, 𝑦, 𝑡)

= 4

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

𝑒
−𝜎
𝑛
𝑦

− 2

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

{𝑒
−𝜎
𝑛
𝑦 erfc(𝜎

𝑛
√
𝑡

Re
−

𝑦

2√𝑡/Re
)

−𝑒
𝜎
𝑛
𝑦 erfc(𝜎

𝑛
√
𝑡

Re
+

𝑦

2√𝑡/Re
)}

(36)

is exactly the solution for a Newtonian fluid performing the
same motion.
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It is easy to find that the velocity field 𝑢(𝑦, 𝑧, 𝑡) for a frac-
tional Burgers’ fluid given by (35) has two parts: the first part
𝑢
𝑁
(𝑥, 𝑦, 𝑡) corresponding to a Newtonian fluid performing

the same motion and the second part on the right-hand side
of (35) resulting from the viscoelastic property of a fractional
Burgers’ fluid.

Making 𝑡 → ∞ in (35), the steady velocity field for a
fractional Burgers’ fluid is obtained as follows:

𝑢
𝑠
(𝑦, 𝑧, 𝑡) = 4

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

𝑒
−𝜎
𝑛
𝑦
. (37)

The steady volume flux corresponding to (37) is given by

𝑄 (∞) = ∫

∞

0

∫

𝑑

0

𝑢 (𝑦, 𝑧, 𝑡) 𝑑𝑧 𝑑𝑦 =
8

𝜋3

∞

∑

𝑛=1

1

(2𝑛 − 1)
3
. (38)

In some limiting cases, the present solution for a general-
ized Burgers’ fluid can be reduced to those corresponding to a
generalized second-grade fluid, Maxwell fluid, and Oldroyd-
B fluid.

Remark 1. If one takes 𝜆
1
→ 0 and 𝜆

2
→ 0, (26) can be

reduced to

𝑢̃ (𝜉, 𝜎
𝑛
, 𝑠)

= √
2

𝜋

𝜉

Re𝜎
𝑛

1 + 𝜆
3
sign (1 − 𝛽) 𝑠𝛽

𝑠 [𝑠 + Re−1 (𝜉2 + 𝜎2
𝑛
) (1 + 𝜆

3
𝑠𝛽)]

= √
2

𝜋

𝜉

Re𝜎
𝑛

∞

∑

𝑘=0

(−1)
𝑘
[Re−1 (𝜉2 + 𝜎2

𝑛
)]
𝑘

⋅
𝑠
−𝑘𝛽−𝛽−1

+ Re−1𝜆
3
𝑠
𝑘𝛽−1

[𝑠1−𝛽 + Re−1 (𝜉2 + 𝜎2
𝑛
)]
𝑘+1
.

(39)

Applying the inverse Laplace transform term by term on
(39) and then using the formulae (22), we arrive at

𝑢 (𝑦, 𝑧, 𝑡)

=
8

𝜋

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

⋅ ∫

∞

0

𝜉 sin𝑦𝜉
𝜉2 + 𝜎2

𝑛

∞

∑

𝑘=0

(−1)
𝑘
[Re−1 (𝜉2 + 𝜎2

𝑛
)]
𝑘+1

𝑘!

× {𝑡
𝑘+1
𝐸
(𝑘)

1−𝛽,𝑘𝛽+2
(−

𝜉
2
+ 𝜎

2

𝑛

Re
𝑡
1−𝛽
)

+ Re−1 sign (1 − 𝛽)

× 𝑡
𝑘−𝛽+1

𝐸
(𝑘)

1−𝛽,𝑘𝛽−𝛽+2
(−

𝜉
2
+ 𝜎

2

𝑛

Re
𝑡
1−𝛽
)}𝑑𝜉

(40)

which is an equivalent form of the solution for a generalized
second-grade fluid obtained by Khan and Wang [29].

Remark 2. If one takes 𝜆
2
→ 0 and 𝜆

3
→ 0, (26) can be

reduced to

𝑢̃ (𝜉, 𝜎
𝑛
, 𝑠)

= √
2

𝜋

𝜉

Re𝜎
𝑛

1

𝑠 [𝜆
1
𝑠𝛼+1 + 𝑠 + Re−1 (𝜉2 + 𝜎2

𝑛
)]

= √
2

𝜋

𝜉

𝜎
𝑛

∞

∑

𝑘=0

(−1)
𝑘
[Re−1 (𝜉2 + 𝜎2

𝑛
)]
𝑘

Re 𝜆𝑘+1
1

𝑠
−𝑘−2

(𝑠𝛼 + 1/𝜆
1
)
𝑘+1
.

