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The reconfiguration criterion for tolerating actuator fault is proposed. The proposed reconfiguration criterion analyzes the
relationship between normal actuators and the system states that are directly affected by faulty actuators. So the proposed criterion
provides the possibilities of fault-tolerance. Moreover, it also provides the required number of redundant normal actuators.

1. Introduction

Faults occurring in systems such as automotive vehicles and
aircrafts cause a catastrophic accident that leads to loss of
property, life, and so forth. To avoid an accident caused by
faults, many systems require a high level of dependability.
Adopting redundant actuators has been considered as an
efficient method of achieving the required dependability.
Conventionally, redundant actuators are considered as back-
up systems if the primary ones operate normally. But if faults
occur in the primary actuators, then redundant ones are
activated as main actuators. However, adopting redundant
actuators leads to the losses of fuel, space, cost, and weight
during normal operation.

In contrast to adopting hardware redundancies such as
secondary actuators, software based fault accommodation
methods have been proposed for the last 30 years. The
goal of these methods is to provide the feasible control
input in order to maintain the normal performance. For this
reason, these methods are defined as fault-tolerant control
(FTC) or reconfiguration. There have been proposed various
fault-tolerant control techniques: pseudoinverse [1], model
reference adaptive control [2], sliding mode control [3–5],
multiple model switching and tuning [6], control allocation
[3, 7–10], and so forth.

However, most of the proposed methods shown above
consider the reconfiguration ability.Thismeans that although
the proposed reconfiguration methods can accommodate

faults theoretically and practically, there are some faulty
systems that cannot be tolerated. Generally, reconfiguration
possibility highly depends on the relationship between the
faulty states and controllable normal inputs. If a faulty system
cannot take sufficient controllable inputs related to the faulty
states, then the goal of reconfiguration must be changed to
achieve stabilization of the faulty system in order to avoid
structural damage. This paper proposes the reconfiguration
condition that provides the possibility of fault-tolerance.
By explicitly analyzing the relationship between the faulty
states and normal inputs, the condition also proposes the
required number of redundant actuators that can achieve
fault-tolerance.

2. General Dynamic Model of Actuator
Faulty System

The response of a faulty actuator can be categorized into
one of four types: Lock-in-Place (LiP), Hardover, Float, and
Loss of Effectiveness (LoE) [11]. Figure 1 shows the typical
examples of these fault types. In this figure, faults such as
LiP, Hardover, and Float lead an actuator to stopping at
one position or diverging to upper-/lower-saturation position
without any consideration of the input commands. So these
faults are defined as total faults. In contrast to total faults, the
response of LoE fault degrades the performance relative to
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Figure 1: Typical failures of actuator [11].

its desired (normal) output. Hence, the general response of a
faulty actuator can be represented as follows:
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LoE fault term
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Total fault term

, (1)

where the subscript 𝑖 indicates the 𝑖th actuator and ⟦ ⋅ ⟧ is
the smallest integer greater than or equal to ⋅. And 𝛾

𝑖
is the

performance degradation factor represented by a quantitative
value in [0, 1] according to the degraded performance:

𝛾
𝑖
=

{
{

{
{

{

0, if total fault occurs
𝜀 (0 < 𝜀 < 1) , if LoE fault occurs
1, if no fault occurs.

(2)

And 𝑢NORMAL
𝑖

denotes the desired normal position shown as
a dotted red line in Figure 1(d), and 𝑢TOTAL

𝑖
denotes the faulty

position depicted as a blue line in Figures 1(a), 1(b), and 1(c).

