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The performance of traditional constrained-LMS (CLMS) algorithm is known to degrade seriously in the presence of small training
data size and mismatches between the assumed array response and the true array response. In this paper, we develop a robust
constrained-LMS (RCLMS) algorithm based on worst-case SINR maximization. Our algorithm belongs to the class of diagonal
loading techniques, in which the diagonal loading factor is obtained in a simple form and it decreases the computation cost.
The updated weight vector is derived by the descent gradient method and Lagrange multiplier method. It demonstrates that our
proposed recursive algorithm provides excellent robustness against signal steering vector mismatches and the small training data
size and, has fast convergence rate, and makes the mean output array signal-to-interference-plus-noise ratio (SINR) consistently
close to the optimal one. Some simulation results are presented to compare the performance of our robust algorithm with the
traditional CLMS algorithm.

1. Introduction

Adaptive beamforming is used for enhancing a desired signal
while suppressing interference and noise at the output of an
array of sensors. It has a long and rich history of practical
applications to numerous areas such as sonar, radar, radio
astronomy, medical imaging, and more recently wireless
communications [1–5].

In the practical applications, the adaptive beamforming
methods become very sensitive to any violation of underlying
assumptions on the environment, sources, or sensor array.
The performance of the existing adaptive array algorithms
is known to degrade substantially in the presence of even
slight mismatches between the actual and presumed array
responses to the desired signal. Similar types of degradation
can take place when the signal array response is known pre-
cisely, but the training sample size is small. Therefore, robust
approaches to adaptive beamforming appear to be one of the
important issues. There are several efficient approaches to

design robust adaptive beamformers, such as the linearly con-
strainedminimum variance beamformer [6], the eigenspace-
based beamformer [7], and the projection beamforming
techniques [8]. For instance, additional linear constraints
on the array beam pattern have been proposed to better
attenuate the interference and broaden the response around
the nominal look direction [9].There is another popular class
of robust beamforming techniques called diagonal loading
(DL) [10]. In these methods the array correlation matrix
is loaded with an appropriate multiple, called the loading
level, of the identity matrix in order to satisfy the imposed
quadratic constraint. However, it is somewhat difficult to
calculate the loading level with uncertain bounds of the
array steering vector, which may not be available in practical
situations. Based on a spherical or ellipsoidal uncertainty
set of the array steering vectors, robust Capon beamforming
maximizes the output power, which belongs to the extended
class of diagonal loading methods, but the corresponding
value of diagonal loading can be calculated precisely [11, 12].
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From the above analysis, we note that these methods cannot
be expected to provide sufficient robustness improvements.

In more recent years, some new robust adaptive beam-
forming approaches have been proposed [13–17]. The prob-
lem of finding a weight vector maximizes the worst-case
SINR over the uncertainty model. With a general convex
uncertainty model, the worst-case SINR maximization prob-
lem can be solved by using convex optimization [13]. In [14],
a robust downlink beamforming optimization algorithm is
proposed for secondary multicast transmission in a multiple-
input multiple-output (MIMO) spectrum sharing cognitive
radio (CR) network. Recognizing that all channel covariance
matrices form a Riemannian manifold, Ciochina et al. pro-
pose worst-case robust downlink beamforming on the Rie-
mannian manifold in order to model the set of mismatched
channel covariance matrices for which robustness shall be
guaranteed [15]. In [16], a robust beamforming scheme is
proposed for the multiantenna nonregenerative cognitive
relay network where the multiantenna relay with imperfect
channel state information (CSI) helps the communication of
single-antenna secondary users (SUs). Exploiting imperfect
channel state information (CSI), with its error modeled by
addedGaussian noise, robust beamforming in cognitive radio
is developed, which optimizes the beamforming weights at
the secondary transmitter [17].

