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Here, a two-phase algorithm is proposed for solving bounded continuous-time nonlinear optimal control problems (NOCP). In
each phase of the algorithm, a modified hybrid genetic algorithm (MHGA) is applied, which performs a local search on offsprings.
In first phase, a random initial population of control input values in time nodes is constructed. Next, MHGA starts with this
population. After phase 1, to achieve more accurate solutions, the number of time nodes is increased. The values of the associated
new control inputs are estimated by Linear interpolation (LI) or Spline interpolation (SI), using the curves obtained from the phase
1. In addition, to maintain the diversity in the population, some additional individuals are added randomly. Next, in the second
phase, MHGA restarts with the new population constructed by above procedure and tries to improve the obtained solutions at the
end of phase 1. We implement our proposed algorithm on 20 well-known benchmark and real world problems; then the results are
compared with some recently proposed algorithms. Moreover, two statistical approaches are considered for the comparison of the
LI and SI methods and investigation of sensitivity analysis for the MHGA parameters.

1. Introduction

NOCPs are dynamic optimization problemswithmany appli-
cations in industrial processes such as airplane, robotic arm,
bio-process system, biomedicine, electric power systems, and
plasma physics [1].

High-quality solutions and the less required computa-
tional time aremain issues for solvingNOCPs.Thenumerical
methods, direct [2] or indirect [3], usually have two main
deficiencies, less accuracy and convergence to a local solu-
tion. In direct methods, the quality of solution depends on
discretization resolution. Since these methods, using control
parametrization, convert the continuous problem to discrete
problem, they have less accuracy. However, the adaptive
strategies [4, 5] can overcome these defects, but they may
be trapped by a local optimal, yet. In indirect approaches,
the problem, through the use of the Pontryagins minimum
principle (PMP), is converted into a two-boundary value
problem (TBVP) that can be solved by numerical methods

such as shooting method [6]. These methods need the good
initial guesses that lie within the domain of convergence.
Therefore, the numerical methods, usually are not suitable
for solving NOCPs, especially for large-scale andmultimodal
models.

Metaheuristics as the global optimization methods can
overcome these problems, but they usually need more
computational time, though they do not really need good
initial guesses and deterministic rules. Several researchers
used metaheuristics to solve optimal control problems. For
instance,Michalewicz et al. [7] applied floating-point Genetic
algorithms (GA) to solve discrete time optimal control prob-
lems; Yamashita and Shima [8] used the classical GAs to solve
the free final time optimal control problems with terminal
constraints. Abo-Hammour et al. [9] used continuous GA for
solvingNOCPs.Moreover, the other usages ofGA for optimal
control problems can be found in [6, 10]. Lopez Cruz et al.
[11] applied differential evolution (DE) algorithms for solving
the multimodal optimal control problems. Recently, Ghosh
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et al. [12] developed an ecologically inspired optimization
technique, called invasive weed optimization (IWO), for
solving optimal control problems. The other well-known
metaheuristic algorithms used for solving NOCPs are genetic
programming (GP) [13], particle swarm optimization (PSO)
[14, 15], ant colony optimization (ACO) [16], and DE [17, 18].

To increase the quality of solutions and decrease the
running time, hybrid methods were introduced, which used
a local search in the implementation of a population-based
metaheuristics, [19]. Modares and Naghibi-Sistani [20] pro-
posed a hybrid algorithm by integrating an improved PSO
with successive quadratic programming (SQP) for solving
NOCPs. Recently, Sun et al. [21] proposed a hybrid improved
GA, which used simplex method (SM) to perform a local
search, for solving NOCPs and applied it for chemical
processes.

Based on the success of the hybrid methods for solving
NOCPs, mentioned above, we here use a modified hybrid
genetic algorithm (MHGA), which combines GA with SQP,
see [22], as a local search. SQP is an iterative algorithm for
solving nonlinear programming (NLP) problems, which uses
gradient information. It can moreover be used for solving
NOCPs, see [23–25]. For decreasing the running time in the
early generations (iterations) of MHGA, a less number of
iterations for SQP was used and then, when the promising
region of search space was found, we increase the number of
iterations of SQP, gradually.

To perform MHGA for solving an NOCP, the time
interval is uniformly divided by using a constant number of
time nodes. Next, in each of these time nodes, the control
variable is approximated by a scaler vector of control input
values. Thus, an infinite dimensional NOCP is changed to
a finite dimensional NLP. Now, we encounter two conflict
situations: the quality of the global solution and the needed
computational time. In other words, when the number of
time nodes is increased, then we expect that the quality of
the global solution is also increased, but we know that in this
situation the computational time is increased dramatically. In
other situation, if we consider less number of time nodes,
then the computational time is decreased but we may find
a poor local solution. To conquer these problems, MHGA
performs in two phases. In the first phase (exploration
phase), to decrease the computational time and to find a
promising region of search space, MHGA uses a less number
of time nodes. After phase 1, to increase the quality of
solutions obtained from phase 1, the number of time nodes
is increased. Using the population obtained in phase 1, the
values of the new control inputs are estimated by Linear or
Spline interpolations. Next, in the second phase (exploitation
phase), MHGA uses the solutions constructed by the above
procedure, as an initial population.

The paper is organized as follows: in Section 2, the
formulation of the problem is introduced. In Section 3, the
proposed MHGA is presented. In Section 4, we introduce
our algorithm for solving NOCP. In Section 5, we provide
20 numerical benchmark examples, to compare the proposed
algorithm with the other recently proposed algorithms.
In Section 6, we consider two statistical approaches for

the comparison of the LI and SI methods and investigation of
sensitivity analysis of the algorithm parameters. The impact
of SQP, as local search, in the proposed algorithm is surveyed
in Section 7. We conclude in Section 8.