(41)

Applying the inverse Laplace transform term by term on
(41) and then using the formulae (22), we arrive at

𝑢 (𝑦, 𝑧, 𝑡)

=
8

𝜋

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

⋅ ∫

∞

0

𝜉 sin𝑦𝜉
𝜉2 + 𝜎2

𝑛

∞

∑

𝑘=0

{

{

{

(−1)
𝑘
[Re−1 (𝜉2 + 𝜎2

𝑛
)]
𝑘+1

𝜆
𝑘+1

1
𝑘!

× 𝑡
𝑘𝛼+𝛼+𝑘+1

𝐸
(𝑘)

𝛼,𝑘+𝛼+2
(−

𝑡
𝛼

𝜆
1

)
}

}

}

𝑑𝜉

(42)

which is exactly the velocity field for a generalized Maxwell
fluid obtained by Vieru et al. [31].

Remark 3. If one takes 𝜆
2
→ 0 in (29), the solution for a

generalized Oldroyd-B fluid performing the same motion is
recovered as follows:

𝑢 (𝑦, 𝑧, 𝑡)

= 𝑢
𝑁
(𝑥, 𝑦, 𝑦) −

8

𝜋

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

⋅ ∫

∞

0

𝜉 sin𝑦𝜉
𝜉2 + 𝜎2

𝑛

× ∫

𝑡

0

𝑒
−((𝜉
2
+𝜎
2

𝑛
)/Re)(𝑡−𝜏)

𝐺 (𝜉, 𝜎
𝑛
, 𝜏) 𝑑𝜏 𝑑𝜉,

(43)

where

𝐺 (𝜉, 𝜎
𝑛
, 𝑡)

=

∞

∑

𝑘=0

𝑘

∑

𝑚=0

(−1)
𝑘
[Re−1 (𝜉2 + 𝜎2

𝑛
)]
𝑘−𝑚+1

𝜆
𝑘+1

1
𝑚! (𝑘 − 𝑚)!

⋅ {𝜆
1
𝑡
𝜙
𝐸
(𝑘)

𝜃+1,𝛾
(−

𝜆
3
(𝜉
2
+ 𝜎

2

𝑛
)

𝜆
1
Re

𝑡
𝛼
)
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− 𝜆
3
sign (1 − 𝛽) 𝑡𝜙+𝜃𝐸(𝑘)

𝜃+1,𝜃+𝛾
(−

𝜆
3
(𝜉
2
+ 𝜎

2

𝑛
)

𝜆
1
Re

𝑡
𝛼
)

+ Re−1𝜀𝜆
3
(𝜉
2
+ 𝜎

2

𝑛
) 𝑡

𝜙+𝜃+1

⋅ 𝐸
(𝑘)

𝜃+1,𝜃+𝛾+1
(−

𝜆
3
(𝜉
2
+ 𝜎

2

𝑛
)

𝜆
1
Re

𝑡
𝛼
)}

(44)

with 𝜙 = 𝑘𝛼 + 𝑘 − 𝑚, = 𝑘𝛽 − 𝑚 + 1, and 𝜃 = 𝛼 − 𝛽.

3.2. Flow Induced by General Periodic Oscillations of the Plate.
Consider the flow is caused by the plate whose velocity is of
the form 𝑈

0
𝑓(𝑡). Here, 𝑈

0
is a constant and 𝑓(𝑡) is a general

periodic oscillation with period 𝑇
0
. Such a motion is termed

as the Rayleigh-Stokes’ second problem in the literature. In
this case, by introducing the same dimensionless parameters
as in (13) and dropping the asterisks, the dimensionless gov-
erning equation is still (14) and the dimensionless boundary
conditions are expressed as

𝑢 (0, 𝑧, 𝑡) = 𝑓 (𝑡) , 0 < 𝑧 < 1,

𝑢 (𝑦, 0, 𝑡) = 𝑢 (𝑦, 1, 𝑡) = 0, 𝑦 > 0,

𝑢 (𝑦, 𝑧, 𝑡) ,
𝜕𝑢 (𝑦, 𝑧, 𝑡)

𝜕𝑦
󳨀→ ∞, as 𝑦 󳨀→ ∞.