Apart from the LMS-type algorithm, another well-known
iterative adaptive algorithm is the recursive least square (RLS)
algorithm or the complex-valued widely linear RLS algo-
rithm, which updates the weight vector with small steady-
state misadjustment and fast convergence speed. However,
the RLS-type algorithms have much higher computation
cost than the LMS-type algorithms [18, 19]. In order to
reduce the complexity, RLS algorithm based on orthonormal
polynomial basis function is proposed, which is as simple
as LMS algorithm [20]. To yield low complexity cost and
keep fast convergence speed, the LMS algorithms based on
variable step size have been presented in [21–23]. These LMS
algorithms can have faster convergence speed and require
less computational cost per iteration than the RLS-type
algorithms. However, they cannot enjoy both fast tracking
and small misadjustment with simple implementation. It is
known that the performance of traditional CLMS algorithm
degrades seriously due to the small training sample size
and signal steering vector mismatches. In this paper, in
order to overcome the drawbacks of CLMS algorithm, we
propose a robust CLMS algorithm based on worst-case SINR
maximization, which provides sufficient robustness against
some types of mismatches. The parameters in our paper can
derive in a simple form, which decreases computation cost.
The improved performance of the proposed algorithm is
demonstrated by comparing with traditional linearly CLMS
algorithm via several examples.

2. Background

2.1.Mathematical Formulation. Weconsider a uniform linear
array (ULA) with𝑀 omnidirectional sensors spaced by the
distance𝑑.We assume𝐷narrowband incoherent planewaves

that impinge from directions of arrival {𝜃
0
, 𝜃
1
, . . . , 𝜃

𝐷−1
}. The

output of a designed beamformer is expressed as follows:

𝑦 (𝑘) = w𝐻x (𝑘) , (1)

where x(𝑘) = [𝑥
1
(𝑘), . . . , 𝑥

𝑀
(𝑘)]
𝑇 is the complex vector

of array observation, 𝑀 is the array number, and w =

[𝑤
1
, . . . , 𝑤

𝑀
]
𝑇 is the complex vector of weights; here (⋅)𝐻 and

(⋅)
𝑇 are the Hermitian transpose and transpose, respectively.

The array observation at time 𝑘 can be written as

x (𝑘) = s (𝑘) + n (𝑘) + i (𝑘) = 𝑠
0
(𝑘) a + n (𝑘) + i (𝑘) , (2)

where s(𝑘), n(𝑘), and i(𝑘) are the desired signal, noise,
and interference components, respectively. Here 𝑠

0
(𝑘) is the

desired signal waveform, and a is the signal steering vector.
The weights can be optimized from the following maxi-

mum of the signal-to-interference-plus-noise ratio (SINR):

SINR =
𝜎
2

𝑠


w𝐻a
2

w𝐻R
𝑖+𝑛

w
, (3)

where 𝜎2
𝑠
is the signal power and𝑀 × 𝑀 interference-plus-

noise correlation matrix R
𝑖+𝑛

:

R
𝑖+𝑛

= 𝐸 {(n (𝑘) + i (𝑘)) (n (𝑘) + i (𝑘))𝐻} . (4)

2.2. Linearly Constrained-LMS (CLMS) Algorithm. Linear
constrained-LMS algorithm is a real-time constrained algo-
rithm for determining the optimal weight vector. The prob-
lem of finding optimum beamformer weights is as follows:

minw w𝐻R
𝑖+𝑛

w

subject to w𝐻a = 1.
(5)

Using Lagrange multiplier method to solve problem (5),
the optimal weight vector can be derived:

wopt =
R−1
𝑖+𝑛

a
aHR−1
𝑖+𝑛

a
. (6)

In practical situations, we cannot know completely the
signal characteristics and it is also time-varying circum-
stance. So, we need to update the weights in an iterative
manner. The Lagrange function of (5) is written as

𝐻(w, 𝜆) = w𝐻R
𝑖+𝑛

w + 𝜆 (w𝐻a − 1) . (7)

Computing the gradient of (7), we can update the weight
vector of CLMS algorithm:

w (𝑘 + 1) = w (𝑘) − 𝜇1∇

= w (𝑘) − 𝜇
1
[2R
𝑖+𝑛

w (𝑘) + 𝜆a] ,
(8)

where 𝜇
1
is the step size and ∇ is the gradient vector of

𝐻(w, 𝜆). Inserting (8) into linear constraint w𝐻a = 1, we can
obtain the Lagrange multiplier:

𝜆 =
1

𝜇
1

a𝐻w (𝑘) − 1
a𝐻a

− 2
a𝐻

a𝐻a
R
𝑖+𝑛

w (𝑘) . (9)
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According to (8) and (9), the weight vector of traditional
CLMS algorithm can be rewritten as [24]

w (𝑘 + 1) = P [w (𝑘) − 𝜇
1
R
𝑖+𝑛

w (𝑘)] +Ψ, (10)

whereΨ = a[a𝐻a]−1 and P = Ι − a[a𝐻a]−1a𝐻.
From (10), we note that the performance of the tradi-

tional CLMS algorithm is dependent on exact signal steering
vector and it is sensitive to some types of mismatches. In
addition, the interference-plus-noise correlation matrix R