For example, if the 𝑖th actuator is operated normally, then 𝛾
𝑖
=

1, so 𝛿
𝑖
= 𝑢
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. And if 50% of LoE failure occurs on the
𝑖th actuator, then 𝛾

𝑖
= 0.5, so 𝑢

𝑖
= 0.5𝑢

NORMAL
𝑖

.
For the total number of actuators 𝑚, suppose faults are

occurring on 𝑘 (1 ≤ 𝑘 ≤ 𝑚) actuators; then, the general
dynamics of faulty actuators yields
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From (3), the general responses of actuators including
faulty and normal actuators can be represented as follows:
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3. The Proposed Fault-Tolerant Control
Allocation Method

In this section, the reconfiguration criterion is proposed.The
proposed criterion determines whether the faulty system has
sufficient normal actuators enough to accommodate faults
occurring on several actuators. To analyze the criterion, the
effects of faulty actuators are analyzed first. Next, the recon-
figuration criterion is proposed. And then the minimum
number of redundant actuators for compensating the effects
of faulty actuators is proposed in the last of this section.

3.1. Effects of Faulty Actuators. In the generalized faulty
system model provided in the previous section, faults on
actuators directly affect the actuator term. To analyze the
effects of actuator faults, the virtual input vector v ∈ R𝑛 is
employed:

k =
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Due to faults on 𝑘-actuators, eV ∈ R𝑟 cannot be zero.
By (3), the virtual input error vector represented by the
combination of fault types yields
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3.2. Reconfiguration Criterion. In this subsection, the fault-
tolerant control problem is introduced, and then the reconfig-
uration criterion is proposed. In (12), for the faulty-actuated
system, the only controllable actuators are u𝑁
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. This leads

to the fact that the relationship between u𝐹
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efficiently used to compensate the effects of faulty actuators.
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of generality, it is assumed that u𝑅 = u𝑁

2
+ u𝑅
2
to simplify the

problem.Then the input-virtual input relationship controlled
by u𝑅 can be represented as follows:
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It is worth noting that (14) shows the conceptual descrip-
tion of fault-tolerant control. The possibility of tolerating the
effects of faulty actuators highly depends on the relationship
between u𝐹

1
and u𝑁

2
. This means that the characteristics

of matrices B𝐹
11

and B𝑁
12

determine the possibility of fault-
tolerance. In this paper, the conditions for tolerating the
effects of faults based on the characteristics of matrices B𝐹

11

andB𝑁
12
are proposed as the reconfiguration criterion. Hence,

the proposed reconfiguration criterion describes the relation-
ship between normal actuators and effects of faulty actuators.
Moreover, this reconfiguration criterion determines whether
there are a sufficient number of normal actuators that can
accommodate faults occurring on actuators.

Before proposing the reconfiguration criterion, rearrange
the input distribution matrix [B𝐹

1
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] as follows: for 𝑛

𝑝
≤ 𝑛
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𝑞
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[
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=
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[
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]

]

]

]

]

]

]
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]

]
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]
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]

]

]

]

]

]

.

(15)

For 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑗 ≤ 𝑞, assume that 𝑛
0
= 𝑚
0
= 0. And

set ̃B𝑁
𝑖𝑗
as

B̃𝑁
𝑖𝑗
=

[

[

[

[

[

[

[
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𝑁
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.

.

.

.
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.
.
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𝑁
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𝑖
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𝑗

]

]

]

]

]

]

]

∈ R(𝑛𝑗−𝑛𝑖)×(𝑚𝑗−𝑚𝑖).

(16)

Moreover, let us denote B̃𝑁
𝑙
by

B̃𝑁
𝑙
=

[

[

[

[

[

[

[

[

̃B𝑁
11
̃B𝑁
12
⋅ ⋅ ⋅

̃B𝑁
1𝑙

0 B̃𝑁
22
⋅ ⋅ ⋅ B̃𝑁

2𝑙

.

.

.

.

.
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.
.
.

0 0 ⋅ ⋅ ⋅
̃B𝑁
𝑙𝑙

]

]

]

]

]

]

]

]

∈ R𝑛𝑙×𝑚𝑙 . (17)

By (17), the effects of normal actuators can be explicitly
described. Then the reconfiguration criterion can be stated
as follows.
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Reconfiguration Criterion. The system that has 𝑘-faulty actu-
ators is reconfigurable, if a matrix B̃𝑁

𝑙
∈ R𝑛𝑙×𝑚𝑙 satisfies the

following:

(i) rank(̃B𝑁
𝑙
) ≥ 𝑟;

(ii) ̃B𝑁
𝑙
is full row rank; that is, rank(̃B𝑁

𝑙
) = 𝑛
𝑙
.

