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We first defined interval-valued neutrosophic soft rough sets (IVN-soft rough sets for short) which combine interval-valued
neutrosophic soft set and rough sets and studied some of its basic properties. This concept is an extension of interval-valued
intuitionistic fuzzy soft rough sets (IVIF-soft rough sets).

1. Introduction

In 1999, Smarandache introduced the theory of neutrosophic
set (NS) [1], which is the generalization of the classical sets,
conventional fuzzy set [2], intuitionistic fuzzy set [3], inter-
val-valued fuzzy set [4], and so on. The concept of neutroso-
phic set handles indeterminate data whereas fuzzy set theory
and intuitionistic fuzzy set theory failed when the relation is
indeterminate.

Recently, works on the neutrosophic set theory is progre-
ssing rapidly. Bhowmik and Pal [5, 6] defined “intuitionistic
neutrosophic set.” Later on Salama and Alblowi [7] introdu-
ced another concept called “generalized neutrosophic set.”
Wang et al. [8] proposed another extension of neutrosophic
set which is “single valued neutrosophic sets.” Also, Wang et
al. [9] introduced the notion of interval-valued neutrosophic
sets (IVNSs) which is an instance of neutrosophic set. The
IVNSs are characterized by an interval membership degree,
interval indeterminacy degree, and interval nonmembership
degree. Georgiev [10] explored some properties of the neutro-
sophic logic and proposed a general simplification of the neu-
trosophic sets into a subclass of theirs, comprised of elements
of 𝑅3. Ye [11, 12] defined similarity measures between interval
neutrosophic sets and their multicriteria decision making
method. Majumdar and Samant [13] proposed some types
of similarity and entropy of neutrosophic sets. Broumi and
Smarandache [14–16] proposed several similarity measures

of neutrosophic sets. Chi and Peide [17] extended TOPSIS to
interval neutrosophic sets and so on.

In 1999, a Russian researcher, Molodotsov, proposed a
new mathematical tool called “soft set theory” [18], for deal-
ing with uncertainty and how soft set theory is free from the
parameterization inadequacy syndrome of fuzzy set theory,
rough set theory, and probability theory. Recently, Deli [19]
introduced the concept of interval-valued neutrosophic soft
set as a combination of interval neutrosophic set and soft set.
This concept generalizes the concept of the soft set, fuzzy soft
set [20], intuitionistic fuzzy soft set [21], interval-valued int-
uitionistic fuzzy soft set [22], neutrosophic soft set, and intui-
tionistic neutrosophic soft set [23].

The rough set theory that was introduced by Pawlak [24]
in 1982, which is a technique for managing the uncertainty
and imperfection, can analyze incomplete information effec-
tively.Therefore, manymodels have been built upon different
aspect, that is, universe, relations, object, and operators by
many scholars [25–30] such as rough fuzzy sets, fuzzy rough
sets, generalized fuzzy rough set, rough intuitionistic fuzzy
set, and intuitionistic fuzzy rough sets [31]. It has been suc-
cessfully applied in many fields such as attribute reduction
[32–35], feature selection [36–38], and rule extraction [39–
42].The rough sets theory approximates any subset of objects
of the universe by two sets, called the lower and upper appr-
oximations. It focuses on the ambiguity caused by the limited
discernibility of objects in the universe of discourse.
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Moreover, many new rough set models have also been
established by combining the Pawlak rough set with other
uncertainty theories such as soft set theory. Feng [43] pro-
vided a framework to combine fuzzy sets, rough sets, and
soft sets all together, which gives rise to several interesting
new concepts such as rough soft sets, soft rough sets, and soft
rough fuzzy sets.The combination of hybrid structures of soft
sets and rough setsmodels was also discussed by some resear-
chers [44–46]. Later on, Zhang et al. [47] proposed the noti-
ons of soft rough intuitionistic fuzzy sets and intuitionistic
fuzzy soft rough sets, which can be seen as two new general-
ized soft rough set models, and investigated some properties
of soft rough intuitionistic fuzzy sets and intuitionistic fuzzy
soft rough sets in detail. Also Saha andMukherjee [48] prop-
osed the concept of the notion of soft interval-valued intu-
itionistic fuzzy rough sets.

More recently, Broumi et al. [49] combined neutrosophic
sets with rough sets in a new hybrid mathematical structure
called “rough neutrosophic sets” handling incomplete and
indeterminate information. The concept of rough neutroso-
phic sets generalizes fuzzy rough sets and intuitionistic fuzzy
rough sets. Also Salama and Broumi [50] studied roughness
of neutrosophic sets. Based on the equivalence relation on the
universe of discourse, Mukherjee et al. [51] introduced soft
lower and upper approximation of interval-valued intuition-
istic fuzzy set in Pawlak’s approximation space. Motivated by
the idea of interval-valued intuitionistic fuzzy soft rough sets
introduced in [52], we extend the interval intuitionistic fuzzy
lower and upper approximations to the case of an interval-
valued neutrosophic set. The concept of an interval-valued
neutrosophic soft rough set is introduced by coupling both
the interval-valued neutrosophic soft sets and rough sets.

The paper is structured as follows. In Section 2, we first
recall the necessary background on rough sets and interval
neutrosophic soft set. Section 3 reviews various proposals for
the definition of interval neutrosophic soft rough sets and ex-
amines their respective properties. Section 4 presents amulti-
citeria group decision making scheme under interval-valued
neutrosophic soft rough set. Section 5 presents an application
of multiciteria group decision making scheme regarding the
candidate selection problem. Finally we conclude the paper.

2. Preliminaries

Throughout this paper, let 𝑈 be a universal set and let 𝐸 be
the set of all possible parameters under consideration with
respect to 𝑈; usually parameters are attributes, characteris-
tics, or properties of objects in 𝑈. We now recall some basic
notions of soft sets, interval neutrosophic sets, neutrosophic
soft set, interval neutrosophic soft set, rough set, and rough
neutrosophic sets. For more details the reader may refer to
[1, 9, 18, 19, 24, 49].

Definition 1. Let 𝑈 be a universe of discourse; then the neu-
trosophic set 𝐴 is an object having the form 𝐴 = {⟨𝑥 : 𝜇

𝐴
(𝑥),

]
𝐴
(𝑥), 𝜔

𝐴
(𝑥)⟩, 𝑥 ∈ 𝑈}, where the functions 𝜇

𝐴
(𝑥), ]

𝐴
(𝑥),

and 𝜔
𝐴
(𝑥): 𝑈 → ]

−
0, 1
+
[ define, respectively, the degree of

membership, the degree of indeterminacy, and the degree of

nonmembership of the element 𝑥 ∈ 𝑋 to the set 𝐴 with the
condition

−
0 ≤ sup 𝜇

𝐴
(𝑥) + sup ]

𝐴
(𝑥) + sup𝜔

𝐴
(𝑥) ≤ 3

+
. (1)

From philosophical point of view, the neutrosophic set takes
the value from real standard or nonstandard subsets of
]
−
0, 1
+
[. So instead of ]−0, 1+[ we need to take the interval

[0, 1] for technical applications because ]
−
0, 1
+
[ will be diffi-

cult to apply in the real applications such as in scientific and
engineering problems.

Definition 2 (see [1]). Let 𝑋 be a space of points (objects)
with generic elements in𝑋 denoted by 𝑥. An interval-valued
neutrosophic set (for short IVNS) 𝐴 in 𝑋 is character-
ized by truth-membership function 𝜇

𝐴
(𝑥), indeterminacy-

membership function ]
𝐴
(𝑥), and falsity-membership func-

tion 𝜔
𝐴
(𝑥). For each point 𝑥 in𝑋, one has that 𝜇

𝐴
(𝑥), ]
𝐴
(𝑥),

and 𝜔
𝐴
(𝑥) ∈ int([0, 1]).