𝑖+𝑛

is unknown. Hereby, the sample covariance matrix

R̂
𝑁
=
1

𝑁

𝑁

∑

𝑘=1

x (𝑘) x𝐻 (𝑘) (11)

is used to substitute R
𝑖+𝑛

in (10), where 𝑁 is the train-
ing sample size. Therefore, the performance degradation of
CLMS algorithm can occur due to the signal steering vector
mismatches and small training sample size.

3. Robust CLMS Algorithm Based on
Worst-Case SINR Maximization

In order to solve the above-mentioned problems of the
linearly constrained-LMS algorithm, we propose a robust
recursive algorithm based onworst-case SINRmaximization,
which provides robustness against mismatches.

We assume that, in practical situations, the mismatch
vector e is norm-bounded by some known constant 𝜀 > 0;
that is,

‖e‖ ≤ 𝜀. (12)

Then, the actual signal steering vector belongs to a ball
set:

𝜑 (𝜀) = {c | c = a + e, ‖e‖ ≤ 𝜀} . (13)

The weight vector is selected by minimizing the mean
output power while maintaining a distortionless response
for the mismatched steering vector. So, the cost function of
robust constrained-LMS (RCLMS) algorithm is formulated
as

minw w𝐻R̂
𝑁
w

subject to min
c∈𝜑(𝜀)


w𝐻c ≥ 1.

(14)

According to [25], the constraint in (14) is equivalent to
the following form:

min
c∈𝜑(𝜀)


w𝐻c = 1. (15)

Using (15), problem (14) can be rewritten in the following
way:

minw w𝐻R̂
𝑁
w

subject to 
w𝐻a − 1

2

= 𝜀
2w𝐻w.

(16)

In order to improve the robustness against the mismatch
that may be caused by the small training sample size, we can
get a further extension of the optimization problem (16). The
actual covariance matrix is

R̂
𝑑
= R̂
𝑁
+ Δ, (17)

where Δ is the norm of the error matrix and it is bounded by
a certain constant 𝑟, ‖Δ‖ ≤ 𝑟.

Applying the worst-case performance optimization, we
can rewrite

minw max
‖Δ‖≤𝑟

w𝐻 (R̂
𝑁
+ Δ)w

subject to 
w𝐻a − 1

2

= 𝜀
2w𝐻w.

(18)

To obtain the optimal weight vector, we can first solve the
following simpler problem [26]:

min
Δ

− w𝐻 (R̂
𝑁
+ Δ)w

subject to ‖Δ‖ ≤ 𝑟.

(19)

Using Lagrange multiplier method to yield the matrix
error,

Δ = 𝑟
ww𝐻

‖w‖
. (20)

Consequently, the minimization problem (18) is con-
verted to the following form:

minw max
‖Δ‖≤𝑟

w𝐻 (R̂
𝑁
+ 𝑟I)w

subject to 
w𝐻a − 1

2

= 𝜀
2w𝐻w.

(21)

The solution to (21) can be derived by minimizing the
Lagrange function:

𝑓 (w, 𝜆)

= w𝐻R̂
𝑙
w

+ 𝜆 (𝜀
2w𝐻w − w𝐻aa𝐻w + w𝐻a + a𝐻w − 1) ,

(22)

where R̂
𝑙
= R̂
𝑁
+ 𝑟I and 𝜆 is Lagrange multiplier. Computing

the gradient vector of𝐻(w, 𝜆), we can get the gradient ∇:

∇ = (R̂
𝑙
+ 𝜆𝜀
2
Ι − 𝜆aa𝐻)w + 𝜆a. (23)

The gradient of𝐻(w, 𝜆) is equal to zero andwe can obtain
the optimum weight vector:

wopt = 𝜗 (𝜆) (R̂𝑙 + 𝜆𝜀
2
Ι)
−1

a, (24)

where 𝜗(𝜆) = 𝜆/(𝜆a𝐻(R̂
𝑙
+ 𝜆𝜀
2
Ι)
−1a − 1).

