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We investigate the following Liénard-type 𝑝-Laplacian equation with a deviating argument (𝜑𝑝(𝑥
󸀠
(𝑡)))
󸀠
+𝑓(𝑥(𝑡))𝑥

󸀠
(𝑡)+𝛽(𝑡)𝑔(𝑥(𝑡−

𝜏(𝑡))) = 𝑒(𝑡). Some new criteria for guaranteeing the existence and uniqueness of periodic solutions of this equation are given by
using theManásevich-Mawhin continuation theorem and some analysis techniques. Our results hold under weaker conditions than
some known results from the literature and are more effective. In the last section, an illustrative example is provided to demonstrate
the applications of the theoretical results.

1. Introduction

In this present paper, we consider the following Liénard-type
𝑝-Laplacian equation with a deviating argument:

(𝜑𝑝 (𝑥
󸀠
(𝑡)))
󸀠

+ 𝑓 (𝑥 (𝑡)) 𝑥
󸀠
(𝑡) + 𝛽 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) = 𝑒 (𝑡) ,

(1)

where 𝑝 > 1, 𝜑𝑝 : R → R, and 𝜑𝑝(𝑠) = |𝑠|
𝑝−2
𝑠 is

a one-dimensional 𝑝-Laplacian; 𝑓, 𝑒 ∈ 𝐶(R,R), 𝛽, 𝜏, 𝑔 ∈

𝐶
1
(R,R), and𝛽(𝑡) and 𝜏(𝑡) are two𝑇-periodic functionswith

∫
𝑇

0
𝑒(𝑡)𝑑𝑡 = 0, 𝑇 > 0.
As is known, the Liénard equation can be derived from

many fields, such as physics, mechanics, and engineering
technique fields, and an important question is whether this
equation can support periodic solutions. In the past few years,
a lot of researchers have contributed to the theory of this
equation with respect to the existence of periodic solutions.
For example, in 1928, Liénard [1] discussed the existence of
periodic solutions of the following equation:

𝑥
󸀠󸀠
(𝑡) + 𝑓 (𝑥 (𝑡)) 𝑥

󸀠
(𝑡) + 𝑘 (𝑥 (𝑡)) 𝑥 (𝑡) = 0, (2)

where𝑓, 𝑘 ∈ 𝐶(R,R); some sufficient conditions for securing
the existence of periodic solutions were established. After-
wards, Levinson and Smith [2] also studied (2) and obtained
some new results on the existence of periodic solutions. In
1977, some continuation theorems in [3] were introduced by
Gaines and Mawhin. Applying these continuation theorems,
many authors discussed the existence of periodic solutions
of (2) and generalized the results obtained in [1, 2] (see, e.g.,
[4–7]); a few authors studied the existence and uniqueness of
periodic solutions of (2) (see [8, 9]). In 1998, Manásevich and
Mawhin [10] studied periodic solutions for certain nonlinear
systems with 𝑝-Laplacian-like operators and provided some
new continuation theorems which extended some results in
[3]. Subsequently, some authors discussed the existence of
periodic solutions of certain Liénard-type 𝑝-Laplacian equa-
tions (see, e.g., [11–15]) using these generalized continuation
theorems. However, as far as we know, there exist much
fewer results on the existence and uniqueness of periodic
solutions of (1). The main difficulty lies in the first term
(𝜑𝑝(𝑥

󸀠
(𝑡)))
󸀠 of (1) (i.e., the𝑝-Laplacian operator𝜑𝑝 : R → R;

𝜑𝑝(𝑠) = |𝑠|
𝑝−2
𝑠 is nonlinear when 𝑝 ̸= 2), the existence of

which prevents the usualmethods of finding some criteria for

Hindawi Publishing Corporation
Journal of Function Spaces
Volume 2015, Article ID 519747, 5 pages
http://dx.doi.org/10.1155/2015/519747

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208033397?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Journal of Function Spaces

guaranteeing the uniqueness of periodic solutions of (2) from
working. Recently, Gao and Lu [16] discussed the existence
and uniqueness of periodic solution of (1) by translating
(1) into a two-dimensional system and got some results as
follows.

Theorem 1 (see [16]). Assume that the following condition
holds:

(H0) 𝛽(𝑡) > 0, 𝑔󸀠(𝑥) < 0, and 𝜏(𝑡) ≡ 𝜀 (𝜀 being sufficiently
small constant) for all 𝑡, 𝑥 ∈ R.

Then (1) has at most one 𝑇-periodic solution.