(45)

Based on the result obtained in Section 3.1, the solution
for the present problem can be given by the so called
Duhamel’s principle [35]:

𝑢 (𝑦, 𝑧, 𝑡) = ∫

𝑡

0

𝑢
(1)
(𝑦, 𝑧, 𝑡 − 𝜏) 𝑓

󸀠
(𝜏) 𝑑𝜏 + 𝑓 (0) 𝑢

(1)
(𝑦, 𝑧, 𝑡) ,

(46)

where for convenience 𝑢(1)(𝑦, 𝑧, 𝑡) denotes the solution of the
first problem given by (35). However, due to the cumbersome
calculation of integral (46), we use another technique to
handle this problem and the result is supposed to be more
concise than that of (46).

First, 𝑓(𝑡) is expanded as the complex Fourier series

𝑓 (𝑡) =

∞

∑

𝑘=−∞

𝑎
𝑘
𝑒
𝑖𝑘𝜔
0
𝑡
, (47)

where 𝜔
0
= (2𝜋/𝑇

0
) ⋅ (𝑑/𝑈

0
) is the nonzero dimensionless

fundamental frequency and the coefficient 𝑎
𝑘
can be calcu-

lated as

𝑎
𝑘
=

𝑑

𝑈
0
𝑇
0

∫

𝑇
0
𝑈
0
/𝑑

0

𝑓 (𝑡) 𝑒
−𝑖𝑘𝜔
0
𝑡
𝑑𝑡. (48)

Then, we attempt to find the solution by means of the
temporal Fourier transform. The transform and its inverse
transform are defined by

𝑢̂ (𝑦, 𝑧, 𝜔) = ∫

∞

−∞

𝑒
−𝑖𝜔𝑡

𝑢 (𝑦, 𝑧, 𝑡) 𝑑𝑡, (49)

𝑢 (𝑦, 𝑧, 𝑡) =
1

2𝜋
∫

∞

−∞

𝑒
𝑖𝜔𝑡
𝑢̂ (𝑦, 𝑧, 𝜔) 𝑑𝜔. (50)

Having inmind (47) and taking the transform (49) to (14)
subject to the boundary conditions (45), we arrive at

(
𝜕
2

𝜕𝑦2
+
𝜕
2

𝜕𝑧2
− 𝑐

2
) 𝑢̂ (𝑥, 𝑦, 𝜔) = 0, (51)

𝑢̂ (𝑦, 0, 𝜔) = 𝑢̂ (𝑦, 1, 𝜔) = 0, 𝑦 > 0, (52)

𝑢̂ (𝑦, 𝑧, 𝑤) ,
𝑢̂ (𝑦, 𝑧, 𝜔)

𝜕𝑦
󳨀→ 0, as 𝑦 󳨀→ ∞, (53)

𝑢̂ (0, 𝑧, 𝜔) = 2𝜋

∞

∑

−∞

𝑎
𝑘
𝛿 (𝜔 − 𝑘𝜔

0
) , 0 < 𝑧 < 1, (54)

where 𝛿(⋅) is the Dirac delta function and

𝑐
2
=
𝑖𝜔 [1 + 𝜆

1
(𝑖𝜔)

𝛼
+ 𝜆

2
(𝑖𝜔)

2𝛼
]

Re−1 [1 + 𝜆
3
(𝑖𝜔)

𝛽
]

(55)

with (𝑖𝜔)𝛼 = |𝜔|𝛼[cos(𝜋𝛼/2) + 𝑖 sign𝜔 sin(𝜋𝛼/2)].
In course of obtaining (51) and (54), the following Fourier

transform formulae of fractional derivative and Dirac delta
function are used:

∫

∞

−∞

𝜕
𝛼
𝑢 (𝑦, 𝑧, 𝑡)

𝜕𝑡𝛼
𝑒
−𝑖𝜔𝑡

𝑑𝑡 = (𝑖𝜔)
𝛼
𝑢̂ (𝑦, 𝑧, 𝜔) ,

∫

∞

−∞

𝑒
−𝑖(𝜔−𝜔

0
)𝑡
𝑑𝑡 = 2𝜋𝛿 (𝜔 − 𝜔

0
) .