From (24), we note that the proposed algorithm belongs
to the class of diagonal loading techniques, but the loading
factor is calculated in a complicated way.
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Using (23), the updated weight vector is obtained by

w (𝑘 + 1) = w (𝑘) − 𝜇 [Bw (𝑘) + 𝜆a] , (25)

where B = R̂
𝑙
+ 𝜆𝜀
2
Ι − 𝜆aa𝐻 and 𝜇 is step size.

Next, we need to compute the Lagrange multiplier 𝜆. The
quadratic constraint of the optimization problem (21) is

ℎ (w) = 1, (26)

where

ℎ (w) = w𝐻 (𝑘) (𝜀2I − aa𝐻)w (𝑘) + a𝐻w (𝑘)

+ w𝐻 (𝑘) a.
(27)

Inserting (25) into (26), we can obtain the Lagrange
multiplier 𝜆:

𝜆 =
1

2𝜇2 [F𝐻 (𝑘) (𝜀2I − aa𝐻) F (𝑘)]
(𝜁 (𝑘) + 𝜒 (𝑘)) , (28)

where

F (𝑘) = (𝜀2I − aa𝐻)w (𝑘) + a,

q (𝑘) = [I − 𝜇 (R̂𝑙 + 𝑟I)]w (𝑘) ,

𝜁 (𝑘) = 𝜇 [q𝐻 (𝑘) (𝜀2I − aa𝐻) F (𝑘)

+ F𝐻 (𝑘) (𝜀2I − aa𝐻)P (𝑘) + F𝐻 (𝑘) a + a𝐻F (𝑘)] ,

𝜒 (𝑘) = P𝐻 (𝑘) (𝜀2I − aa𝐻) q (𝑘) + q𝐻 (𝑘) a

+ a𝐻q (𝑘) ,

𝜌
𝐻
(𝑘) 𝜌 (𝑘) = 𝜁

𝐻
(𝑘) 𝜁 (𝑘) − 4𝜇

2F𝐻 (𝑘) (𝜀2I − aa𝐻)

⋅ F (𝑘) (𝜒 (𝑘) − 1) .

(29)

3.1.TheChoice of Step Size. Theweight vector (25) is rewritten
as

w (𝑘 + 1) = [I − 𝜇Β]w (𝑘) − 𝜇𝜆a. (30)

Let

B = ΣΛΣ𝐻, (31)

where Λ is a diagonal matrix in which the diagonal elements
of matrix 𝜏

1
≥ 𝜏
2
≥ ⋅ ⋅ ⋅ ≥ 𝜏

𝑀
are equal to the eigenvalues ofB,

and the columns ofΣ contain the corresponding eigenvectors.
We can get the following equation via multiplying (30) by
Σ
𝐻:

Σ
𝐻w (𝑘 + 1) = [I − 𝜇Λ]Σ𝐻w (𝑘) − 𝜇𝜆Σ𝐻a. (32)

As demonstrated in (32), if the proposed algorithm
converges, it is required to satisfy the constrained condition:

1 − 𝜇𝜏𝑖
 < 1. (33)

It follows from (33) that

0 < 𝜇 <
2

𝜏max
, (34)

where 𝜏max is the maximum eigenvalue:

𝜏max <
𝑀

∑

𝑖=1

𝜏
𝑖
= trace [B] . (35)

In recursive algorithm, the choice of the step size 𝜇 is very
important and it is varied with each new training snapshot
[27, 28].

Therefore, we can obtain the optimal parameter 𝜇:

𝜇 =
1

5 trace [B]
. (36)

3.2.TheApproximation of LagrangeMultiplier. From (28) and
(29), we note that the computation cost of weight vector is
very high. Next, we obtain the Lagrange multiplier by linear
combination to decrease the computation cost.

From (24), the proposed beamformer belongs to the
class of diagonal loading techniques. According to [29], we
consider a linear combination of R

𝑖+𝑛
and R̂

𝑙
:

R
𝑐
= 𝜌R
𝑖+𝑛
+ 𝜐R̂
𝑙
, (37)

where the parameters 𝜌 > 0 and 𝜐 > 0. The initial value of
R
𝑖+𝑛

is assumed to identify matrix I [30]. We can rewrite (37)
as

R̂
𝑐
= R̂
𝑙
+
𝜌

𝜐
Ι. (38)