2. Formulation of Problem

The bounded continuous-time NOCP is considered as find-
ing the control input 𝑢(𝑡) ∈ R𝑚, over the planning horizon
[𝑡
0
, 𝑡
𝑓
], which minimizes the cost functional:

𝐽 = 𝜙 (𝑥 (𝑡
𝑓
) , 𝑡
𝑓
) + ∫

𝑡𝑓

𝑡0

𝑔 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡) 𝑑𝑡 (1)

subject to

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡) , (2)

𝑐 (𝑥, 𝑢, 𝑡) = 0, (3)

𝑑 (𝑥, 𝑢, 𝑡) ≤ 0, (4)

𝜓 (𝑥 (𝑡
𝑓
) , 𝑡
𝑓
) = 0, (5)

𝑥 (𝑡
0
) = 𝑥
0
, (6)

where 𝑥(𝑡) ∈ R𝑛 denotes the state vector for the system and
𝑥
0
∈ R𝑛 is the initial state. The functions 𝑓 : R𝑛 ×R𝑚 ×R →

R𝑛, 𝑔 : R𝑛 ×R𝑚 ×R → R, 𝑐 : R𝑛 ×R𝑚 ×R → R𝑛𝑐 , 𝑑 : R𝑛 ×

R𝑚×R → R𝑛𝑑 ,𝜓 : R𝑛×R → R𝑛𝜓 , and 𝜙 : R𝑛×R → R are
assumed to be sufficiently smooth on appropriate open sets.
Cost function (1) must be minimized subject to dynamic (2),
control and state equality constraints (3) and control and state
inequality constraints (4), the final state constraints (5), and
the initial condition (6). A special case of the NOCPs is the
linear quadratic regulator (LQR) problemwhere the dynamic
equations are linear and the objective function is a quadratic
function of 𝑥 and 𝑢. The minimum time problems, tracking
problem, terminal control problem andminimum energy are
another special case of NOCPs.

3. Modified Hybrid Genetic Algorithm

In this section, first MHGA, as a subprocedure for the main
algorithm, is introduced. To perform MHGA, the control
variables are discretized. Next, NOCP is changed into a finite
dimensional NLP; see [21, 26]. Now, we can imply a GA to
find the global solution of the corresponding NLP. In the
following, we introduce GA operators.

3.1. Underlying GA. GAs, introduced by Holland in 1975, are
heuristics and probabilistic methods [27]. These algorithms
start with an initial population of solutions. This population
is evaluated by using genetic operators that include selection,
crossover, andmutation. Here, inMHGA, the underlying GA
has the following steps.

Initialization.The time interval is divided into𝑁
𝑡
−1 subinter-

vals using time nodes 𝑡
0
, . . . , 𝑡

𝑁𝑡−1
and then the control input
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{Initialization} Input the the size of tournament,𝑁tour and select𝑁tour

individuals from population, randomly. Let 𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑁tour be the indexes of them.

repeat
if 𝑁tour = 2 then
if 𝐼(𝑈𝑘1 ) < 𝐼(𝑈

𝑘2
) then

Let 𝑘 = 𝑘
1
.

else
Let 𝑘 = 𝑘

2
.

end if
end if

Perform Tournament algorithm with size𝑁tour/2 with output 𝑘
1
.

Perform Tournament algorithm with size𝑁tour/2 with output 𝑘
2
.

until 𝑘
1

̸= 𝑘
2

Return the 𝑘th individual of population.

Algorithm 1: Tournament algorithm.

values are computed (or selected randomly).This can be done
by the following stages.

(1) Let 𝑡
𝑗
= 𝑡
0
+ 𝑗ℎ, where ℎ = (𝑡

𝑓
− 𝑡
0
)/(𝑁
𝑡
− 1), 𝑗 =

0, 1, . . . , 𝑁
𝑡
−1, be time nodes, where 𝑡

0
and 𝑡
𝑓
are the

initial and final times, respectively.

(2) The corresponding control input value at each time
node 𝑡

𝑗
is an𝑚×1 vector, 𝑢

𝑗
, which can be calculated

randomly, with the following components.

𝑢
𝑖𝑗
= 𝑢
𝑗
(𝑖) = 𝑢left (𝑖) + (𝑢right (𝑖) − 𝑢left (𝑖)) ⋅ 𝑟𝑖𝑗,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 0, 1, . . . , 𝑁
𝑡
− 1,

(7)

where 𝑟
𝑖𝑗
is a random number in [0, 1]with a uniform

distribution and 𝑢left, 𝑢right ∈ R𝑚 are the lower and the
upper bound vectors of control input values, which
can be given by the problem’s definition or the user
(e.g., see the NOCPs numbers (6) and (5) in the
Appendix, resp.). So, each individual of the popula-
tion is an 𝑚 × 𝑁

𝑡
matrix as 𝑈 = (𝑢

𝑖𝑗
)
𝑚×𝑁𝑡

= [𝑢
𝑗
]
𝑁𝑡−1

𝑗=0
.

Next, we let 𝑈(𝑘) = (𝑢
𝑖𝑗
)
𝑚×𝑁𝑡

, 𝑘 = 1, 2, . . . , 𝑁
𝑝
as 𝑘th

individual of the population, which 𝑁
𝑝
is the size of

the population.

Evaluation. For each control input matrix, 𝑈
(𝑘), 𝑘 =

1, 2, . . . , 𝑁
𝑝
, the corresponding state variable is an 𝑛 × 𝑁

𝑡

matrix,𝑋(𝑘), and it can be computed by the forthRunge-Kutta
method on dynamic system (2) with the initial condition
(6), approximately. Then, the performance index, 𝐽(𝑈(𝑘)),
is approximated by a numerical method (denoted by 𝐽). If
NOCP includes equality or inequality constraints (3) or (4),
then we add some penalty terms to the corresponding fitness

value of the solution. Finally, we assign 𝐼(𝑈
(𝑘)

) to 𝑈
(𝑘) as the

fitness value as follows:

𝐼 (𝑈
(𝑘)

) = 𝐽 +

𝑛𝑑

∑

𝑙=1

𝑁𝑡−1

∑

𝑗=0

𝑀
1𝑙
max {0, 𝑑

𝑙
(𝑥
𝑗
, 𝑢
𝑗
, 𝑡
𝑗
)}

+

𝑛𝑐

∑

ℎ=1

𝑁𝑡−1

∑

𝑗=0

𝑀
2ℎ
𝑐
2

ℎ
(𝑥
𝑗
, 𝑢
𝑗
, 𝑡
𝑗
)