Remark 2. However, upon examining their proof of
Theorem 1, it was found that if 𝜏(𝑡) ̸= 0∀𝑡 ∈ R, then
Theorem 1 does not hold; more precisely, for arbitrarily given
𝜀 > 0, V(𝑡∗) = 𝑦1(𝑡

∗
) − 𝑦2(𝑡

∗
) > 0 does not positively imply

V(𝑡∗ − 𝜀) = 𝑦1(𝑡
∗
− 𝜀) − 𝑦2(𝑡

∗
− 𝜀) > 0; thus, in line 3 on

page 377 in [16], the inequality V󸀠󸀠(𝑡∗) > 0 is incorrect. On
the other hand, if 𝜏(𝑡) ≡ 0, thenTheorem 1 is correct.

Theorem 3 (see [16]). Assume that the following conditions
hold.

(H1)There exist 𝑟1 > 0, 𝑟2 > 0,𝑚 > 0, and 𝑑 ≥ 0 such that

(i) 𝑟1|𝑢|
𝑚
≤ |𝑔(𝑢)| ≤ 𝑟2|𝑢|

𝑚 for all |𝑢| > 𝑑,
(ii) 𝑢𝑔(𝑢) < 0 for all |𝑢| > 𝑑.

(H2) Consider

𝐴 :=

{{{{{{{

{{{{{{{

{

[

[

𝑟2𝑇

𝑟1 ∫
𝑇

0
(𝛽(𝑡) + 1) 𝑑𝑡

]

]

1/𝑚

2
(1−𝑚)/𝑚

< 1, 0 < 𝑚 ≤ 1,

[

[

𝑟2𝑇

𝑟1 ∫
𝑇

0
(𝛽(𝑡) + 1) 𝑑𝑡

]

]

1/𝑚

< 1, 𝑚 > 1.

(3)

(H3) Suppose one of the following conditions holds:

(i) 𝑚 = 𝑝−1 and 𝛽∞𝑟2𝑇𝑚+2−((𝑚+1)/𝑝)/2(1−𝐴)
𝑚+1

<

1,
(ii) 𝑚 < 𝑝 − 1,

where 𝛽∞ = max𝑡∈[0,𝑇]|𝛽(𝑡)|.

Then (1) has at least one 𝑇-periodic solution.

Remark 4. However, upon examining their proof ofTheorem
3.2 in [16], we have found that the conditions (H1)(i), (H2),
and (H3) can be dropped.

In this paper, we are keen to dispel any perception that
the mathematical proofs of existence and uniqueness that
we present are merely verifying facts which might already
be obvious in other disciplines, based on purely physical
considerations. In particular, in many nonlinear problems
arising in practical dynamical systems, physical reasoning

alone is not sufficient or fully convincing. In these cases,
questions of existence and uniqueness are of importance in
understanding the full range of solution behaviour possible
and represent a genuinemathematical challenge.The answers
to these mathematical questions then provide the basis for
obtaining the best numerical solutions to these problems
and for determining other important practical aspects of the
solution behaviour.

We now reconsider the periodic solutions of (1). The
main purpose of this paper is to establish some new criteria
for guaranteeing the existence and uniqueness of periodic
solution of (1). We obtain some new sufficient conditions for
securing the existence and uniqueness of periodic solutions
of (1) by using the Manásevich-Mawhin continuation theo-
rem and some analysis techniques. Our results extend and
improve the above-mentioned Theorems 3.1 and 3.2 in [16]
(see Remarks 9 and 14 and Example 13).

2. Lemmas

For convenience, define

|𝑥|∞ = max
𝑡∈[0,𝑇]

|𝑥 (𝑡)| ,
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨∞
= max
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨
,

|𝑥|𝑘 = (∫

𝑇

0

|𝑥 (𝑡)|
𝑘
𝑑𝑡)

1/𝑘

.

(4)

Let

𝐶
1

𝑇
:= {𝑥 ∈ 𝐶

1
(R,R) : 𝑥 is 𝑇-periodic} , (5)

which is a Banach space with the norm

‖𝑥‖ = max {|𝑥|∞ ,
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨∞
} . (6)

The following conditions will be used later:

(A0) 𝛽(𝑡) > 0, 𝑔
󸀠
(𝑥) < 0, and 𝜏(𝑡) ≡ 0, for all 𝑡, 𝑥 ∈ R,

(A󸀠
0
) 𝛽(𝑡) < 0, 𝑔󸀠(𝑥) > 0, and 𝜏(𝑡) ≡ 0, for all 𝑡, 𝑥 ∈ R,

(A1) there exists 𝑑 ≥ 0, such that 𝑢𝑔(𝑢) < 0 for all |𝑢| ≥ 𝑑,
(A󸀠
1
) there exists 𝑑 ≥ 0, such that 𝑢𝑔(𝑢) > 0 for all |𝑢| ≥ 𝑑.