For two IVNSs,

𝐴 IVNS = {⟨𝑥, [𝜇
𝐿

𝐴
(𝑥) , 𝜇

𝑈

𝐴
(𝑥)] ,

[]𝐿
𝐴
(𝑥) , ]𝑈

𝐴
(𝑥)] , [𝜔

𝐿

𝐴
(𝑥) , 𝜔

𝑈

𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋} .

(2)

And 𝐵IVNS = {⟨𝑥, [𝜇
𝐿

𝐵
(𝑥), 𝜇
𝑈

𝐵
(𝑥)], []𝐿

𝐵
(𝑥), ]𝑈
𝐵
(𝑥)], [𝜔

𝐿

𝐵
(𝑥),

𝜔
𝑈

𝐵
(𝑥)]⟩ | 𝑥 ∈ 𝑋}; the two relations are defined as follows:

(1) 𝐴 IVNS ⊆ 𝐵IVNS if and only if 𝜇𝐿
𝐴
(𝑥) ≤ 𝜇

𝐿

𝐵
(𝑥), 𝜇𝑈

𝐴
(𝑥) ≤

𝜇
𝑈

𝐵
(𝑥), ]𝐿
𝐴
(𝑥) ≥ ]𝐿

𝐵
(𝑥), 𝜔𝑈

𝐴
(𝑥) ≥ 𝜔

𝑈

𝐵
(𝑥), 𝜔𝐿

𝐴
(𝑥) ≥

𝜔
𝐿

𝐵
(𝑥), and 𝜔

𝑈

𝐴
(𝑥) ≥ 𝜔

𝑈

𝐵
(𝑥);

(2) 𝐴 IVNS = 𝐵IVNS if and only if 𝜇
𝐴
(𝑥) = 𝜇

𝐵
(𝑥), ]
𝐴
(𝑥) =

]
𝐵
(𝑥), and 𝜔

𝐴
(𝑥) = 𝜔

𝐵
(𝑥) for any 𝑥 ∈ 𝑋.

The complement of𝐴 IVNS is denoted by𝐴
𝑜

IVNS and is defined
by

𝐴
𝑜

IVNS = {⟨𝑥, [𝜔
𝐿

𝐴
(𝑥) , 𝜔

𝑈

𝐴
(𝑥)] , [1 − ]𝑈

𝐴
(𝑥) , 1 − ]𝐿

𝐴
(𝑥)] ,

[𝜇
𝐿

𝐴
(𝑥) , 𝜇

𝑈

𝐴
(𝑥)]⟩ | 𝑥 ∈ 𝑋}

𝐴 ∩ 𝐵

={⟨𝑥, [min (𝜇
𝐿

𝐴
(𝑥) , 𝜇

𝐿

𝐵
(𝑥)),min (𝜇

𝑈

𝐴
(𝑥) , 𝜇

𝑈

𝐵
(𝑥))] ,

[max (]𝐿
𝐴
(𝑥) , ]𝐿

𝐵
(𝑥)) ,max (]𝑈

𝐴
(𝑥) , ]𝑈

𝐵
(𝑥))] ,

[max (𝜔𝐿
𝐴
(𝑥) , 𝜔

𝐿

𝐵
(𝑥)),max (𝜔𝑈

𝐴
(𝑥) , 𝜔

𝑈

𝐵
(𝑥))]⟩ :

𝑥 ∈ 𝑋}

𝐴 ∪ 𝐵

={⟨𝑥, [max (𝜇𝐿
𝐴
(𝑥) , 𝜇

𝐿

𝐵
(𝑥)),max (𝜇𝑈

𝐴
(𝑥) , 𝜇

𝑈

𝐵
(𝑥))] ,

[min (]𝐿
𝐴
(𝑥) , ]𝐿

𝐵
(𝑥)) ,min (]𝑈

𝐴
(𝑥) , ]𝑈

𝐵
(𝑥))] ,

[min (𝜔
𝐿

𝐴
(𝑥) , 𝜔

𝐿

𝐵
(𝑥)),min (𝜔

𝑈

𝐴
(𝑥) , 𝜔

𝑈

𝐵
(𝑥))]⟩ :

𝑥 ∈ 𝑋} .

(3)
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As an illustration, let us consider the following example.

Example 3. Assume that the universe of discourse 𝑈 = {𝑥
1
,

𝑥
2
, 𝑥
3
}, where 𝑥

1
characterizes the capability, 𝑥

2
characterizes

the trustworthiness, and 𝑥
3
indicates the prices of the objects.

It may be further assumed that the values of 𝑥
1
, 𝑥
2
, and 𝑥

3
are

in [0, 1] and they are obtained from some questionnaires of
some experts. The experts may impose their opinion in three
components, namely, the degree of goodness, the degree of
indeterminacy, and the degree of poorness to explain the cha-
racteristics of the objects. Suppose 𝐴 is an interval-valued
neutrosophic set (IVNS) of 𝑈, such that 𝐴 = {⟨𝑥

1
, [0.3, 0.4],

[0.5, 0.6], [0.4, 0.5]⟩, ⟨𝑥
2
, [0.1, 0.2], [0.3, 0.4], [0.6, 0.7]⟩, ⟨𝑥

3
,

[0.2, 0.4], [0.4, 0.5], [0.4, 0.6]⟩}, where the degree of goodness
of capability is [0.3, 0.4], degree of indeterminacy of capability
is [0.5, 0.6], degree of falsity of capability is [0.4, 0.5], and so
forth.

Definition 4 (see [18]). Let𝑈 be an initial universe set and let
𝐸 be a set of parameters. Let 𝑃(𝑈) denote the power set of 𝑈.
Consider a nonempty set 𝐴, 𝐴 ⊂ 𝐸. A pair (𝐾, 𝐴) is called a
soft set over𝑈, where𝐾 is amapping given by𝐾 : 𝐴 → 𝑃(𝑈).

As an illustration, let us consider the following example.

Example 5. Suppose that 𝑈 is the set of houses under con-
sideration; say 𝑈 = {ℎ

1
, ℎ
2
, . . . , ℎ

5
}. Let 𝐸 be the set of some

attributes of such houses; say 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

8
}, where 𝑒

1
,

𝑒
2
, . . . , 𝑒

8
stand for the attributes “beautiful,” “costly,” “green

surroundings,” and “moderate,” respectively.
In this case, to define a soft set means to point out expen-

sive houses, beautiful houses, and so on. For example, the soft
set (𝐾, 𝐴) that describes the “attractiveness of the houses” in
the opinion of a buyer, sayThomas,may be defined as follows:

𝐴 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
} ;

𝐾 (𝑒
1
) = {ℎ

2
, ℎ
3
, ℎ
5
} , 𝐾 (𝑒

2
) = {ℎ

2
, ℎ
4
} ,

𝐾 (𝑒
3
) = {ℎ

1
} , 𝐾 (𝑒

4
) = 𝑈, 𝐾 (𝑒

5
) = {ℎ

3
, ℎ
5
} .

(4)

Definition 6 (see [19]). Let𝑈 be an initial universe set and let
𝐴 ⊂ 𝐸 be a set of parameters. Let IVNS (𝑈) denote the set of
all interval neutrosophic subsets of𝑈.The collection (𝐾, 𝐴) is
termed to be the soft interval neutrosophic set over𝑈, where
𝐹 is a mapping given by 𝐾 : 𝐴 → IVNS(𝑈).