+

𝑛𝜓

∑

𝑖=𝑝

𝑀
3𝑝
𝜓
2

𝑝
(𝑥
𝑁𝑡−1

, 𝑡
𝑁𝑡−1

) ,

(8)

where 𝑀
1
= [𝑀

11
, . . . ,𝑀

1𝑛𝑑
]
𝑇, 𝑀
2
= [𝑀

21
, . . . ,𝑀

2𝑛𝑐
]
𝑇 and

𝑀
3

= [𝑀
31
, . . . ,𝑀

3𝑛𝜓
]
𝑇 are big numbers, as the penalty

parameters, 𝑐
ℎ
(⋅, ⋅), ℎ = 1, 2, . . . , 𝑛

𝑐
, 𝑑
𝑙
(⋅, ⋅), 𝑙 = 1, 2, . . . , 𝑛

𝑑
,

and 𝜓
𝑝
(⋅, ⋅), 𝑝 = 1, 2, . . . , 𝑛

𝜓
are defined in (3), (4), and (5),

respectively.

Selection. To select two parents, we use a tournament selec-
tion [27]. It can be applied for parallel GA. The tournament
operator applies competition among the same individuals,
and the best of them is selected for next generation. At first
we select a specified number of individuals from population,
randomly. This number is tournament selection parameter,
which is denoted by𝑁tour.The tournament algorithm is given
in Algorithm 1.

Crossover. When two parents 𝑈(1) and 𝑈
(2) are selected, we

use the following stages to construct an offspring.
(1) Select the following numbers

𝜆
1
∈ [0, 1] , 𝜆

2
∈ [−𝜆max, 0] , 𝜆

3
∈ [1, 1 + 𝜆max]

(9)
randomly, where 𝜆max is a random number in [0, 1].

(2) Let

of𝑘 = 𝜆
𝑘
𝑈
(1)

+ (1 − 𝜆
𝑘
) 𝑈
(2)

, 𝑘 = 1, 2, 3, (10)
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where 𝜆
𝑘
, 𝑘 = 1, 2, 3 is defined in (9). For 𝑖 = 1, . . . , 𝑚

and 𝑗 = 1, . . . , 𝑁
𝑡
, if (of𝑘)

𝑖𝑗
> 𝑢right(𝑖), then let (of

𝑘

)
𝑖𝑗
=

𝑢right(𝑖) and if (of
𝑘

)
𝑖𝑗
< 𝑢left(𝑖), then let (of

𝑘

)
𝑖𝑗
= 𝑢left(𝑖).

(3) Let of = of∗, where of∗ is the best of𝑘, 𝑘 = 1, 2, 3

constructed by (10).

Mutation.We apply a perturbation on each component of the
offspring as follows:

(of)
𝑖𝑗
= (of)

𝑖𝑗
+ 𝑟
𝑖𝑗
⋅ 𝛼, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑁

𝑡
,

(11)

where 𝑟
𝑖𝑗
is selected randomly in {−1, 1} and 𝛼 is a random

number, with a uniform distribution in [0, 1]. If (of)
𝑖𝑗

>

𝑢right(𝑖), then let (of)
𝑖𝑗
= 𝑢right(𝑖) and if (of)

𝑖𝑗
< 𝑢left(𝑖), then

let (of)
𝑖𝑗
= 𝑢left(𝑖).

Replacement.Here, in the underling GA, we use a traditional
replacement strategy. The replacement is done, if the new
offspring has two properties: first, it is better than the worst
person in the population, 𝐼(of) < max

1≤𝑖≤𝑁𝑝
𝐼(𝑈
(𝑖)

), second,
it is not very similar to a person in the population; that is, for
each 𝑖 = 1, . . . , 𝑁

𝑝
, at least one of the following conditions is

satisfied:
󵄨
󵄨
󵄨
󵄨
󵄨
𝐼 (of) − 𝐼 (𝑈

(𝑖)

)

󵄨
󵄨
󵄨
󵄨
󵄨
> ́𝜀,

󵄩
󵄩
󵄩
󵄩
󵄩
of − 𝑈

(𝑖)
󵄩
󵄩
󵄩
󵄩
󵄩
> ́𝜀,

(12)

where ́𝜀 is the machine epsilon.

Termination Conditions. Underlying GA is terminated when
at least one of the following conditions is occurred.

(1) Themaximumnumber of generations,𝑁
𝑔
, is reached.

(2) Over a specified number of generations, 𝑁
𝑖
, we do

not have any improvement (the best individual is not
changed) or the two-norm, or error, of final state
constraints will reach a small number as the desired
precision, 𝜀; that is,

𝜑
𝑓
=
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩2

< 𝜀, (13)

where𝜓 = [𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛𝜓
]
𝑇 is the vector of final state

constraints, defined in (5).

3.2. SQP. The fitness value in (8) can be viewed as a
nonlinear objective function with the decision variable as
𝑢 = [𝑢

0
, 𝑢
1
, . . . , 𝑢

𝑁𝑡−1
]. This cost function with upper and

lower bounds of input signals construct a finite dimensional
NLP problem as following

min 𝐼 (𝑢) = 𝐼 (𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑁𝑡−1
) (14)

s.t. 𝑢left ≤ 𝑢
𝑗
≤ 𝑢right, 𝑗 = 0, 1, . . . , 𝑁

𝑡
− 1 (15)

SQP algorithm [22, 28] is performed on the NLP (14)-(15),
using 𝑢0 = of and constructed in (11), as the initial solution
when the maximum number of iteration is 𝑠𝑞𝑝𝑚𝑎𝑥𝑖𝑡𝑒𝑟.

SQP, is an effective and iterative algorithm for the
numerical solution of the constrained NLP problem. This
technique is based on finding a solution to the system of
nonlinear equations that arise from the first-order necessary
conditions for an extremum of the NLP problem. Using
an initial solution of NLP, 𝑢𝑘, 𝑘 = 0, 1, . . ., a sequence of
solutions as 𝑢𝑘+1 = 𝑢

𝑘

+ 𝑑
𝑘 is constructed, which 𝑑

𝑘 is the
optimal solution of the constructed quadratic programming
(QP) that approximates NLP in the iteration 𝑘 based on
𝑢
𝑘, as the search direction in the line search procedure.