Contrasting the diagonal loading covariancematrices R̂
𝑙
+

𝜆𝜀
2
Ι in (24) and R̂

𝑙
+(𝜌/𝜐)Ι in (38), we note that the parameter

𝜆𝜀
2 is replaced by 𝜌/𝜐. In this way, we can compute the

Lagrange multiplier 𝜆 as follows:

𝜆 =
𝜌

𝜐
⋅
1

𝜀2
. (39)

From (39), the Lagrange multiplier is calculated sim-
ply, which decreases the complexity cost of the proposed
algorithm. We need first to obtain the parameters 𝜌 and 𝜐.
Minimize the following function:

𝑔 = min𝐸 {R𝑐 − R
𝑥



2
} , (40)

where R
𝑥

= 𝐸[x(𝑘)x𝐻(𝑘)] is the theoretical covariance
matrix. By inserting (37) into (40), we have [31]

𝑔 = 𝐸 {

𝜐 (R̂
𝑙
− R
𝑥
) + 𝜌Ι − (1 − 𝜐)R

𝑥



2

}

= 𝜐
2
𝐸{

R̂
𝑙
− R
𝑥



2

} − 2𝜌 (1 − 𝜐) tr (R
𝑥
)

+ (1 − 𝜐)
2 R𝑥



2
+ 𝜌
2
𝑀.

(41)
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Computing the gradient of (41) with respect to 𝜌, for fixed
𝜐, we can give the optimal value:

𝜌
0
=
(1 − 𝜐

0
) tr (R

𝑥
)

𝑀
. (42)

Inserting 𝜌
0
into (41) and replacing 𝜐

0
by 𝜐, minimization

problem is written as

min
𝜐
𝜐
2
𝐸 {

R̂
𝑙
− R
𝑥



2

}

+

(1 − 𝜐)
2
{
R𝑥



2
𝑀− tr2 (R

𝑥
)}

𝑀
.

(43)

By minimizing (43), the optimal solution for 𝜐 is derived
as

𝜐
0
=

𝛼

𝛼 + 𝜎
, (44)

where 𝜎 = 𝐸{‖R̂
𝑙
− R
𝑥
‖
2
} and 𝛼 = ‖R

𝑥
‖
2
− tr2(R

𝑥
)/𝑀.

In practical situations, R
𝑥
is replaced by R̂

𝑙
to obtain

estimation value:

�̂� =

R̂
𝑙



2

−

tr2 (R̂
𝑙
)

𝑀
. (45)

We can estimate the parameter 𝜎:

�̂� =

𝑀

∑

𝑚=1

[
1

𝑁2

𝑁

∑

𝑛=1

𝑟𝑚 − x (𝑛) 𝑥∗
𝑚
(𝑛)


2
]

=
1

𝑁2

𝑁

∑

𝑛=1

‖x (𝑛)‖4 − 1

𝑁


R̂
𝑙



2

,

(46)

where 𝑥
𝑚
(𝑛) is the𝑚th element of x(𝑛).

Substituting (45) and (46) into (44), the estimation value
of 𝜐
0
is written as

𝜐
0
=

�̂�

�̂� + �̂�
. (47)

Inserting (45) and (46) into (42), we can obtain estima-
tion value of 𝜌

0
:

𝜌
0
=

(1 − 𝜐
0
) tr (R̂

𝑙
)

𝑀
. (48)

Consequently, we can obtain the expression of Lagrange
multiplier:

�̂� =
𝜌
0

𝜐
0

⋅
1

𝜀2
. (49)

Our proposed RCLMS algorithm belongs to the class
of diagonal loadings, but the diagonal loading factor is
derived fully automatically from the observation vectors
without the need of specifying any user knowledge. The
parameter 𝜀 is determined easily andwe can conclude that the
proposed RCLMS algorithm is not sensitive to the choice of

Table 1: The complexity cost of the conventional constrained-LMS.

Complexity cost
R
𝑖+𝑛

𝑂(𝑀
2
× 𝑁 + 1)

Ψ 𝑂(2𝑀 + 1)

P 𝑂(2𝑀
2
+ 1)

Pw(𝑘) 𝑂(𝑀
2
)

𝜇
1
PR
𝑖+𝑛
w(𝑘) 𝑂(𝑀

3
+𝑀
2
+𝑀)

Total complexity cost 𝑂(𝑀
3
+ (𝑁 + 4)𝑀

2
+ 3𝑀 + 3)

Table 2: The complexity cost of the proposed robust CLMS.