The interval neutrosophic soft set defined over a universe
is denoted by INSS.

Here,

(1) Υ is an ivn-soft subset of Ψ, denoted by Υ ⋐ Ψ, if
𝐾(𝑒) ⊆ 𝐿(𝑒) for all 𝑒 ∈ 𝐸;

(2) Υ is an ivn-soft equal to Ψ, denoted by Υ = Ψ, if
𝐾(𝑒) = 𝐿(𝑒) for all 𝑒 ∈ 𝐸;

(3) the complement of Υ is denoted by Υ
𝑐 and is defined

by Υ
𝑐
= {(𝑥, 𝐾

𝑜
(𝑥)) : 𝑥 ∈ 𝐸};

(4) the union of Υ and Ψ is denoted by Υ∪

Ψ, if 𝐾(𝑒) ∪

𝐿(𝑒) for all 𝑒 ∈ 𝐸;
(5) the intersection of Υ and Ψ is denoted by Υ∩


Ψ, if

𝐾(𝑒) ∪ 𝐿(𝑒) for all 𝑒 ∈ 𝐸.

Example 7. Let 𝑈 be the set of houses under consideration
and 𝐸 is the set of parameters (or qualities). Each parameter
is an interval neutrosophic word or sentence involving
interval neutrosophic words. Consider 𝐸 = {beautiful, costly,
moderate, expensive}. In this case, to define an interval neu-
trosophic soft set means to point out beautiful houses, costly
houses, and so on. Suppose that there are four houses in the
universe𝑈 given by𝑈 = {ℎ

1
, ℎ
2
, ℎ
3
, ℎ
4
} and the set of parame-

ters 𝐴 = {𝑒
1
, 𝑒
2
, 𝑒
3
}, where each 𝑒

𝑖
is a specific criterion for

houses:

𝑒
1
stands for “beautiful,”

𝑒
2
stands for “costly,”

𝑒
3
stands for “moderate.”

Suppose that

𝐾 (beautiful) = {⟨ℎ
1
, [0.5, 0.6] , [0.6, 0.7] , [0.3, 0.4]⟩ ,

⟨ℎ
2
, [0.4, 0.5] , [0.7, 0.8] , [0.2, 0.3]⟩ ,

⟨ℎ
3
, [0.6, 0.7] , [0.2, 0.3] , [0.3, 0.5]⟩ ,

⟨ℎ
4
, [0.7, 0.8] , [0.3, 0.4] , [0.2, 0.4]⟩} .

𝐾 (costly) = {⟨ℎ
1
, [0.3, 0.6] , [0.2, 0.7] , [0.1, 0.4]⟩ ,

⟨ℎ
2
, [0.3, 0.5] , [0.6, 0.8] , [0.2, 0.6]⟩ ,

⟨ℎ
3
, [0.3, 0.7] , [0.1, 0.3] , [0.3, 0.6]⟩ ,

⟨ℎ
4
, [0.6, 0.8] , [0.2, 0.4] , [0.2, 0.5]⟩} .

𝐾 (moderate) = {⟨ℎ
1
, [0.5, 0.8] , [0.4, 0.7] , [0.3, 0.6]⟩ ,

⟨ℎ
2
, [0.3, 0.5] , [0.7, 0.9] , [0.2, 0.4]⟩ ,

⟨ℎ
3
, [0.1, 0.7] , [0.3, 0.3] , [0.3, 0.6]⟩ ,

⟨ℎ
4
, [0.3, 0.8] , [0.2, 0.4] , [0.3, 0.6]⟩} .

(5)

Definition 8 (see [24]). Let 𝑅 be an equivalence relation on
the universal set 𝑈. Then the pair (𝑈, 𝑅) is called a Pawlak
approximation space. An equivalence class of 𝑅 containing
𝑥 will be denoted by [𝑥]

𝑅
. Now for 𝑋 ⊆ 𝑈, the lower and

upper approximation of𝑋 with respect to (𝑈, 𝑅) are denoted
by, respectively, 𝑅

∗
𝑋 and 𝑅

∗
𝑋 and are defined by

𝑅
∗
𝑋 = {𝑥 ∈ 𝑈 : [𝑥]𝑅 ⊆ 𝑋} ,

𝑅
∗
𝑋 = {𝑥 ∈ 𝑈 : [𝑥]𝑅 ∩ 𝑋 ̸= 0} .

(6)

Now if 𝑅∗𝑋 = 𝑅
∗
𝑋, then 𝑋 is called definable; otherwise 𝑋

is called a rough set.

Definition 9 (see [49]). Let𝑈 be a nonnull set and let 𝑅 be an
equivalence relation on𝑈. Let𝐹 be neutrosophic set in𝑈with
the membership function 𝜇

𝐹
, indeterminacy function ]

𝐹
,

and nonmembership function 𝜔
𝐹
. Then the lower and upper
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rough approximations of 𝐹 in (𝑈, 𝑅) are denoted by 𝑅(𝐹) and
𝑅(𝐹) and, respectively, defined as follows:

𝑅 (𝐹) = {⟨𝑥, 𝜇
𝑅(𝐹)

(𝑥) , ]
𝑅(𝐹)

(𝑥) , 𝜔
𝑅(𝐹)

(𝑥)⟩ | 𝑥 ∈ 𝑈} ,

𝑅 (𝐹) = {⟨𝑥, 𝜇
𝑅(𝐹) (𝑥) , ]𝑅(𝐹) (𝑥) , 𝜔𝑅(𝐹) (𝑥)⟩ | 𝑥 ∈ 𝑈} ,

(7)

where

𝜇
𝑅(𝐹)

(𝑥) = ⋁

𝑦∈[𝑥]𝑅

𝜇
𝐹
(𝑦) , ]

𝑅(𝐹)
(𝑥) = ⋀

𝑦∈[𝑥]𝑅

]
𝐹
(𝑦) ,

𝜔
𝑅(𝐹)

(𝑥) = ⋀

𝑦∈[𝑥]𝑅

𝜔
𝐹
(𝑦) , 𝜇

𝑅(𝐹) (𝑥) = ⋀

𝑦∈[𝑥]𝑅

𝜇
𝐹
(𝑦) ,

]
𝑅(𝐹) (𝑥) = ⋁

𝑦∈[𝑥]𝑅

]
𝐹
(𝑦) , 𝜔

𝑅(𝐹) (𝑥) = ⋁

𝑦∈[𝑥]𝑅

𝜔
𝐹
(𝑦) .

(8)

It is easy to observe that 𝑅(𝐹) and 𝑅(𝐹) are two neutrosophic
sets in 𝑈; thus NS mapping 𝑅, 𝑅 : 𝑅(𝑈) → 𝑅(𝑈) are, res-
pectively, referred to as the upper and lower rough NS app-
roximation operators, and the pair (𝑅(𝐹), 𝑅(𝐹)) is called the
rough neutrosophic set.

3. Interval Neutrosophic Soft Rough Set

This section is an attempt to extend the concept of an interval-
valued intuitionistic fuzzy soft rough set [52] to the case of an
interval-valued neutrosophic rough set.