For the NLP (15), the principal idea is the formulation of a
QP subproblem based on a quadratic approximation of the
Lagrangian function as 𝐿(𝑢, 𝜆) = 𝐼(𝑢) + 𝜆

𝑇

ℎ(𝑢), where the
vector 𝜆 is Lagrangian multiplier and ℎ(𝑢) return the vector
of, inequality constraints evaluated at 𝑢. The QP is obtained
by linearizing the nonlinear functions as follows:

min 1

2

𝑑
𝑇

𝐻(𝑢
𝑘

) 𝑑 + ∇𝐼 (𝑢
𝑘

)

𝑇

𝑑 (16)

∇ℎ (𝑢
𝑘

)

𝑇

𝑑 + ℎ (𝑢
𝑘

) ≤ 0. (17)

Similar to [26], here a finite difference approximation is
applied to compute the gradient of the cost function and the
constraints, with the following components:

𝜕𝐼

𝜕𝑢
𝑗

=

𝐼 (⋅ ⋅ ⋅ 𝑢
𝑗
+ 𝛿 ⋅ ⋅ ⋅ ) − 𝐼 (𝑢)

𝛿

, 𝑗 = 0, 1, . . . , 𝑁
𝑡
− 1, (18)

where 𝛿 is the double precision of machine. So, the gradient
vector is ∇𝐼 = [𝜕𝐼/𝜕𝑢

0
, . . . , 𝜕𝐼/𝜕𝑢

𝑁𝑡−1
]
𝑇. Also, at each major

iteration a positive definite quasi-Newton approximation of
theHessian of the Lagrangian function,𝐻, is calculated using
the BFGS method [28], where 𝜆

𝑖
, 𝑖 = 1, . . . , 𝑚, is an estimate

of the Lagrange multipliers. The general procedure for SQP,
for NLP (14)-(15), is as follows.

(1) Given an initial solution 𝑢
0. Let 𝑘 = 0.

(2) Construct the QP subproblem (16)-(17), based on 𝑢
0,

using the approximations of the gradient and the
Hessian of the the Lagrangian function.

(3) Compute the new point as 𝑢𝑘+1 = 𝑢
𝑘

+ 𝑑
𝑘, where 𝑑𝑘

is the optimal solution of the current QP.
(4) Let 𝑘 = 𝑘 + 1 and go to step (2).

Here, in MHGA, SQP is used as the local search, and we
use the maximum number of iterations as the main criterion
for stopping SQP. In other words, we terminate SQP when it
converges either to local solution or themaximumnumber of
SQP’s iterations is reached.

3.3. MHGA. In MHGA, GA uses a local search method to
improve solutions. Here, we use SQP as a local search. Using
SQP as a local search in the hybrid metaheuristic is common,
for example, see [20].

MHGA can be seen as a multi start local search where
initial solutions are constructed by GA. From another per-
spective, MHGA can be seen as a GA that the quality of



Mathematical Problems in Engineering 5

Initialization

sqpmaxiter,

an initial population

Evaluation
Evaluate the fitness
of each individual,

using (8)

Local search
(Section 3.2)

Return
The best individual in
the final population
as an approximate

of the global solution
 of NOCP

Stopping
conditions?

Selection
(Algorithm 1)

Crossover
(using Equation (10))

Replacement
(using Equations

(12))

Mutation
(using Equation(11))

Local search
(Section 3.2)

Input Nt,Np,Ni,Ng, Pm,

𝜀,Mi, i = 1, 2, 3 and

=sqpmaxiter
sqpmaxiter + 1

Figure 1: Flowchart of the MHGA algorithm.

its population is intensified by SQP. In the beginning of
MHGA, a less number of iterations for SQP was used. Then,
when the promising regions of search space were found by
GA operators, we increase the number of iterations of SQP
gradually. Using this approach, we may decrease the needed
running time (in [19] the philosophy of this approach is
discussed).

Finally, we give our modified MHGA, to find the global
solution, by the flowchart in Figure 1.

4. Proposed Algorithm

Here, we give a new algorithm, which is a direct approach,
based on MHGA, for solving NOCPs. The proposed algo-
rithm has two main phases. In the first phase, we perform
MHGA with a completely random initial population con-
structed by (7). In the first phase, to find the promising
regions of the search space, in a less running time, we use
a few numbers of time nodes. In addition, to have a faster
MHGA, the size of the population in the first phase is usually
less than the size of the population in the second phase.

After phase 1, to maintain the property of individuals in
the last population of phase 1 and to increase the accurately
of solutions, we add some additional time nodes. When
the number of time nodes is increased, it is estimated that
the quality of solution obtained by numerical methods (e.g.,

Runge-Kutta and Simpson) is increased. Thus, we increase
time nodes from 𝑁

𝑡1
in phase 1 to 𝑁

𝑡2
in phase 2. The

corresponding control input values of the new time nodes
are added to individuals. To use the information of the
obtained solutions from phase 1 in the construction of the
initial population of phase 2, we use either Linear or Spline
interpolation to estimate the value of the control inputs in
the new time nodes in each individual of the last population
of phase 1. Moreover, to maintain the diversity in the initial
population of phase 2, we add new random individuals to
the population using (7). In the second phase, MHGA starts
with this population and new value of parameters. Finally, the
proposed algorithm is given in Algorithm 2.

5. Numerical Experiments

In this section, to investigate the efficiency of the proposed
algorithm, 20 well-known and real world NOCPs, as bench-
mark problems, are considered which are presented in terms
of (1)–(6) in the Appendix. These NOCPs are selected with
single control signal and multi control signals, which will be
demonstrated in a general manner.

The numerical behaviour of algorithms can be studied
from two view of points, the relative error of the performance
index and the status of the final state constraints. Let 𝐽 be the
obtained performance index by an algorithm, 𝜑

𝑓
, defined in
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{Initialization} Input the desired precision, 𝜀, in (13), the penalty parameters,
𝑀
𝑖
, 𝑖 = 1, 2, 3, in (8), the bounds of control input values in (7), 𝑢left and 𝑢right.