From conditions (i) and (ii), there exists at least one solution
u𝑅
2
that satisfies the following:

̃B𝑁
𝑙
u𝑅
2
= [

−B𝐹
11
e𝑢

0
(𝑛
𝑙
−𝑟)

] = [

−eV
0
(𝑛
𝑙
−𝑟)

] . (18)

Equation (18) means that the effects of faulty actuators can
be compensated by 𝑛

𝑙
-normal actuators.This leads to the fact

that the required number of normal actuators for tolerating
faults is 𝑛

𝑙
. Hence, the minimum number of redundant

actuators can be stated as follows.

Minimum Number of Redundant Actuators. If the system is
reconfigurable for 𝑘-faulty actuators, that is, for 𝑙 ≤ 𝑡 ≤ 𝑚,
there exists a matrix B̃𝑁

𝑡
that satisfies the reconfiguration

criterion, then the minimum number of redundant actuators
is 𝑛
𝑙
.
It is worth noting that the faulty system that satisfies

the reconfiguration criterion can compensate the effects
of faults by redistributing normal actuators. However, if a
system cannot take sufficient normal actuators, then recon-
figuration cannot be achieved; consequently, the effects of
faulty actuators may cause catastrophic accident. In this
case, uncontrolled forces generated by faulty actuators stress
the system structures. Hence, the primary goal of fault-
tolerant control is to achieve stabilization of the system by
degrading the performance of normal actuators. Figure 2
describes the fault-tolerant control strategy. In Figure 2,
fault-tolerance can be achieved by two ways: performance
maintenance and stabilization (graceful degradation). If the
system satisfies the proposed reconfiguration criterion, then
the effects of the faulty actuators can be compensated; that is,
the performance of the faulty system can be maintained. In
contrast, if the system cannot achieve perfect compensation
due to lack of redundant actuators, that is, the reconfiguration
criterion cannot be satisfied, then the fault-tolerant mecha-
nism tries to stabilize the system by reducing the required
performance in order to avoid additional types of damage
such as structural breaks. Examples of fault-tolerant control
strategy for these two types are introduced in the following
section.

4. Examples

In this section, two systems are introduced to show how
to work the proposed reconfiguration criterion. The first
example is a simple crane system that has not any sufficiently
redundant normal actuators for tolerating fault. The other
example is an aircraft that adopts various control surfaces
(actuators).

Redistributing 
redundant actuators

Reducing required 
performance

Reconfiguration
criterion?

Performance
maintenance

Graceful
degradation

Yes No

Figure 2: Fault-tolerant control strategy.
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Left motor
and

controller
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Figure 3: Description of the crane model.

4.1. Crane System. A simple crane system considered in this
subsection is depicted in Figure 3. In this crane, center of the
horizontal plate is moved up and down by two motors:

𝐹
𝑙
+ 𝐹
𝑟
− 𝑚𝑔 = 𝑚𝑎, (19)

where𝑚 is the plate mass and 𝑔 is the gravitational constant.
And 𝐹

𝑙
and 𝐹

𝑟
are forces generated by the left and right

motors, respectively. To control the plate position (height), a
dynamic inversion control law applies to both motors.

In this simulation, it is assumed that a 30% of LoE fault
occurs on the leftmotor; that is, the force generated by the left
motor is reduced by almost 30%. Then the plate is operated
by asymmetric forces; consequently, the plate cannot be
stabilized. Since forces are generated asymmetrically, the
following moment equation is applied to the plate:

𝐹
𝑟
𝑙 cos 𝜃 − 𝐹

𝑙
𝑙 cos 𝜃 = 𝐽 ̈𝜃, (20)

where 𝐽 is the rotational inertia of the plate and 𝜃 is the angle
between the horizontal line and the plate. And 𝑙 indicates the
distance from the center of the plate to the position that force
𝐹
𝑙
or 𝐹
𝑟
activates.