Definition 10. LetΘ = (𝑓, 𝐴) be full soft set over𝑈 and let the
pair 𝑆 = (𝑈,Θ) be the soft approximation space. Then for an
interval-valued neutrosophic set 𝜎 ∈ IVNS𝑈, the lower and
upper soft rough approximations of 𝜎 with respect to 𝑆 are
denoted by𝑁

𝑆
(𝜎) and𝑁

𝑆
(𝜎), respectively, which are interval-

valued neutrosophic sets in 𝑈 given by

𝑁
𝑆
(𝜎) = {⟨𝑥, [⋀ {inf 𝜇

𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋀ { sup 𝜇
𝜎
(𝑦) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎)) }] ,

[⋁ {inf ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋁ {sup ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}] ,

[⋁ {inf 𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋁ {sup𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}] ⟩ :

𝑥 ∈ 𝑈}

(9)

𝑁
𝑆
(𝜎) = {⟨𝑥, [⋁ {inf 𝜇

𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋁ {sup 𝜇
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}] ,

[⋀ {inf ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋀ {sup ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}] ,

[⋀ {inf 𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋀ {sup𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}]⟩ :

𝑥 ∈ 𝑈} .

(10)

The operators 𝑁
𝑆
(𝜎) and 𝑁

𝑆
(𝜎) are called the lower and

upper soft rough approximation operators on interval-valued
neutrosophic sets. If 𝑁

𝑆
(𝜎) = 𝑁

𝑆
(𝜎), then 𝜎 is said to be soft

interval-valued neutrosophic definable; otherwise it is called
an interval-valued neutrosophic soft rough set.

Theorem 11. LetΘ = (𝑓, 𝐴) be a full soft set over𝑈 and let 𝑆 =

(𝑈,Θ) be the soft approximation space. Then for 𝜎 ∈ IVNS𝑈
one has

(i) 𝑁
𝑆
(𝜎) = {⟨𝑥, [⋀

𝑥∈𝑓(𝑎)
⋀
𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦),

⋀
𝑥∈𝑓(𝑎)

⋀
𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦)], [⋁

𝑥∈𝑓(𝑎)
⋁
𝑦∈𝑓(𝑎)

inf ]
𝜎
(𝑦),

⋁
𝑥∈𝑓(𝑎)

⋁
𝑦∈𝑓(𝑎)

sup ]
𝜎
(𝑦)], [⋁

𝑥∈𝑓(𝑎)
⋁
𝑦∈𝑓(𝑎)

inf 𝜔
𝜎
(𝑦),

⋁
𝑥∈𝑓(𝑎)

⋁
𝑦∈𝑓(𝑎)

sup𝜔
𝜎
(𝑦)]⟩ : 𝑥 ∈ 𝑈;

(ii) 𝑁
𝑆
(𝜎) = {⟨𝑥, [⋁

𝑥∈𝑓(𝑎)
⋁
𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦),

⋁
𝑥∈𝑓(𝑎)

⋁
𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦)], [⋀

𝑥∈𝑓(𝑎)
⋀
𝑦∈𝑓(𝑎)

inf ]
𝜎
(𝑦),

⋀
𝑥∈𝑓(𝑎)

⋀
𝑦∈𝑓(𝑎)

sup ]
𝜎
(𝑦)], [⋀

𝑥∈𝑓(𝑎)
⋀
𝑦∈𝑓(𝑎)

inf 𝜔
𝜎
(𝑦),

⋀
𝑥∈𝑓(𝑎)

⋀
𝑦∈𝑓(𝑎)

sup𝜔
𝜎
(𝑦)]⟩ : 𝑥 ∈ 𝑈}.

Proof. (i) Let 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑓(𝑎). Then for 𝑦 ∈ 𝑓(𝑎), we
have {𝑥, 𝑦} ⊆ 𝑓(𝑎) and hence inf 𝜇

𝜎
(𝑦) ≥ ⋀{inf 𝜇

𝜎
(𝑧) : ∃𝑎 ∈

𝐴{𝑥, 𝑧} ⊆ 𝑓(𝑎)}. Consequently,

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦) ≥ ⋀{inf 𝜇

𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} .

(11)

And so

⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦)

≥ ⋀{inf 𝜇
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} .

(12)

Similarly, it can be shown that

⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦)

≥ ⋀{sup 𝜇
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} .

(13)
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Thus, we get

[⋀{inf 𝜇
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {sup 𝜇
𝜎 (𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}]

⊆ [

[

⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦) , ⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦)]

]

.

(14)

In a similar manner it can be shown that

[⋁{inf ]
𝜎
(𝑧) : ∃𝑁

𝑆
(𝜎)} ,

⋁ {sup ]
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}]

⊆ [

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf ]
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup ]
𝜎
(𝑦)]

]

.

(15)

In a similar manner it can be shown that

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf 𝜔
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup𝜔
𝜎
(𝑦)]

]

× [⋁{inf 𝜔
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {sup𝜔
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}]

⊆ [

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf 𝜔
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup𝜔
𝜎
(𝑦)]

]

.

(16)

From (14), (15), and (16) we observe that

𝑁
𝑆
(𝜎)

⊆
{

{

{

[

[

⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦) , ⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦)]

]

,

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf ]
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup ]
𝜎
(𝑦)]

]

,

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf 𝜔
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup𝜔
𝜎
(𝑦)]

]

}

}

}

.

(17)

Now we prove that

{

{

{

[

[

⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦) , ⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦)]

]

,

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf ]
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup ]
𝜎
(𝑦)]

]

,

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf 𝜔
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup𝜔
𝜎
(𝑦)]

]

}

}

}

⊆ 𝑁
𝑆
(𝜎) .

(18)

Let us suppose that 𝑎 ∈ 𝐴 such that {𝑥, 𝑧} ⊆ 𝑓(𝑎). Then 𝑎 ∈

𝑓(𝑎), 𝑧 ∈ 𝑓(𝑎), and hence

inf 𝜇
𝜎
(𝑧) ≥ ⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦) . (19)

Consequently,

⋀{inf 𝜇
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}

≥ ⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦) .

(20)

Similarly, it can be shown that

⋀{sup 𝜇
𝜎 (𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}

≥ ⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦) .

(21)

Thus we get

[

[

⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦) , ⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦)]

]

⊆ [⋀{inf 𝜇
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {sup 𝜇
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}] .

(22)

In a similar manner it can be shown that

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf ]
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup ]
𝜎
(𝑦)]

]

⊆ [⋁{inf ]
𝜎 (𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {sup ]
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}] .

(23)

In a similar manner it can be shown that

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf 𝜔
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup𝜔
𝜎
(𝑦)]

]

⊆ [⋁{inf 𝜔
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {sup𝜔
𝜎
(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}] .

(24)
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From (22), (23), and (24) we observe that

{

{

{

[

[

⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦) , ⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦)]

]

,

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf ]
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup ]
𝜎
(𝑦)]

]

,

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf 𝜔
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup𝜔
𝜎
(𝑦)]

]

}

}

}

⊆ 𝑁
𝑆
(𝜎) .

(25)

From (17) and (25), we have

𝑁
𝑆
(𝜎)

=
{

{

{

⟨𝑥,[

[

⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

inf 𝜇
𝜎
(𝑦) , ⋀

𝑥∈𝑓(𝑎)

⋀

𝑦∈𝑓(𝑎)

sup 𝜇
𝜎
(𝑦)]

]

,

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf ]
𝜎
(𝑦) , ⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup ]
𝜎
(𝑦)]

]

,

[

[

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

inf 𝜔
𝜎
(𝑦) ,

⋁

𝑥∈𝑓(𝑎)

⋁

𝑦∈𝑓(𝑎)

sup𝜔
𝜎
(𝑦)]

]

⟩ : 𝑥 ∈ 𝑈
}

}

}

.

(26)

(ii) Proof is similar to that in (i).