{Phase 1} Perform MHGA with a random population and𝑁
𝑡1
, 𝑁
𝑝1
, 𝑁
𝑖1
, 𝑁
𝑔1
, 𝑃
𝑚1

and 𝑠𝑞𝑝𝑚𝑎𝑥𝑖𝑡𝑒𝑟
1
.

{Construction of the initial population of the phase 2} Increase time nodes uniformly to𝑁
𝑡2

and estimate the corresponding control input values of the new time nodes in each
individual obtained from phase 1, using either Linear or Spline interpolation.
Create𝑁

𝑝2
− 𝑁
𝑝1
new different individuals with𝑁

𝑡2
time nodes, randomly.

{Phase 2} Perform MHGA with the constructed population and
𝑁
𝑡2
, 𝑁
𝑝2
, 𝑁
𝑖2
, 𝑁
𝑔2
, 𝑃
𝑚2

and 𝑠𝑞𝑝𝑚𝑎𝑥𝑖𝑡𝑒𝑟
2
.

Algorithm 2: The proposed algorithm.

(13), be the error of final state constraints, and 𝐽
∗ be the best

obtained solution among all implementations, or the exact
solution (when exists). Now the relative error of 𝐽, 𝐸

𝐽
, of the

algorithm can be defined as

𝐸
𝐽
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐽 − 𝐽
∗

𝐽
∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (19)

Tomore accurate study, we now define a new criterion, called
factor, to compare the algorithms as follows:

𝐾
𝜓
= 𝐸
𝐽
+ 𝜑
𝑓
. (20)

Note that 𝐾
𝜓
shows the summation of two important errors.

Thus, based on 𝐾
𝜓

we can study the behaviour of the
algorithms on the quality and feasibility of given solutions,
simultaneously.

To solve any NOCP described in the Appendix, we
must know the algorithm’s parameters including: MHGA’s
parameters; including 𝑁

𝑡
, 𝑁
𝑝
, 𝑁
𝑖
, 𝑁
𝑔
, 𝑃
𝑚
and 𝑠𝑞𝑝𝑚𝑎𝑥𝑖𝑡𝑒𝑟,

in both phases in Algorithm 2, and the problem’s parameters
including 𝜀, in (13), 𝑀

𝑖
, 𝑖 = 1, 2, 3, in (8), 𝑢left and 𝑢right, in

(7). To estimate the best value of the algorithm’s parameters,
we ran the proposed algorithm with different values of
parameters and then select the best. However, the sensitivity
of MHGA parameters are studied in the next section. In both
of phases of Algorithm 2, in MHGA, we let 𝑠𝑞𝑝𝑚𝑎𝑥𝑖𝑡𝑒𝑟

𝑖
= 4

and 𝑃
𝑚𝑖

= 0.8, for 𝑖 = 1, 2. Also, we consider 𝑁
𝑔1

= 𝑁
𝑔2
,

𝑁
𝑖1

= 𝑁
𝑖2
, 𝑁
𝑝1

= 9 and 𝑁
𝑝2

= 12. The other MHGA
parameters are given in the associated subsection and the
problem’s parameters in Table 2. For each NOCP, 12 different
runs were done and the best results are reported in Table 1,
which the best value of each column is seen in the bold.

The reported numerical results of the proposed algo-
rithm, for each NOCP, include the value of performance
index, 𝐽, the relative error of 𝐽,𝐸

𝐽
, defined in (19), the required

computational time, Time, the norm of final state constraints,
𝜑
𝑓
, defined in (13) and the factor, 𝐾

𝜓
, defined in (20).

The algorithm was implemented in Matlab R2011a envi-
ronment on a Notebook with Windows 7 Ultimate, CPU
2.53GHz and 4.00GB RAM. Also, to implement SQP in our
proposed algorithm, we used “fmincon” in Matlab when the
“Algorithm” was set to “SQP”. Moreover, we use composite
Simpson’s method [29] to approximate integrations.

Remark 1. We use the following abbreviations to show the
used interpolation method in our proposed algorithm:

(1) LI: linear interpolation.
(2) SI: spline interpolation.

For comparing the numerical results of the proposed
algorithm two subsections are considered, comparison with
some metaheuristic algorithms, in Section 5.1, and com-
parison with some numerical methods, in Section 5.2. We
give more details of these comparisons in the following
subsections.

5.1. Comparison with Metaheuristic Algorithms. The numeri-
cal results for the NOCPs numbers (1)–(3), in the Appendix,
are compared with a continuous GA, CGA, as a meta-
heuristic, proposed in [9], which gave better solutions than
shooting method and gradient algorithm, from the indirect
methods category [2, 30], and SUMT from the directmethods
category [26]. For NOCPs numbers (4) and (5), the results
are compared with another metaheuristic, which is a hybrid
improved PSO, called IPSO, proposed in [20].

5.1.1. VDP Problem [9]. The first NOCP in the Appendix is
VanDer Pol Problem, VDP, which has two state variables and
one control variable. VDPproblemhas a final state constraint,
which is 𝜓 = 𝑥

1
(𝑡
𝑓
) − 𝑥
2
(𝑡
𝑓
) + 1 = 0. The results of the

proposed algorithm with the MHGA’s parameters as 𝑁
𝑡1

=

31,𝑁
𝑡2
= 71,𝑁

𝑔
= 300 and𝑁

𝑖
= 200, are reported in Table 1.

FromTable 1, it is obvious that the numerical results of LI and
SI methods are more accurate than CGA, with less amount of
𝐾
𝜓
.

5.1.2. CRP Problem [9]. The second NOCP in the Appendix
is Chemical Reactor Problem, CRP, which has two state
variables and one control variable.The results of the proposed
algorithm, with the MHGA’s parameters as 𝑁

𝑡1
= 31, 𝑁

𝑡2
=

71, 𝑁
𝑔

= 300 and 𝑁
𝑖
= 200, are shown in the second

row of Table 1. CRP problem has two final state constraints,
𝜓 = [𝑥

1
, 𝑥
2
]
𝑇. Although, from Table 1, the norm of final state

constraints, 𝜑
𝑓
, for the CGA, equals 𝜑∗

𝑓
= 7.57 × 10

−10, is
less than 𝜑

𝑓
’s of LI and SI methods, which equals 1.15 × 10

−9

and 5.99 × 10
−9, respectively, but the performance index,
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Table 1: The best numerical results in 12 different runs of the SI and LI methods for NOCPs in the Appendix.