(56)

Using the transform pair (21) and (22) again, from (51)–
(54) we can get that

𝑢̂ (𝑦, 𝑧, 𝜔) = 8𝜋

∞

∑

𝑛=1

∞

∑

𝑘=−∞

𝛿 (𝜔 − 𝑘𝜔
0
)
𝑎
𝑘
sin 𝑧𝜎

𝑛

𝜎
𝑛

𝑒
−𝑦√𝜎

2

𝑛
+𝑐
2

.

(57)

Finally, inverting (57) by using the inverse transform (50),
we arrive at

𝑢 (𝑦, 𝑧, 𝑡) = 4

∞

∑

𝑛=1

∞

∑

𝑘=−∞

𝑎
𝑘

sin 𝑧𝜎
𝑛

𝜎
𝑛

𝑒
𝑖𝑘𝜔
0
𝑡−𝑦√𝜎

2

𝑛
+𝑐
2

𝑘 (58)

with 𝑐2
𝑘
= 𝑐

2
|
𝜔=𝑘𝜔

0

.
Equation (58) gives the complete analytic solution of the

velocity field due to the general periodic oscillation of the
plate. As three special cases of the oscillation, we consider
𝑓(𝑡) in the following form:

(1) 𝑓 (𝑡) = 𝑒
𝑖𝜔
0
𝑡
, 𝑎

1
= 0, 𝑎

𝑘
= 0 (𝑘 ̸= 1)

(2) 𝑓 (𝑡) = cos𝜔
0
𝑡, 𝑎

1
= 𝑎

−1
=
1

2
, 𝑎

𝑘
= 0, otherwise

(3) 𝑓 (𝑡) = sin𝜔
0
𝑡, 𝑎

1
= 𝑎

−1
=
1

2𝑖
, 𝑎

𝑘
= 0, otherwise.

(59)
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After substituting the corresponding Fourier coefficients
of (59) into (58), the solutions can be easily obtained as
follows:

𝑢
1
= 4

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

𝑒
𝑖𝜔
0
𝑡−𝑦√𝜎

2

𝑛
+𝑐
2

1 , (60)

𝑢
2
= 2

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

[𝑒
𝑖𝜔
0
𝑡−𝑦√𝜎

2

𝑛
+𝑐
2

1 + 𝑒
−𝑖𝜔
0
𝑡−𝑦√𝜎

2

𝑛
+𝑐
2

−1] , (61)

𝑢
2
= −2𝑖

∞

∑

𝑛=1

sin 𝑧𝜎
𝑛

𝜎
𝑛

[𝑒
𝑖𝜔
0
𝑡−𝑦√𝜎

2

𝑛
+𝑐
2

1 + 𝑒
−𝑖𝜔
0
𝑡−𝑦√𝜎

2

𝑛
+𝑐
2

−1] . (62)

By letting 𝜆
1
= 𝜆

2
= 𝜆

3
= 0 in (58) the exact solution

for a Newtonian fluid performing the same motion can be
recovered as follows:

𝑢
𝑁
(𝑦, 𝑧, 𝑡) = 4

∞

∑

𝑛=1

∞

∑

𝑘=−∞

𝑎
𝑘

sin 𝑧𝜎
𝑛

𝜎
𝑛

𝑒
𝑖𝑘𝜔
0
𝑡−𝑦√𝜎

2

𝑛
−𝑖𝑘𝜔
0
Re
. (63)

Furthermore, the solutions for a generalized second-
grade fluid, Maxwell fluid, and Oldroyd-B fluid performing
the same motion can be retrieved by taking corresponding
limiting cases of the parameters 𝜆

1
, 𝜆

2
, and 𝜆

3
in (55) and

(58).

4. Numerical Result and Discussion

In this section, we plot the velocity fields according to the
exact solutions obtained in the last section. For clarity, the
symbols 𝑢

1
(𝑦, 𝑧, 𝑡) and 𝑢

2
(𝑦, 𝑧, 𝑡) are used to denote the

solutions given by (33) and (60) in the following discussion,
respectively.