Theorem 12. Let Θ = (𝑓, 𝐴) be a full soft set over 𝑈 and let
𝑆 = (𝑈,Θ) be the soft approximation space. Then for 𝜎, 𝜆 ∈

IVNS𝑈 one has

(1) 𝑁
𝑠
(0) = 0 = 𝑁

𝑠
(0);

(2) 𝑁
𝑠
(𝑈) = 𝑈 = 𝑁

𝑠
(𝑈);

(3) 𝜎 ⊆ 𝜆 ⇒ 𝑁(𝜎) ⊆ 𝑁(𝜆);

(4) 𝜎 ⊆ 𝜆 ⇒ 𝑁
𝑠
(𝜎) ⊆ 𝑁

𝑠
(𝜆);

(5) 𝑁
𝑠
(𝜎 ∩ 𝜆) ⊆ 𝑁

𝑠
(𝜎) ∩ 𝑁

𝑠
(𝜆);

(6) 𝑁
𝑠
(𝜎 ∩ 𝜆) ⊆ 𝑁

𝑠
(𝜎) ∩ 𝑁

𝑠
(𝜆);

(7) 𝑁(𝜎) ∪ 𝑁(𝜆) ⊆ 𝑁(𝜎 ∪ 𝜆);

(8) 𝑁
𝑠
(𝜎) ∪ 𝑁

𝑠
(𝜆) ⊆ 𝑁

𝑠
(𝜎 ∪ 𝜆).

Proof. (1)–(4) are straightforward.
(5) We have

𝜎 = {⟨𝑥, [inf 𝜇
𝜎
(𝑥) , sup 𝜇

𝜎
(𝑥)] ,

[inf ]
𝜎
(𝑥) , sup ]

𝜎
(𝑥)] ,

[inf 𝜔
𝜎 (𝑥) , sup𝜔

𝜎 (𝑥)]⟩ : 𝑥 ∈ 𝑈} ,

𝜆 = {⟨𝑥, [inf 𝜇
𝜆
(𝑥) , sup 𝜇

𝜆
(𝑥)] ,

[inf ]
𝜆 (𝑥) , sup ]𝜆 (𝑥)] ,

[inf 𝜔
𝜆
(𝑥) , sup𝜔

𝜆
(𝑥)]⟩ : 𝑥 ∈ 𝑈} ,

𝜎 ∩ 𝜆 = {⟨𝑥, [inf 𝜇
𝜎∩𝜆

(𝑥) , sup 𝜇
𝜎∩𝜆

(𝑥)] ,

[inf ]
𝜎∩𝜆 (𝑥) , sup ]𝜎∩𝜆 (𝑥)] ,

[inf 𝜔
𝜎∩𝜆

(𝑥) , sup𝜔
𝜎∩𝜆

(𝑥)]⟩ : 𝑥 ∈ 𝑈} .

(27)

Now
𝑁
𝑠
(𝜎 ∩ 𝜆)

= {⟨𝑥, [⋀ {inf 𝜇
𝜎∩𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {sup 𝜇
𝜎∩𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}] ,

[⋁ {inf ]
𝜎∩𝜆

(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋁ {sup ]
𝜎∩𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}] ,

[⋁ {inf 𝜔
𝜎∩𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋁ {sup𝜔
𝜎∩𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}]⟩ :

𝑥 ∈ 𝑈}

= {⟨𝑥, [⋀ {min (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 {𝑥, 𝑧} ⊆ 𝑓 (𝑎)} ,

⋀ {min (sup 𝜇
𝜎
(𝑦) , sup 𝜇

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}] ,

[⋁ {max (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {max (sup ]
𝜎
(𝑦) , sup ]

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}] ,

[⋁ {max (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {max (sup𝜔
𝜎
(𝑦) , sup𝜔

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}]⟩ : 𝑥 ∈ 𝑈} .

(28)
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Since

min (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) ≤ inf 𝜇

𝜎
(𝑦) ,

min (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) ≤ inf 𝜇

𝜆
(𝑦)

(29)

we have

⋀{min (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}

≤ ⋀{inf 𝜇
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {min (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}

≤ ⋀{inf 𝜇
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} .

(30)

Consequently,

⋀{min (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}

≤ min (⋀{inf 𝜇
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {inf 𝜇
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}) .

(31)

Similarly we can get

⋀{min (sup 𝜇
𝜎
(𝑦) , sup 𝜇

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≤ min (⋀{sup 𝜇
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {sup 𝜇
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}) .

(32)

Again since

max (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) ≥ inf ]

𝜎
(𝑦) ,

max (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) ≥ inf ]

𝜆
(𝑦) ,

(33)

we have

⋁{max (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ ⋁{inf ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {max (sup ]
𝜎
(𝑦) , sup ]

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ ⋁{sup ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} .

(34)

Consequently,

⋁{max (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ max (⋀{inf ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {inf ]
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}) .

(35)

Similarly we can get

⋁{max (sup ]
𝜎
(𝑦) , sup ]

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ max (⋀{sup ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {sup ]
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}) .

(36)

Again since

max (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) ≥ inf 𝜔

𝜎
(𝑦) ,

max (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) ≥ inf 𝜔

𝜆
(𝑦) ,

(37)

we have

⋁{max (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ ⋁{inf 𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {max (sup𝜔
𝜎
(𝑦) , sup𝜔

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ ⋁{sup𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} .

(38)

Consequently,

⋁{max (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ max (⋀{inf 𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {inf 𝜔
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}) .

(39)

Similarly we can get

⋁{max (sup𝜔
𝜎
(𝑦) , sup𝜔

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ max (⋀{sup𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)} ,

⋀ {sup𝜔
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}) .

(40)

Using, (31)–(40) we get from (28)

𝑁
𝑠
(𝜎 ∩ 𝜆) ⊆ 𝑁

𝑠
(𝜎) ∩ 𝑁

𝑠
(𝜆) . (41)

(6) Proof is similar to (5).
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(7) We have

𝜎 = {⟨𝑥, [inf 𝜇
𝜎
(𝑥) , sup 𝜇

𝜎
(𝑥)] ,

[inf ]
𝜎 (𝑥) , sup ]𝜎 (𝑥)] ,

[inf 𝜔
𝜎
(𝑥) , sup𝜔

𝜎
(𝑥)]⟩ : 𝑥 ∈ 𝑈} ,

𝜆 = {⟨𝑥, [inf 𝜇
𝜆
(𝑥) , sup 𝜇

𝜆
(𝑥)] ,

[inf ]
𝜆
(𝑥) , sup ]

𝜆
(𝑥)] ,

[inf 𝜔
𝜆
(𝑥) , sup𝜔

𝜆
(𝑥)]⟩ : 𝑥 ∈ 𝑈} ,

𝜎 ∪ 𝜆 = {⟨𝑥, [inf 𝜇
𝜎∪𝜆 (𝑥) , sup 𝜇

𝜎∪𝜆 (𝑥)] ,

[inf ]
𝜎∪𝜆

(𝑥) , sup ]
𝜎∪𝜆

(𝑥)] ,

[inf 𝜔
𝜎∪𝜆

(𝑥) , sup𝜔
𝜎∪𝜆

(𝑥)]⟩ : 𝑥 ∈ 𝑈} .

(42)

Now

𝑁
𝑠
(𝜎 ∪ 𝜆)

= {⟨𝑥, [⋀ {inf 𝜇
𝜎∪𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋀ {sup 𝜇
𝜎∪𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}] ,

[⋁ {inf ]
𝜎∪𝜆

(𝑧) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋁ {sup ]
𝜎∪𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}] ,

[⋁ {inf 𝜔
𝜎∪𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))} ,

⋁ {sup𝜔
𝜎∪𝜆

(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}]⟩ :

𝑥 ∈ 𝑈}

= {⟨𝑥, [⋀ {max (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {max (sup 𝜇
𝜎
(𝑦) , sup 𝜇

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}] ,

[⋁ {min (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {min (sup ]
𝜎
(𝑦) , sup ]

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}] ,

[⋁ {min (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {min (sup𝜔
𝜎
(𝑦) , sup𝜔

𝜆
(𝑦)) :

∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}]⟩ : 𝑥 ∈ 𝑈} .