For the periodic boundary value problem

(𝜑𝑝 (𝑥
󸀠
(𝑡)))
󸀠

= ℎ (𝑡, 𝑥, 𝑥
󸀠
) , 𝑥 (0) = 𝑥 (𝑇) ,

𝑥
󸀠
(0) = 𝑥

󸀠
(𝑇) ,

(7)

where ℎ ∈ 𝐶(R3,R) is 𝑇-periodic in the first variable, the
following continuation theorem can be induced directly from
the theory in [10] and is cited as Lemma 1 in [17].

Lemma 5 (Manásevich and Mawhin [10]). Let 𝐵 = {𝑥 ∈ 𝐶1
𝑇
:

‖𝑥‖ < 𝑟} for some 𝑟 > 0. Suppose the following two conditions
hold.

(i) For each 𝜆 ∈ (0, 1) the problem (𝜑𝑝(𝑥
󸀠
(𝑡)))
󸀠
=

𝜆ℎ(𝑡, 𝑥, 𝑥
󸀠
) has no solution on 𝜕𝐵.
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(ii) The continuous function F defined on R by 𝐹(𝑎) =
(1/𝑇) ∫

𝑇

0
ℎ(𝑡, 𝑎, 0)𝑑𝑡 is such that 𝐹(−𝑟)𝐹(𝑟) < 0.

Then the periodic boundary value problem (7) has at least one
𝑇-periodic solution on 𝐵.

According to Theorem 3.1 in [16] and the above-
mentioned Remark 2, we have the following results.

Lemma 6. Suppose (A0) holds. Then (1) has at most one 𝑇-
periodic solution.

Lemma 7. Suppose (A󸀠
0
) holds. Then (1) has at most one 𝑇-

periodic solution.

3. Main Results

Now we are in the position to present our main results.

Theorem 8. Suppose (A1) holds. Then (1) has at least one 𝑇-
periodic solution.

Proof. Consider the homotopic equation of (1):

(𝜑𝑝 (𝑥
󸀠
(𝑡)))
󸀠

+ 𝜆𝑓 (𝑥 (𝑡)) 𝑥
󸀠
(𝑡) + 𝜆𝛽 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

= 𝜆𝑒 (𝑡) , 𝜆 ∈ (0, 1) .

(8)

First, we prove that the set of 𝑇-periodic solutions of (8) are
bounded in 𝐶1

𝑇
. Let 𝑆 ⊂ 𝐶1

𝑇
be the set of 𝑇-periodic solutions

of (8). If 𝑆 = 0, the proof is ended. Suppose 𝑆 ̸= 0, and let
𝑥 ∈ 𝑆. Noticing that 𝑥(0) = 𝑥(𝑇), 𝑥󸀠(0) = 𝑥󸀠(𝑇), 𝜑𝑝(0) = 0,
and ∫𝑇
0
𝑒(𝑡)𝑑𝑡 = 0, it follows from (8) that

∫

𝑇

0

𝛽 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) 𝑑𝑡 = 0, (9)

which, together with 𝛽(𝑡) > 0, implies that there exists 𝑡0 ∈
[0, 𝑇] such that

𝑔 (𝑥 (𝑡0 − 𝜏 (𝑡0))) = 0. (10)

Denoting 𝑡0 = 𝑡0 − 𝜏(𝑡0), by (A1), (10) implies

󵄨󵄨󵄨󵄨𝑥 (𝑡0)
󵄨󵄨󵄨󵄨 < 𝑑. (11)

Then, for any 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇],

|𝑥 (𝑡)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥 (𝑡0) + ∫

𝑡

𝑡0

𝑥
󸀠
(𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝑑 + ∫

𝑡0+𝑇

𝑡0

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

= 𝑑 + ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠,

(12)

which leads to

|𝑥|∞ = max
𝑡∈[𝑡0,𝑡0+𝑇]

|𝑥 (𝑡)| < 𝑑 +
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨1
. (13)

Define 𝐸1 = {𝑡 : 𝑡 ∈ [0, 𝑇], |𝑥(𝑡 − 𝜏(𝑡))| > 𝑑} and 𝐸2 = {𝑡 :
𝑡 ∈ [0, 𝑇], |𝑥(𝑡−𝜏(𝑡))| ≤ 𝑑}. Multiplying 𝑥(𝑡) and (8) and then
integrating from 0 to 𝑇, by (A1), we have

∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑡 = −∫

𝑇

0

(𝜑𝑝 (𝑥
󸀠
(𝑡)))
󸀠

𝑥 (𝑡) 𝑑𝑡

= 𝜆∫

𝑇

0

𝛽 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡)) 𝑑𝑡

− 𝜆∫

𝑇

0

𝑒 (𝑡) 𝑥 (𝑡) 𝑑𝑡

= 𝜆∫
𝐸1

𝛽 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡)) 𝑑𝑡

+ 𝜆∫
𝐸2

𝛽 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡)) 𝑑𝑡

− 𝜆∫

𝑇

0

𝑒 (𝑡) 𝑥 (𝑡) 𝑑𝑡

≤ 𝜆∫
𝐸2

𝛽 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)) 𝑥 (𝑡)) 𝑑𝑡

− 𝜆∫

𝑇

0

𝑒 (𝑡) 𝑥 (𝑡) 𝑑𝑡

≤ ∫
𝐸2

󵄨󵄨󵄨󵄨𝛽 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))
󵄨󵄨󵄨󵄨 |𝑥 (𝑡)| 𝑑𝑡

+ ∫

𝑇

0

|𝑒 (𝑡)| |𝑥 (𝑡)| 𝑑𝑡

≤ ( max
𝑡∈[0,𝑇],|𝑥|≤𝑑

󵄨󵄨󵄨󵄨𝛽 (𝑡) 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 + |𝑒|∞)𝑇 |𝑥|∞ .

(14)

Let 𝑀0 = (max𝑡∈[0,𝑇],|𝑥|≤𝑑|𝛽(𝑡)𝑔(𝑥)| + |𝑒|∞) 𝑇. Then we
obtain

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨𝑝
≤ 𝑀
1/𝑝

0
|𝑥|
1/𝑝

∞
. (15)

Let 𝑞 > 1 such that 1/𝑝 + 1/𝑞 = 1. Then by Hölder inequality
we have

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨1
≤
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨𝑝
|1|𝑞 = 𝑇

1/𝑞 󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨𝑝
. (16)

By (13), (15), and (16), we can get

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨1
≤ 𝑇
1/𝑞
𝑀
1/𝑝

0
(𝑑 +

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨1
)
1/𝑝

, (17)

which yields that there exists𝑀1 > 0 such that |𝑥󸀠|1 < 𝑀1
since 𝑝 > 1, and this, together with (13), implies that |𝑥|∞ <
𝑑 +𝑀1.
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Meanwhile, there exists 𝑡̂0 ∈ [0, 𝑇] such that 𝑥󸀠(𝑡̂0) = 0
since 𝑥(0) = 𝑥(𝑇). Then by (8) we have, for 𝑡 ∈ [𝑡̂0, 𝑡̂0 + 𝑇],
󵄨󵄨󵄨󵄨󵄨
𝜑𝑝 (𝑥
󸀠
(𝑡))
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡̂0

(𝜑𝑝 (𝑥
󸀠
(𝑠)))
󸀠

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

𝑡̂0

(𝑓 (𝑥 (𝑠)) 𝑥
󸀠
(𝑠) + 𝛽 (𝑠) 𝑔 (𝑥 (𝑠 − 𝜏 (𝑠))) + 𝑒 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑇

0

(
󵄨󵄨󵄨󵄨𝑓 (𝑥 (𝑠))

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠
(𝑠)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝛽 (𝑠) 𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))

󵄨󵄨󵄨󵄨

+ |𝑒 (𝑠)|) 𝑑𝑠

< 𝐹𝑀1 + (𝐺 + |𝑒|∞) 𝑇,

(18)

where 𝐹 = max{|𝑓(𝑥)| : |𝑥| ≤ 𝑑 + 𝑀1} and 𝐺 =

max{|𝛽(𝑡)𝑔(𝑥)| : 𝑡 ∈ [0, 𝑇], |𝑥| ≤ 𝑑 +𝑀1}. So we obtain

󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠󵄨󵄨󵄨󵄨󵄨∞
= max
𝑡∈[0,𝑇]

{
󵄨󵄨󵄨󵄨󵄨
𝜑𝑝 (𝑥
󸀠
(𝑡))
󵄨󵄨󵄨󵄨󵄨

1/(𝑝−1)

}

< (𝐹𝑀1 + (𝐺 + |𝑒|∞) 𝑇)
1/(𝑝−1)

.