Problem Algorithm 𝐽 𝐸
𝐽

𝜑
𝑓

𝐾
𝜓

Time

VDP
CGA 1.7404 0.0912 2.67 × 10

−11

0.0912 501.28
LI 1.5949 0 1.08 × 10

−13 1.08 × 10−13 282.82
SI 1.5950 6.27 × 10

−5 9.99 × 10−14 6.27 × 10
−5 239.14

CRP
CGA 1.63 × 10

−2 0.2835 7.57 × 10−10 0.2835 501.28
LI 1.27 × 10−2 0 1.15 × 10

−9 1.15 × 10−9 171.94

SI 1.27 × 10−2 0 5.99 × 10
−9

5.99 × 10
−9

124.05

FFRP
CGA 83.63 1.3256 4.65 × 10

−3

1.3302 1413
LI 35.96 0 1.22 × 10

−5 1.22 × 10−5 1268.58

SI 35.99 8.34 × 10
−4 9.01 × 10−6 8.43 × 10

−4 1343.40

MSNIC
IPSO 0.1727 0.0165 — — 126.26
LI 0.1699 0 — — 138.82

SI 0.1700 5.89 × 10
−4 — — 138.68

CSTCR
IPSO 0.1355 0.2098 — — 31.34

LI 0.1120 0 — — 103.58

SI 0.1120 0 — — 106.73

No. 6
Bézier −5.3898 0.0251 — — NRa

LI −5.4309 0.0177 — — 138.38

SI −5.4309 0.0177 — — 107.34

Number 7
HPM 0.2353 0.1677 4.20 × 10

−6 0.1677 NR
LI 0.2015 0 2.35 × 10

−9

2.35 × 10
−9 213.92

SI 0.2015 0 2.82 × 10−10 2.82 × 10−10 206.96

Number 8

SQP 6.36 × 10
−6

2.20 × 10
9 — — NR

SUMT 5.15 × 10
−6

1.78 × 10
9 — — NR

LI 2.89 × 10−15 0 — — 72.82
SI 3.64 × 10

−15

0.2595 — — 68.68

Number 9

SQP 1.7950 0.0873 — — NR
SUMT 1.7980 0.0891 — — NR
LI 1.6509 0 — — 639.10
SI 1.6509 0 — — 595.0

Number 10

SQP 0.2163 0.3964 — — NR
SUMT 0.1703 0.0994 — — NR
LI 0.1549 0 — — 625.70

SI 0.1549 0 — — 676.62

Number 11

SQP 3.25 0.1648 0 0.1648 NR
SUMT 3.25 0.1648 0 0.1648 NR
LI 2.7901 0 1.62 × 10

−9

1.62 × 10
−9 147.78

SI 2.7901 0 5.86 × 10−10 5.86 × 10−10 219.46

Number 12

SQP −0.2490 4.0 × 10
−3 0 4.0 × 10

−3 NR
SUMT −0.2490 4.0 × 10

−3 0 4.0 × 10
−3 NR

LI −0.2500 0 2.85 × 10
−8

2.85 × 10
−8

547.71

SI −0.2500 0 3.90 × 10−10 3.90 × 10−10 545.48

Number 13

SQP 1.68 × 10
−2 0.1748 0 0.1748 NR

SUMT 1.67 × 10
−2 0.1678 0 0.1678 NR

LI 1.43 × 10−2 0 1.18 × 10−9 1.18 × 10−9 425.99
SI 1.44 × 10

−2

7.0 × 10
−3

6.32 × 10
−9

7.0 × 10
−3

490.27

Number 14

SQP 3.7220 0.0961 0 0.0961 NR
SUMT 3.7700 0.1103 0 0.1103 NR
LI 3.3956 0 7.86 × 10−7 7.86 × 10−7 1041.24
SI 3.3965 2.65 × 10

−4

2.76 × 10
−6

2.67 × 10
−4

1151.44
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Table 1: Continued.

Problem Algorithm 𝐽 𝐸
𝐽

𝜑
𝑓

𝐾
𝜓

Time

Number 15

SQP 1.03 × 10
−3 4.3368 0 4.3368 NR

SUMT 9.29 × 10
−4 3.8135 0 3.8135 NR

LI 1.93 × 10−4 0 8.10 × 10−10 8.10 × 10−10 333.54
SI 1.94 × 10

−4

5.20 × 10
−3

1.64 × 10
−9

5.20 × 10
−3

340.14

Number 16

SQP 2.2120 0.0753 0 0.0753 NR
SUMT 2.2080 0.0734 0 0.0734 NR
LI 2.0571 0 3.94 × 10

−12

3.94 × 10
−12

469.82

SI 2.0571 0 5.60 × 10−13 5.60 × 10−13 704.23

Number 17

SQP −8.8690 2.25 × 10
−5 0 2.25 × 10

−5 NR
SUMT −8.8690 2.25 × 10

−5 0 2.25 × 10
−5 NR

LI −8.8692 0 1.45 × 10−10 1.45 × 10−10 321.83
SI −8.8692 0 2.79 × 10

−10

2.79 × 10
−10

309.59

Number 18

SQP 0.0368 0.1288 — — NR
SUMT 0.0386 0.1840 — — NR
LI 0.0326 0 — — 551.63

SI 0.0326 0 — — 606.71

Number 19

SQP 0.3439 4.9293 0 4.9293 NR
SUMT 0.3428 4.9103 0 4.9103 NR
LI 0.0689 0.1879 4.10 × 10

−3

0.1919 1645.09

SI 0.0580 0 4.05 × 10−4 4.05 × 10−4 1787.83

Number 20

SQP 77.52 1.2554 0 1.2554 NR
SUMT 76.83 1.2353 0 1.2353 NR
LI 34.3716 2.32 × 10

−5

2.25 × 10
−4

2.48 × 10
−4 815.19

SI 34.3708 0 1.57 × 10−4 1.57 × 10−4 804.20

a
Not reported.

the relative error of 𝐽 and the factor of the proposed algorithm
is better, and so the proposed algorithm is more robust than
CGA.