(43)

Since

max (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) ≥ inf 𝜇

𝜎
(𝑦) ,

max (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) ≥ inf 𝜇

𝜆
(𝑦)

(44)

we have

⋀{max (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ ⋀{inf 𝜇
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {max (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≥ ⋀{inf 𝜇
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} .

(45)

Consequently,

⋀{max (inf 𝜇
𝜎
(𝑦) , inf 𝜇

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}

≥ max (⋀{inf 𝜇
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {inf 𝜇
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}) .

(46)

Similarly we can get

⋀{max (sup 𝜇
𝜎
(𝑦) , sup 𝜇

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}

≥ max (⋀{sup 𝜇
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋀ {sup 𝜇
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}) .

(47)

Again since

min (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) ≤ inf ]

𝜎
(𝑦) ,

min (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) ≤ inf ]

𝜆
(𝑦)

(48)

we have

⋁{min (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}

≤ ⋁{inf ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {min (min ]
𝜎
(𝑦) ,min ]

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 {𝑥, 𝑦} ⊆ 𝑓 (𝑎)}

≤ ⋁{inf ]
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} .

(49)

Consequently,

⋁{min (inf ]
𝜎
(𝑦) , inf ]

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}

≤ min (⋁{inf ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {inf ]
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}) .

(50)
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Similarly we can get

⋁{min (sup ]
𝜎
(𝑦) , sup ]

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}

≤ min (⋁{sup ]
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {sup ]
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}) .

(51)

Again since

max (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) ≤ inf 𝜔

𝜎
(𝑦) ,

max (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) ≤ inf 𝜔

𝜆
(𝑦) ,

(52)

we have

⋁{min (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}

≤ ⋁{inf 𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {min (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}

≤ ⋁{inf 𝜔
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} .

(53)

Consequently,

⋁{min (inf 𝜔
𝜎
(𝑦) , inf 𝜔

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑦} ⊆ 𝑓 (𝑎))}

≤ min (⋁{inf 𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {inf 𝜔
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}) .

(54)

Similarly we can get

⋁{min (sup𝜔
𝜎
(𝑦) , sup𝜔

𝜆
(𝑦)) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}

≤ min (⋁{sup𝜔
𝜎
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))} ,

⋁ {sup𝜔
𝜆
(𝑦) : ∃𝑎 ∈ 𝐴 ({𝑥, 𝑧} ⊆ 𝑓 (𝑎))}) .

(55)

Using (46)–(55), we get from (43)

𝑁
𝑠
(𝜎) ∪ 𝑁

𝑠
(𝜆) ⊆ 𝑁

𝑠
(𝜎 ∩ 𝜆) . (56)

(8) Proof is similar to (7).

4. A Multicriteria Group Decision
Making Problem

Soft sets, fuzzy soft sets, intuitionistic fuzzy soft sets, and neu-
trosophic soft sets have been applied bymany authors in solv-
ing decision making problems. In this section, we illustrate
the use of soft sets and, neutrosophic soft sets, interval-valued
neutrosophic soft sets, rough sets, interval-valued neutro-
sophic soft rough sets, and related notions in object evalua-
tion and group decision making.

Let 𝑈 = {𝑜
1
, 𝑜
2
, 𝑜
3
, . . . , 𝑜

𝑙
} be a set of objects and let 𝐸

be a set of parameters and 𝐴 = {𝑒
1
, 𝑒
2
, 𝑒
3
, . . . , 𝑒

𝑙
} ⊆ 𝐸 and

let 𝑆 = (𝐹, 𝐴) be a full soft set over 𝑈. Let us assume that
we have an expert group 𝐺 = {𝑇

1
, 𝑇
2
, 𝑇
3
, . . . , 𝑇

𝑙
} consisting

of n specialists to evaluate the objects in 𝑈. Each specialist
will examine all the objects in 𝑈 and will point out his/her
evaluation result. Let𝑋

𝑖
denote the primary evaluation result

of the specialist𝑇
𝑖
. It is easy to see that the primary evaluation

result of the whole expert group 𝐺 can be represented as an
interval-valued neutrosophic evaluation soft set 𝑆∗ = (𝐹

∗
, 𝐺)

over 𝑈, where 𝐹
∗

: 𝐺 → IVNS𝑈 is given by 𝐹
∗
(𝑇
𝑖
) =

𝑋
𝑖
, for 𝑖 = 1, 2, . . . , 𝑛. Now we consider the soft rough

interval-valued neutrosophic approximations of the specialist
𝑇
𝑖
’s primary evaluation result 𝑋

𝑖
with respect to the soft

approximation space 𝑃 = (𝑈, 𝑆). Then we obtain two other
interval-valued neutrosophic soft sets 𝑆∗ = (𝐹

∗
, 𝐺) and 𝑆∗ =

(𝐹∗, 𝐺) over 𝑈, where 𝐹
∗
: 𝐺 → IVNS𝑈 is given by 𝐹

∗
(𝑇
𝑖
) =

𝑋
𝑖
and 𝐹∗ : 𝐺 → IVNS𝑈 is given by 𝐹∗(𝑇

𝑖
) = 𝑋

𝑖
, for 𝑖 =

1, 2, . . . , 𝑛. Here 𝑆
∗ can be considered as the evaluation result

for the whole expert group𝐺with “low confidence,” 𝑆∗ can be
considered as the evaluation result for the whole expert group
𝐺 with “high confidence,” and 𝑆

∗ can be considered as the
evaluation result for the whole expert group 𝐺 with “middle
confidence.” Let us define two interval-valued neutrosophic
sets IVNSet 𝑆∗ and IVNSet 𝑆∗ by

IVNSet 𝑆∗

=
{

{

{

⟨𝑜
𝑘
, [

[

1

𝑛

𝑛

∑

𝑗=1

inf 𝜇
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
) ,

1

𝑛

𝑛

∑

𝑗=1

sup 𝜇
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
)]

]

,

[

[

1

𝑛

𝑛

∑

𝑗=1

inf ]
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
) ,

1

𝑛

𝑛

∑

𝑗=1

sup ]
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
)]

]

,

[

[

1

𝑛

𝑛

∑

𝑗=1

inf 𝜔
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
) ,

1

𝑛

𝑛

∑

𝑗=1

sup𝜔
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
)]

]

⟩ : 𝑘 = 1, 2, . . . , 𝑙
}

}

}

,

IVNSet 𝑆∗

=
{

{

{

⟨𝑜
𝑘
, [

[

1

𝑛

𝑛

∑

𝑗=1

inf 𝜇
𝐹
∗
(𝑇𝑖)

(𝑜
𝑘
) ,

1

𝑛

𝑛

∑

𝑗=1

sup 𝜇
𝐹
∗
(𝑇𝑖)

(𝑜
𝑘
)]

]

,

[

[

1

𝑛

𝑛

∑

𝑗=1

inf ]
𝐹
∗
(𝑇𝑖)

(𝑜
𝑘
) ,

1

𝑛

𝑛

∑

𝑗=1

sup ]
𝐹
∗
(𝑇𝑖)

(𝑜
𝑘
)]

]

,

[

[

1

𝑛

𝑛

∑

𝑗=1

inf 𝜔
𝐹
∗
(𝑇𝑖)

(𝑜
𝑘
) ,

1

𝑛

𝑛

∑

𝑗=1

sup𝜔
𝐹
∗
(𝑇𝑖)

(𝑜
𝑘
)]

]

⟩ : 𝑘 = 1, 2, . . . , 𝑙
}

}

}

.