(19)

Let𝑀 = max{𝑑+𝑀1, (𝐹𝑀1+(𝐺+|𝑒|∞)𝑇)
1/(𝑝−1)

}.Then ‖𝑥‖ <
𝑀.

Second, we prove the existence of 𝑇-periodic solutions of
(1). Set

ℎ (𝑡, 𝑥 (𝑡) , 𝑥
󸀠
(𝑡))

= −𝑓 (𝑥 (𝑡)) 𝑥
󸀠
(𝑡) − 𝛽 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝑒 (𝑡) ;

(20)

then (8) is equivalent to the following equation:

(𝜑𝑝 (𝑥
󸀠
(𝑡)))
󸀠

= 𝜆ℎ (𝑡, 𝑥 (𝑡) , 𝑥
󸀠
(𝑡)) , 𝜆 ∈ (0, 1) . (21)

Set

𝐵 = {𝑥 : 𝑥 ∈ 𝐶
1

𝑇
, ‖𝑥‖ < 𝑟} , where 𝑟 ≥ 𝑀; (22)

by (20), we know that (21) has no solution on 𝜕𝐵 as 𝜆 ∈ (0, 1),
so condition (i) of Lemma 5 is satisfied. By the definition of 𝐹
in Lemma 5 we get

𝐹 (𝑎) =
1

𝑇
∫

𝑇

0

ℎ (𝑡, 𝑎, 0) 𝑑𝑡 =
1

𝑇
∫

𝑇

0

(𝑒 (𝑡) − 𝛽 (𝑡) 𝑔 (𝑎)) 𝑑𝑡

= −
1

𝑇
∫

𝑇

0

𝛽 (𝑡) 𝑔 (𝑎) 𝑑𝑡.

(23)

This, together with 𝛽(𝑡) > 0 for all 𝑡 ∈ R and (A1), yields that
𝐹(𝑟)𝐹(−𝑟) < 0; that is, condition (ii) of Lemma 5 is satisfied.
Therefore, it follows from Lemma 5 that there exists a 𝑇-
periodic solution 𝑥(𝑡) of (1). This completes the proof.

Remark 9. It is easy to see thatTheorem 8 in this study holds
under weaker conditions thanTheorem 3.2 in [16].

According to the above discussion, we can also get the
following result.

Theorem 10. Suppose (A󸀠
1
) holds. Then (1) has at least one 𝑇-

periodic solution.

Together with Lemmas 6 and 7 and Theorems 8 and 10,
we can directly lead to two theorems as follows.

Theorem 11. Suppose (A0) and (A1) hold. Then (1) has a
unique 𝑇-periodic solution.

Theorem 12. Suppose (A󸀠
0
) and (A󸀠

1
) hold. Then (1) has a

unique 𝑇-periodic solution.

4. Example and Remark

In this section, we apply the main results obtained in the
previous sections to an example.

Example 13. Consider the existence and uniqueness of a 2𝜋-
periodic solution of the following Liénard-type 𝑝-Laplacian
equation:

(𝜑𝑝 (𝑥
󸀠
(𝑡)))
󸀠

+ 𝑓 (𝑥 (𝑡)) 𝑥
󸀠
(𝑡) + 𝛽 (𝑡) 𝑔 (𝑥 (𝑡)) = 𝑒 (𝑡) , (24)

where 𝑝 > 1, 𝑓 ∈ 𝐶(R,R), 𝛽(𝑡) = 1 + cos2𝑡, 𝑔(𝑥) = −𝑥3 − 2𝑥,
𝑒(𝑡) = cos 𝑡, and 𝑇 = 2𝜋.

Proof. If 𝑝 < 4, condition (H3) in Theorem 3.3 in [16]
does not hold any more since 𝑚 = 3 > 𝑝 − 1. Therefore,
Theorem 3.3 in [16] fails, while our criterion in Theorem 11
in this study remains applicable, as we now show. Let 𝑑
be an arbitrary positive constant; then we can easily check
that conditions (A0) and (A1) in Theorem 11 in this study
hold. Hence,Theorem 11 shows that there exists a unique 2𝜋-
periodic solution of (24).

Remark 14. This example demonstrates that the conditions in
ourTheorem 11 are weaker than those conditions inTheorem
3.3 in [16] when 𝜏(𝑡) ≡ 0 and are able to demonstrate the
existence of a unique periodic solution to certain Liénard-
type 𝑝-Laplacian equations, which the latter cannot decide
about. Therefore, our results extend and improve the results
in [16].
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