5.1.3. FFRP Problem [9]. The third NOCP in the Appendix
is Free Floating Robot Problem, FFRP, which has six state
variables and four control variables. FFRP has been solved
by CGA and the proposed algorithm, with the MHGA’s
parameters as 𝑁

𝑡1
= 31, 𝑁

𝑡2
= 71, 𝑁

𝑔
= 300 and

𝑁
𝑖

= 200. This problem has six final state constraints,
𝜓 = [𝑥

1
− 4, 𝑥

2
, 𝑥
3
− 4, 𝑥

4
, 𝑥
5
, 𝑥
6
]
𝑇. The numerical results

are shown in Table 1. The values of 𝐽, 𝐸
𝐽
, 𝜑
𝑓
and 𝐾

𝜓
for LI

and SI methods, separately, are less than CGA. Therefore,
the proposed algorithm can achieve much better quality
solutions than the CGA, with reasonable computational time.

5.1.4. MSNIC Problem [20]. For the forth NOCP in the
Appendix, which is a Mathematical System with Nonlinear
Inequality Constraint, NSNIC, the numerical results are com-
pared with IPSO. MSNIC contains an inequality constraint,
𝑑(𝑥, 𝑡) = 𝑥

2
(𝑡) + 0.5 − 8(𝑡 − 0.5)

2

≤ 0. The problem solved
by several numerical methods as [24, 31]. From [20], IPSO
method could achieved more accurate results than men-
tioned numericalmethods. Also,MSNIC can be solved by the
proposed algorithm, with the MHGA’s parameters as 𝑁

𝑡1
=

31, 𝑁
𝑡2

= 91, 𝑁
𝑔
= 100 and 𝑁

𝑖
= 60. From the forth row

of Table 1, the absolute error of 𝐽, 𝐸
𝐽
, for LI and SI methods

equal 0 and 5.89 × 10
−4, respectively, which are less than

IPSO’s, 0.0165.
Subplots (a) and (b) in Figure 2, show the graphs of

the convergence rate for the performance index and the
inequality constraint, respect to the number of iteration,
respectively.

5.1.5. CSTCR Problem [20]. The fifth NOCP in the Appendix
is a model of a nonlinear Continuous Stirred-tank Chemical
Reactor, CSTCR. It has two state variables 𝑥

1
(𝑡) and 𝑥

2
(𝑡),

as the deviation from the steady-state temperature and con-
centration, and one control variable 𝑢(𝑡), which represent the
effect of the flow rate of cooling fluid on chemical reactor.The
objective is to maintain the temperature and concentration
close to steady-state values without expending large amount
of control effort. Also, this is a benchmark problem in the
handbook of test problems in local and global optimization
[32], which is a multimodal optimal control problem [33].
It involves two different local minima. The values of the
performance indexes, for these solutions, equal 0.244 and
0.133. Similarly to the MSNIC, the numerical results of the
proposed algorithm, with the MHGA’s parameters as 𝑁

𝑡1
=

31, 𝑁
𝑡2

= 51, 𝑁
𝑔
= 100, and 𝑁

𝑖
= 50, are compared with

IPSO. From Table 1, the performance index, 𝐽, for LI and SI
methods is equal to 𝐽

∗

= 0.1120 which is less than IPSOs
0.1355.
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Table 2: The problem parameters for NOCPs in the Appendix.

Parameters Problem number
1 2 3 4 5 6 7 8 9 10

𝑢left −0.5 −1.5 −15 −20 0 −2 0 −2 −1 −20

𝑢right 2 2 10 20 5 2 1 2 1 20
𝑀
𝑖

10
3

10
2 70 1 — 1 — 10

2 — 10
2

𝜀 10
−12

10
−10

10
−3 — — — — — — 10

−9

Parameters Problem no.
11 12 13 14 15 16 17 18 19 20

𝑢left −5 −1 −2 −𝜋 −1 −3 −30 −1 −15 −15

𝑢right 5 1 2 𝜋 1 3 30 1 10 10
𝑀
𝑖

10 10
2 — 10

2

10
2

10
2 — 10 70 10

−3

𝜀 10
−9

10
−11

10
−11 — 10

−10

10
−10

10
−10 — 10

−3

10
−4
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Figure 2: Graphical results of MSNIC problem using SI method: (a) convergence rate of the performance index and (b) the inequality
constraint, 𝑑(𝑥, 𝑡) ≤ 0, in respect to the number of iterations.

5.2. Comparison with Numerical Methods. For NOCPs num-
bers (6)–(20), the comparison are done with some numerical
methods. Unfortunately, for these methods, usually, the final
state constraints and the required computational time are
not reported, which are shown with NR in Table 1, but these
values are reported for both LI and SI methods in Table 1.
For all NOCPs, in this section, the MHGA’s parameters are
considered as 𝑁

𝑡1
= 31, 𝑁

𝑡2
= 51, 𝑁

𝑔
= 100, 𝑁

𝑖
= 50, with

the problem parameters in Table 2.

5.2.1. Compared with Bézier [34]. The NOCP number (6), in
the Appendix, has exact solution, which has an inequality
constraint as 𝑑(𝑥

1
, 𝑡) = −6 − 𝑥

1
(𝑡) ≤ 0. The exact value of

performance index equals 𝐽∗ = −5.5285 [35]. This problem
has been solved by a numerical method proposed in [34],
called Bézier. From sixth row of Table 1, the absolute error

of the LI and SI methods equal 0.0177, which is less than
Bézier’s, 0.0251.

Figure 3, shows the graphs of the convergence rate of the
performance index, subplot (a), and inequality constraint,
subplot (b), respect to the number of iteration, using SI
method.