(57)
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Now we define another interval-valued neutrosophic set
IVNSet 𝑆∗ by

IVNSet 𝑆∗

=
{

{

{

⟨𝑜
𝑘
, [

[

1

𝑛

𝑛

∑

𝑗=1

inf 𝜇
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
) ,

1

𝑛

𝑛

∑

𝑗=1

sup 𝜇
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
)]

]

,

[

[

1

𝑛

𝑛

∑

𝑗=1

inf ]
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
) ,

1

𝑛

𝑛

∑

𝑗=1

sup ]
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
)]

]

,

[

[

1

𝑛

𝑛

∑

𝑗=1

inf 𝜔
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
) ,

1

𝑛

𝑛

∑

𝑗=1

sup𝜔
𝐹
∗
(𝑇𝑗)

(𝑜
𝑘
)]

]

⟩ : 𝑘 = 1, 2, . . . , 𝑙
}

}

}

.

(58)

Then clearly,

IVNSet 𝑆∗ ⊆ IVNSet 𝑆∗ ⊆ IVNSet 𝑆∗. (59)

Let 𝐶 = {𝐿 (low confidence), 𝑀(middle confidence),
𝐻(high confidence)} be a set of parameters. Let us consider
the interval-valued neutrosophic soft set 𝑆∗∗ = (𝑓, 𝐶) over
𝑈, where 𝑓 : 𝐶 → IVNS𝑈 is given by 𝑓(𝐿) = IVNSet 𝑆∗,
𝑓(𝑀) = IVNSet 𝑆∗, and 𝑓(𝐻) = IVNSet 𝑆∗. Now given a
weighting vector 𝑊 = (𝜔

𝐿
, 𝜔
𝑀
, 𝜔
𝐻
) such that 𝜔

𝐿
, 𝜔
𝑀
, 𝜔
𝐻

∈

[0, 1], we define 𝛼 : 𝑈 → 𝑃(𝑈) by 𝛼(𝑜
𝑘
) = 𝜔

𝐿
⬦ 𝑠
𝑓(𝐿)

(𝑜
𝑘
) +

𝜔
𝑀

⬦ 𝑠
𝑓(𝑀)

(𝑜
𝑘
) + ⬦𝑠

𝑓(𝐻)
(𝑜
𝑘
), 𝑜
𝑘
∈ 𝑈 (⬦ represents ordinary

multiplication), where 𝑠
𝑓(𝐿)

(𝑜
𝑘
) = (inf 𝜇

𝐹
∗
(𝑇𝑗)

+ sup 𝜇
𝐹
∗
(𝑇𝑗)

−

inf ]
𝐹
∗
(𝑇𝑗)

⋅ sup ]
𝐹
∗
(𝑇𝑗)

− inf 𝜔
𝐹
∗
(𝑇𝑗)

⋅ sup𝜔
𝐹
∗
(𝑇𝑗)

)/4 denotes
the score function, the same as 𝑠

𝑓(𝑀)
(𝑜
𝑘
) and 𝑠

𝑓(𝐻)
(𝑜
𝑘
). Here

𝛼(𝑜
𝑘
) is called the weighted evaluation value of the alternative

𝑜
𝑘

∈ 𝑈. Finally, we can select the object 𝑜
𝑝

= max{𝛼(𝑜
𝑘
)} :

𝑘 = 1, 2, . . . , 𝑙} as the most preferred alternative.

Algorithm

(1) Input the original description soft set (𝐹, 𝐴).
(2) Construct the interval-valued neutrosophic evalua-

tion soft set 𝑆∗ = (𝐹
∗
, 𝐺).

(3) Compute the soft rough interval-valued neutrosophic
approximations and then construct the interval-
valued neutrosophic soft sets 𝑆∗ and 𝑆∗.

(4) Construct the interval-valued neutrosophic
IVNSet 𝑆∗, IVNSet 𝑆∗, and IVNSet 𝑆∗.

(5) Construct the interval-valued neutrosophic soft set
𝑆
∗∗.

(6) Input theweighting vector𝑊 and compute theweigh-
ted evaluation values of each alternative 𝛼(𝑜

𝑘
) of each

alternative 𝑜
𝑘
∈ 𝑈.

(7) Select the object 𝑜
𝑝
.

Table 1

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑐
5

𝑒
1

1 0 1 1 0
𝑒
2

1 1 0 1 0
𝑒
3

0 1 1 1 1
𝑒
4

1 1 0 0 1

5. An Illustrative Example

The following example is adapted from [52] with minor cha-
nges.

Let us consider a staff selection problem to fill a position
in a private company.

Let 𝑈 = {𝑐
1
, 𝑐
2
, 𝑐
3
, 𝑐
4
, 𝑐
5
} be the universe set consist-

ing of five candidates. Let us consider the soft set 𝑆 =

(𝐹, 𝐴), which describes the “quality of the candidates,” where
𝐴 = {𝑒

1
(experience), 𝑒

2
(computer knowledge), 𝑒

3
(young

and efficient), 𝑒
4
(good communication skill)}. Let the tabu-

lar representation of the soft set (𝐹, 𝐴) be as shown in Table 1.
Let 𝐺 = {𝑇

1
, 𝑇
2
, 𝑇
3
, 𝑇
4
} be the set of interviewers to

judge the quality of the candidate in 𝑈. Now if 𝑋
𝑖
denotes

the primary evaluation result of the interviewer 𝑇
𝑖
(for 𝑖 =

1, 2, 3, 4), then the primary evaluation result of the whole
expert group 𝐺 can be represented as an interval-valued
neutrosophic evaluation soft set 𝑆∗ = (𝐹

∗
, 𝐺) over 𝑈, where

𝐹
∗
: 𝐺 → IVNS𝑈 is given by 𝐹

∗
(𝑇
𝑖
) = 𝑋

𝑖
for 𝑖 = 1, 2, 3, 4.

Let the tabular representation of 𝑆∗ be given as shown in
Table 2.

Let us choose 𝑃 = (𝑈, 𝑆) as the soft interval-valued neu-
trosophic approximation space. Let us consider the interval-
valued neutrosophic evaluation soft sets 𝑆

∗
= (𝑆
∗
, 𝐺) and

𝑆∗ = (𝑆∗, 𝐺) over 𝑈.
Then the tabular representation of these sets is as follows:

𝑆
∗
= (𝑆
∗
, 𝐺) (see Table 3),

𝑆∗ = (𝑆∗, 𝐺) (see Table 4).