The influences of the fractional parameters 𝛼 and𝛽 on the
velocity field 𝑢

1
are illustrated in Figures 2 and 3. It is shown

in Figure 2 that 𝑢
1
decreases with the increase of 𝛼, implying

the suppressing effect of the parameter 𝛼 on the fluid motion.
On the contrary, the parameter 𝛽 plays a promoting role on
the fluidmotion as shown in Figure 3.The parameter 𝛼 in the
generalized Burgers’ model is related with the relaxation term
which characterizes the elasticity of fluid, while the parameter
𝛽 is related with the retardation term which characterizes the
viscous damping of fluid. When 𝛼 and 𝛽 tend to vanish, the
Burgers’ fluid reduces to a Newtonian fluid. Accordingly, the
increase of 𝛼 is indicative of the transition of a fluid phase to
an elastic solid phase, and the increase of 𝛽 is to the contrary.
Therefore, the results obtained in Figures 2 and 3 can be
explained by the fact that the elasticity of fluid tends to reduce
the velocity induced by the impulsive motion of a plate, while
the viscous damping of fluid tends to enhance the velocity
induced by the impulsive motion of a plate.

The effect of the material parameter 𝜆
2
which distin-

guishes the Burgers’ model from the Oldroyd-B model and
Maxwell model is illustrated in Figure 4. It can be seen that
the larger the value of 𝜆

2
is, the smaller the velocity becomes,

manifesting that 𝜆
2
can reduce the fluid motion.

The Reynolds number Re is an important dimensionless
parameter defining the laminar or turbulent flow. It is well
known that the thickness of boundary layer is inversely

𝛼 = 2, 1.5, 1
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Figure 2: The influence of the fractional-order parameter 𝛼 on the
velocity profile 𝑢

1
(𝑦, 𝑧, 𝑡) with 𝑧 = 0.5, 𝑡 = 0.3, 𝛽 = 0.8, Re = 1,

𝜆
1
= 5, 𝜆

2
= 2, and 𝜆

3
= 1.
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Figure 3: The influence of the fractional-order parameter 𝛽 on the
velocity profile 𝑢

1
(𝑦, 𝑧, 𝑡)with 𝑧 = 0.5, 𝑡 = 0.3, 𝛼 = 2, Re = 1, 𝜆

1
= 5,

𝜆
2
= 2, and 𝜆

3
= 1.

proportional to the value of Re. The present result shown
in Figure 5 is also in agreement with this law. The Reynolds
number Re can be taken as the ratio of inertial forces
to viscous forces and consequently quantifies the relative
importance of these two types of forces for given flow
conditions. With the decrease of Re, the effect of viscous
forces becomes dominant so that the vortices of flow can
diffuse far away from the bottom plate.

Figure 6 explicitly displays the variations of velocity
profile 𝑢

2
with 𝑧 at different time 𝑡. It is interestingly observed

that at the moment 𝑡 = 2.5 the largest velocity value
is not located in the middle of the two side walls but
appears symmetrically near the two side walls. This physical
phenomenon may result from the competing effects between
the elasticity and viscous damping of viscoelastic fluid.

5. Conclusions

The objective of this paper is to provide exact solutions of
unsteady flows for a generalized fractional Burgers’ fluid
between two side walls perpendicular to a plate.The unsteady
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Figure 4:The influence of thematerial parameter 𝜆
2
on the velocity

profile 𝑢
1
(𝑦, 𝑧, 𝑡) with 𝑧 = 0.5, 𝑡 = 0.1, 𝛼 = 2.5, 𝛽 = 0.5, Re = 1,
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Figure 5: The influence of the Reynolds number Re on the velocity
profile 𝑢

1
(𝑦, 𝑧, 𝑡) with 𝑦 = 0.1, 𝑡 = 0.3, 𝛼 = 2, 𝛽 = 0.8, 𝜆

1
= 5,

𝜆
2
= 2, and 𝜆

3
= 1.

flows are induced by the impulsivemotion or general periodic
oscillations of the plate, which are, respectively, termed as
the Rayleigh-Stokes’ first and second problems. The analytic
solutions of the two problems are obtained by using Fourier
sine and Laplace transform methods in terms of Mittag-
Leffler function. Moreover, the effects of various parameters
are analyzed by plotting the velocity profiles according to
the exaction solutions. The fractional constitutive model is
more flexible and useful than the convectional model for
characterizing the property of viscoelastic fluids, so it is
expected that the present results will be of significance to
fundamental research and practical applications in this field.
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