So fault occurring on the leftmotor affects two equations,
(19) and (20); that is, 𝑟 = 2. However, the number of
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the remaining normal motor is one (right motor). Hence, the
reconfiguration criterion cannot be satisfied.

In Figure 4, responses of plate position and angle of
the faulty crane are described. Although fault on the left
motor (actuator) degrades its performance, the controlled
plate position can maintain the referenced position. How-
ever, since the controller generates more forces to satisfy
the referenced plate position, the plate angle is oscillated
(Figure 4(b)). As a result, the faulty crane cannot be stable.

From the reconfiguration criterion result, the crane sys-
tem cannot achieve sufficient number of normal motors
that can accommodate the effects of fault. In this case,
the primary goal of fault-tolerant control is to stabilize the
faulty crane; that is, fault-tolerant mechanism tries to reduce
the required performance of the crane. Figure 5 shows the
simulation results of the performance maintenance crane
case by applying the reconfiguration input introduced in
(14). In Figure 5(a), the control performance can be main-
tained by generating additional force to the normal (right)
motor. However, the plate is extremely oscillated due to
asymmetric additional force acting on the normal motor
(Figure 5(b)). Moreover, this additional force may cause
structural damage, if the crane is oscillated continuously.
In contrast, in Figure 6(b), oscillation of the plate can be
prevented by degrading the performance of the normal
motor. Although control performance cannot be achieved as
shown in Figure 6(a), the faulty crane can avoid additional
damage.

4.2. Aircraft System. In this paper, a tailless jet fighter devel-
oped under the innovative control effectors (ICE) program
is considered [4, 12]. The ICE adopts elevons, pitch flap,
and all-moving tips as control surfaces. Since the proposed
reconfiguration criterion represents the relationship between
faulty states and normal actuators, the input distribution
matrix of the ICE is considered in this simulation. In [12], the
input distribution matrix linearized at Mach 0.4 and 15,000 ft
altitude yields

[

[

V
𝑝

V
𝑞

V
𝑟

]

]

=
[

[

3.7830 −3.7830 0.0000 1.8255 −1.8255

−2.5114 −2.5114 −1.9042 −0.9494 −0.9494

−0.0453 −0.0453 0.0000 −0.2081 0.2081

]

]

×

[

[

[

[

[

[

𝛿le
𝛿re
𝛿pf
𝛿lamt
𝛿ramt

]

]

]

]

]

]

,

(21)

where V
𝑝
, V
𝑞
, and V

𝑟
denote the virtual inputs for roll rate,

pitch rate, and yaw rate, respectively. And control inputs, 𝛿le,
𝛿re, 𝛿pf, 𝛿lamt, and 𝛿ramt, are deflections of left elevon, right
elevon, pitch flap, left all-moving tip, and right all-moving tip,
correspondingly.

In this simulation, the following fault scenario is con-
sidered: a 30% of LoE fault on the left elevon at 4 sec and
float fault on the right all-moving tip at 8 sec. Since one

fault occurs on the left elevon during 4–8 sec, the input
distribution matrix [B𝐹

1
B𝑁
2
] can be represented as follows:

B𝐹
1
=
[

[

−2.5114

3.7830

0.0000

]

]

,

B𝑁
2
=
[

[

−1.9042 −2.5114 −0.9494 −0.9494

0.0000 −3.7830 1.8255 −1.8255

0.0000 0.0000 −0.2081 0.2081

]

]

.

(22)

Since the effects of elevons in V
𝑟
are much less than other

control surfaces in (22), it is reasonable that −0.0453 is set to
be 0. The number of affected virtual inputs is 2; that is, 𝑟 = 2.
And ̃B𝑁

𝑙
(𝑙 = 1, 2, 3) can be represented as

̃B𝑁
1
= [−1.9042] ,

̃B𝑁
2
= [

−1.9042 −2.5114

0.0000 −3.7830
] ,

̃B𝑁
3
=
[

[

−1.9042 −2.5114 −0.9494 −0.9494

0.0000 −3.7830 1.8255 −1.8255

0.0000 0.0000 −0.2081 0.2081

]

]

.