Here 𝑆
∗
⊆ 𝑆
∗
⊆ 𝑆∗

IVNSet 𝑆∗

= {⟨𝑐
1
, [0.15, 0.35] , [0.4, 0.625] , [0.4, 0.6]⟩ ,

⟨𝑐
2
, [0.175, 0.325] , [0.375, 0.575] , [0.375, 0.575]⟩ ,

⟨𝑐
3
, [0.175, 0.375] , [0.375, 0.575] , [0.375, 0.575]⟩ ,

⟨𝑐
4
, [0.175, 0.375] , [0.375, 0.575] , [0.375, 0.575]⟩ ,

⟨𝑐
5
, [0.175, 0.375] [0.375, 0.575] [0.375, 0.6]⟩}
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Table 2

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑐
5

𝑇
1

([.2, .4], [.4, .5], [.3, .4]) ([.6, .7], [.1, .2], [.2, .3]) ([.3, .4], [.4, .5], [.2, .5]) ([.2, .4], [.4, .6], [.1, .2]) ([.3, .6], [.2, .3], [.1, .2])
𝑇
2

([.1, .3], [.6, .7], [.2, .3]) ([.3, .4], [.4, .5], [.2, .4]) ([.5, .7], [.1, .2], [.2, .4]) ([.7, .8], [.1, .2], [.2, .4]) ([.1, .3], [.1, .5], [.2, .5])
𝑇
3

([.4, .6], [.2, .3], [.4, .5]) ([.1, .4], [.2, .4], [.1, .2]) ([.2, .5], [.2, .4], [.3, .5]) ([.3, .5], [.2, .4], [.4, .6]) ([.4, .5], [.2, .5], [.2, .3])
𝑇
4

([.3, .5], [.3, .4], [.6, .7]) ([.5, .6], [.2, .3], [.4, .5]) ([.4, .5], [.2, .5], [.1, .2]) ([.4, .7], [.1, .2], [.1, .2]) ([.6, .8], [.1, .2], [.1, .5])

Table 3

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑐
5

𝑇
1

([.2, .4], [.4, .6], [.4, .5]) ([.2, .3], [.4, .6], [.3, .5]) ([.2, .3], [.4, .6], [.3, .5]) ([.2, .3], [.4, .6], [.3, .5]) ([.2, .3], [.4, .6], [.3, .5])
𝑇
2

([.1, .2], [.6, .8], [.2, .5]) ([.1, .3], [.6, .7], [.2, .5]) ([.1, 3], [.6, .7], [.2, .5]) ([.1, .3], [.6, .7], [.2, .5]) ([.1, .3], [.6, .7], [.2, .6])
𝑇
3

([.1, .4], [.2, .5], [.4, .6]) ([.1, .2], [.2, .5], [.4, .6]) ([.1, .4], [.2, .5], [.4, .6]) ([.1, .4], [.2, .5], [.4, .6]) ([.1, .4], [.2, .6], [.4, .6])
𝑇
4

([.2, .4], [.4, .5], [.6, .8]) ([.3, .5], [.3, .5], [.6, .7]) ([.3, .5], [.3, .5], [.6, .7]) ([.3, .5], [.3, .5], [.6, .7]) ([.3, .5], [.3, .5], [.6, .7])

Table 4

𝑐
1

𝑐
2

𝑐
3

𝑐
4

𝑐
5

𝑇
1

([.6, .7], [.1, .2], [.3, .2]) ([.6, .8], [.1, .2], [.1, .2]) ([.6, .7], [.1, .2], [.1, .2]) ([.6, .7], [.1, .2], [.1, .2]) ([.6, .7], [.1, .2], [.1, .2])
𝑇
2

([.7, .8], [.1, .2], [.2, .4]) ([.7, .8], [.1, .2], [.2, .3]) ([.7, .8], [.1, .2], [.2, .3]) ([.5, .7], [.1, .2], [.2, .3]) ([.7, .8], [.1, .2], [.2, .3])
𝑇
3

([.4, .7], [.2, .3], [.3, .7]) ([.4, .6], [.2, .3], [.1, .2]) ([.4, .6], [.2, .3], [.1, .2]) ([.4, .6], [.2, .3], [.1, .2]) ([.4, .6], [.2, .3], [.1, .2])
𝑇
4

([.6, .8], [.1, .2], [.1, .3]) ([.6, .8], [.1, .2], [.1, .2]) ([.6, .8], [.1, .2], [.1, .2]) ([.6, .8], [.1, .2], [.1, .2]) ([.5, .7], [.1, .2], [.1, .2])

IVNSet 𝑆∗

= {⟨𝑐
1
, [0.575, 0.75] , [0.125, 0.225] , [0.125, 0.225]⟩ ,

⟨𝑐
2
, [0.575, 0.75] , [0.125, 0.225] , [0.125, 0.225]⟩ ,

⟨𝑐
3
, [0.575, 0.725] , [0.125, 0.225] , [0.125, 0.225]⟩ ,

⟨𝑐
4
, [0.525, 0.700] , [0.125, 0.225] , [0.125, 0.225]⟩ ,

⟨𝑐
5
, [0.55, 0.700] , [0.125, 0.225] , [0.125, 0.225]⟩} .

IVNSet 𝑆∗

= {⟨𝑐
1
, [0.25, 0.45] , [375, 0.475] , [0.375, 0.475]⟩ ,

⟨𝑐
2
, [0.375, 0.525] , [0.225, 0.35] , [0.225, 0.35]⟩ ,

⟨𝑐
3
, [0.350, 0.525] , [0.2, 0.4] , [0.2, 0.4]⟩ ,

⟨𝑐
4
, [0.4, 0.6] , [0.20, 0.35] , [0.2, 0.35]⟩ ,

⟨𝑐
5
, [0.35, 0.55] , [0.15, 0.375] , [0.15, 0.375]⟩} .

(60)

Here IVNSet 𝑆∗ ⊆ IVNSet 𝑆∗ ⊆ IVNSet 𝑆∗. Let 𝐶 = {𝐿 (low
convidence), 𝑀(middle confidence), 𝐻(high confidence)}
be a set of parameters. Let us consider the interval-valued
neutrosophic soft set 𝑆∗∗ = (𝑓, 𝐶) over 𝑈, where 𝑓 : 𝐶 →

IVNS𝑈 is given by 𝑓(𝐿) = IVNSet 𝑆∗, 𝑓(𝑀) = IVNSet 𝑆∗,
and 𝑓(𝐻) = IVNSet 𝑆∗. Now assuming the weighting vector

𝑊 = (𝜔
𝐿
, 𝜔
𝑀
, 𝜔
𝐻
) such that 𝜔

𝐿
= 0.7, 𝜔

𝑀
= 0.6, and 𝜔

𝐻
=

0.8, we have
𝛼 (𝑐
1
) = 0.7 ⬦ 0.0025 + 0.6 ⬦ 0.0859 + 0.8 ⬦ 0.3171

= 0.3070

𝛼 (𝑐
2
) = 0.7 ⬦ 0.0171 + 0.6 ⬦ 0.1856 + 0.8 ⬦ 0.3171

= 0.3770

𝛼 (𝑐
3
) = 0.7 ⬦ 0.0171 + 0.6 ⬦ 0.1787 + 0.8 ⬦ 0.3109

= 0.3679

𝛼 (𝑐
4
) = 0.7 ⬦ 0.0171 + 0.6 ⬦ 0.2150 + 0.8 ⬦ 0.2921

= 0.3747

𝛼 (𝑐
5
) = 0.7 ⬦ 0.0273 + 0.6 ⬦ 0.1968 + 0.8 ⬦ 0.2023

= 0.2991.

(61)

Since max(𝛼(𝑐
1
), 𝛼(𝑐
2
), 𝛼(𝑐
3
), 𝛼(𝑐
4
), 𝛼(𝑐
5
)} = 0.3770, so the

candidate 𝑐
2
will be selected as the most preferred alternative.

6. Conclusions

In this paper we have defined, for the first time, the notion of
interval-valued neutrosophic soft rough sets which is a com-
bination of interval-valued neutrosophic soft sets and rough
sets.We have studied some of their basic properties.Thus our
work is a generalization of IVIF-soft rough sets and intuition-
istic fuzzy soft rough sets. We hope that this paper will pro-
mote the future study on interval-valued neutrosophic soft
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rough sets to carry out a general framework for their applica-
tion in practical life.
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