Complexity cost
�̂� 𝑂(𝑀

2
+𝑀 ×𝑁 +𝑁 + 12)

𝜇�̂�a 𝑂(𝑀 + 1)

R̂
𝑙

𝑂(𝑀
2
× 𝑁 + 1)

𝜆𝜀
2I 𝑂(𝑀

2
+ 2)

𝜆aa𝐻 𝑂(2𝑀
2
)

𝜇Bw(𝑘) 𝑂(𝑀
2
+𝑀)

Total complexity cost 𝑂((𝑁 + 5)𝑀
2
+ (𝑁 + 2)𝑀 +𝑁 + 16)

parameter 𝜀 in [28]. From the literature [11], it is clear that the
major computational demand of the algorithm comes from
the eigendecomposition, which requires 𝑂(𝑀3) flops. This
leads to a high computational cost. However, the proposed
algorithm, which does not need eigendecomposition, can
reduce the complexity to 𝑂(𝑀2) flops. In addition, robust
Capon algorithm and our proposed algorithm belong to the
class of the diagonal loadings, in which the loading factors
can be calculated precisely.

3.3. The Analysis of Complexity Cost. The complexity cost of
two algorithms can be shown as in Tables 1 and 2.

4. Simulation Results

In this section, we present some simulations to justify the per-
formance of the proposed robust recursive algorithm based
on worst-case SINR maximization. We assume a uniform
linear array with 𝑀 = 10 omnidirectional sensors spaced
half a wavelength apart. For each scenario, 200 simulation
runs are used to obtain each simulation point. Assume that
both directions of arrival (DOAs) of the presumed and actual
signal are 0∘ and 3

∘, respectively. This corresponds to a
3
∘ mismatch in the direction of arrival. Suppose that two
interfering sources are planewaves impinging from theDOAs
−50
∘ and 50∘, respectively. We choose the parameter 𝑟 = 9.

Example 1 (output SINR versus the number of snapshots).
We assume that signal-to-noise ratio SNR = 10 dB and the
parameter 𝜀 = 3. Figure 1 shows the performance of the
methods tested in no mismatch case. From Figure 1, we see
that the output SINR of traditional CLMS is about 14 dB. Note
that it is sensitive to the small training sample size. However,
our proposed algorithm can provide improved robustness.
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Figure 1: Output SINR in no-mismatch case.
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Figure 2: Output SINR in a 3∘ mismatch case.

Figure 2 shows the array output SINR of the methods tested
in a 3∘ mismatch.

In Figure 2, we note that the output SINR of CLMS algo-
rithm is about −10 dB, which is sensitive to the signal steering
vector mismatches. However, that of the proposed robust
CLMS (RCLMS) algorithm is about 18 dB, which is close to
the optimal one. In this scenario, the proposed recursive algo-
rithm outperforms the traditional linear constrained-LMS
algorithm. Moreover, robust constrained-LMS algorithm has
faster convergence rate.

Example 2 (output SINR versus SNR). In this example, there
is a 3∘ mismatch in the signal look direction. We assume that
the fixed training data size𝑁 is equal to 100. Figure 3 displays
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Figure 3: Output SINR in no-mismatch case.
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Figure 4: Output SINR in a 3∘ mismatch case.

the performance of these algorithms versus the SNR in no-
mismatch case. The performance of these algorithms versus
the SNR in a 3∘ mismatch case is shown in Figure 4.

In this example, the traditional algorithm is very sensitive
even to slight mismatches which can easily occur in practical
applications. It is observed from Figure 4 that, with the
increase of SNR, CLMS algorithm has poor performance at
all values of the SNR.However, our proposed recursive robust
algorithm provides improved robustness against signal steer-
ing vector mismatches and small training sample size, has
faster convergence rate, and yields better output performance
than the CLMS algorithm.
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5. Conclusions

In this paper, we propose a robust constrained-LMS algo-
rithm based on the worst-case SINR maximization. The
RCLMS algorithm provides robustness against some types of
mismatches and offers faster convergence rate. The updated
weight vector is derived by the gradient descent method
and Lagrange multiplier method, in which the diagonal
loading factor is obtained in a simple form.This decreases the
computation cost. Some simulation results demonstrate that
the proposed robust recursive algorithm enjoys better perfor-
mance as compared with the traditional CLMS algorithm.
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