(23)

To examine the possibility of reconfiguration, select B̃𝑁
2
; then,

the following are satisfied:

(i) rank(̃B𝑁
2
) = 2 = 𝑟;

(ii) ̃B𝑁
2
is full row rank.

So the reconfiguration criterion is satisfied. Hence, the effects
of faulty left elevon during 4–8 sec can be compensated.
Moreover, the minimum required number of normal actu-
ators is 2. Actually, the reconfiguration criterion can also be
satisfied, if B̃𝑁

3
is selected.

Similarly, for two-faulty-actuator case after 8 sec, the
input distribution matrix [B𝐹

1
B𝑁
2
] yields

B𝐹
1
=
[

[

−2.5114 −0.9494

3.7830 −1.8255

0.0000 0.2081

]

]

,

B𝑁
2
=
[

[

−1.9042 −2.5114 −0.9494

0.0000 −3.7830 1.8255

0.0000 0.0000 −0.2081

]

]

.

(24)

Then 𝑟 = 3. And for 𝑙 ∈ [1, 3], B̃𝑁
𝑙
can be represented as

̃B𝑁
1
= [−1.9042] ,

̃B𝑁
2
= [

−1.9042 −2.5114

0.0000 −3.7830
] ,

B̃𝑁
3
=
[

[

−1.9042 −2.5114 −0.9494

0.0000 −3.7830 1.8255

0.0000 0.0000 −0.2081

]

]

.

(25)

Choose B̃𝑁
3
; then, the following are satisfied:

(i) rank(̃B𝑁
3
) = 3 = 𝑟;

(ii) ̃B𝑁
3
is full row rank.
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Figure 4: Results of faulty crane case.
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Figure 5: Results of performance maintained crane case.
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Figure 6: Results of performance degraded crane case.
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Figure 7: Virtual input response with/without reconfiguration.

So the reconfiguration criterion is satisfied. Therefore, the
effects of faulty left elevon and right all-moving tip after
8 sec can be accommodated. Moreover, it is easy to check
that the minimum required number of normal actuators is
3. Hence, faults occurring in the ICE can be compensated by
the redundant normal actuators.

Figure 7 shows the simulation results. In these figures,
relationships between the virtual inputs and actual control
surfaces are considered.Due to fault on the left elevon at 4 sec,
the performances of virtual inputs are degraded. Moreover,
the performances of virtual inputs in roll and yaw dynamics
are significantly reduced after injecting float fault on the right
all-moving tip at 8 sec. However, by redistributing the normal
actuators such as right elevon, pitch flap, left all-moving tip,
and right all-moving tip (before 8 sec), the effects of injected
faults can be compensated.

The following figures show the results of roll motion of
the faulty ICE. In this simulation, the aircraft maneuvers
turn reversal which can be achieved by rolling the aircraft to
60 deg to the left and then to 60 deg to the right. As shown
in Figure 8(b), the roll angle diverges due to injected fault on
the left elevon at 4 sec. However, by redistributing the normal
actuators, the effects of faulty actuator can be accommodated;
consequently, the aircraft can maintain the performance as
shown in Figure 8(c).

5. Concluding Remarks

This paper has proposed the reconfiguration criterion that
presents the possibility of fault-tolerance. The proposed cri-
terion explicitly describes the relationship between the faulty
states and normal actuators. This relationship determines
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Figure 8: Turn reversal maneuver response.

whether the effects of faulty actuators can be compensated
by normal actuators or not. Moreover, the relationship also
provides the required number of normal actuators for fault-
tolerance. Hence, the proposed criterion can be used to deter-
mine the goals of fault-tolerance: performance maintenance
or graceful degradation.

However, the reconfiguration criterion proposed in this
paper is analyzed for a linearized system. For future work,
the proposed criterion will be extended to a nonlinear
system. Moreover, actuator limitation called saturation will
be considered to adopt the proposed criterion in physical
systems.
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