5.2.2. Compared with HPM [36]. For NOCP number (7) in
the Appendix, which is a constraint nonlinear model, the
numerical results of the proposed algorithm are compared
with HPM, proposed in [36]. This NOCP has a final state
constraint as 𝜓 = 𝑥 − 0.5 = 0. From [36], the norm of
final state constraint for HPM equals 4.2×10−6, however, this
criterion for the LI and SI methods equals 2.35 × 10

−9 and
𝜑
∗

𝑓
= 2.82 × 10

−10, respectively. From Table 1, it is obvious
that the obtained values of the performance index, the norm
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Figure 3: Graphical results for NOCP number (6) using SI method: (a) convergence rate for the performance index and (b) the inequality
constraint, 𝑑(𝑥

1
, 𝑡) ≤ 0, in respect to the number of iterations.

of final state constraint and 𝐾
𝜓
for the SI method are more

accurate than LI than HPMmethods.

5.2.3. Compared with SQP and SUMT [26]. For the NOCPs
numbers (8)–(20), in the Appendix, the numerical results
of LI and SI methods are compared with two numerical
methods contain: SQP and SUMT, proposed in [26]. Among
these NOCPs, only two problems numbers (8) and (18) are
unconstrained, and the others have at least one constraint,
final state constraint or inequality constraint. All of these
NOCPs solved by the proposed algorithm, with the problem
parameters in Table 2, and their results are summarized in
Table 1. Because the final state constraints, in these methods,
are not reported, we let 𝜑

𝑓
= 0 to calculate the factor𝐾

𝜓
.

Figures 4–16 show the graphical results of NOCPs
numbers (8)–(20) in the Appendix, using SI method. For
unconstrained NOCPs, numbers (8) and (18), only the graph
of convergent rate of performance index is shown; see Figures
4 and 14. For constraint NOCPs and NOCPs numbers
(11)–(17) and numbers (19)-(20), with final state constraint,
the graphs of convergent rates of performance index and the
error of final state constraint are shown; see Figures 7–13 and
15-16. For the constraint NOCPs with inequality constraints,
NOCPs numbers (9) and (10), the graphs of convergent rate
of performance index and inequality constraint are shown;
see Figures 5 and 6.

Table 1 shows that the proposed algorithm, LI and SI
methods, was 100 percent successful in point of views the
performance index, 𝐽, and the factor,𝐾

𝜓
, numerically. So, the

proposed algorithm provides robust solutions with respect to
the other mentioned, numerical or metaheuristic, methods.
To compare 𝐽 in LI and SI methods, in 35 percent of NOCPs,
LI is more accurate than SI, in 10 percent SI is more accurate
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Figure 4: Convergence rate for the performance index of SI method
for NOCP number (8).

than LI and in 55 percent are same. In point of view the final
conditions, 65 percent of NOCPs in the Appendix have final
state constraints. In all of them 𝜑

𝑓
in the proposed algorithm

is improved, except CRP problem, however the factor of the
proposed algorithm is the best, yet. In 54 percent of these
NOCPs, LI is better performance and in 46 percent SI is
better. Also, in point of the running time, Time, LI is same as
SI, that is, in 50 percent of NOCPs LI and in 50 percent SI is
better than another. So, the proposed algorithmcould provide
very suitable solutions, in a reasonable computational time.
Also, for more accurate comparison of LI and SI methods a
statistical approach will done in next section.

To compare with CGA, the mean of relative error of 𝐽, 𝐸
𝐽
,

for CGA, LI and SImethods, inNOCPs (1)–(3), equal 0.5668,
0 and 2.98 × 10

−4, respectively. Also the mean for the error
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Figure 5: (a) Convergence rate for the performance index and (b) the inequality constraint of SI method, for NOCP number (9).
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Figure 6: (a) Convergence rate of the performance index and (b) the inequality constraint for SI method, for NOCP number (10).

of the final state constraints, 𝜑
𝑓
, are 1.6 × 10

−3, 4.07 × 10
−6

and 3.01 × 10
−6, respectively, and for 𝐾

𝜓
, these values equal

0.5883, 4.07 × 10
−6 and 3.02 × 10

−4. Thus, we can say that the
feasibility of the solutions given by the proposed algorithm
and CGA are competitive.

From Table 1, to compare with numerical methods, SQP
and SUMT, in NOCPs (8)–(20), the mean of 𝐸

𝐽
for LI, SI,

SQP and SUMT equals 0.0145, 0.0209, 1.69 × 10
8 and 1.36 ×

10
8, respectively. Also, the mean for the error of final state

constraints, for these NOCPs, equal 3.34 × 10
−4, 4.41 × 10

−5,
0 and 0, respectively. For 𝐾

𝜓
, these values are 0.0213, 0.0014,

1.2263 and 1.1644. Therefore, the performance index, 𝐽, and
the factor, 𝐾

𝜓
, for the LI and SI methods are more accurate

than SQP and SUMT. So the proposed algorithm gave more
better solution in comparison with the numerical methods.
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Figure 7: (a) Convergence rates of the performance index and (b) the error of final state constraint for SI method, for NOCP number (11).
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Figure 8: (a) Convergence rates of the performance index and (b) the error of final state constraint for SI method, for NOCP number (12).

Therefore, based on this numerical study,we can conclude
that the proposed algorithm outperform well-known numer-
ical method. Since, the algorithms were not implemented
on the same PC, the computational times of them are not
competitive. Therefore, we did not give the computational
times in bold in Table 1.

6. Sensitivity Analysis and
Comparing LI and SI

In this section, two statistical analysis, based on the one-
way analysis of variance (ANOVA), used for investigating
the sensitivity of MHGA parameters, and Mann-Whitney,
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Figure 9: (a) Convergence rates of the performance index and (b) the error of final state constraint for SI method, for NOCP number (13).
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Figure 10: (a) Convergence rates of the performance index and (b) the error of final state constraint for SI method, for NOCP number (14).

applied comparing LI and SI methods, are done, by the
statistical software IBM SPSS version 21.

6.1. Sensitivity Analysis. In order to survey the sensitivity
of the MHGA parameters from the proposed algorithm,
the VDP problem is selected, for example. The influence
of these parameters are investigated for this NOCP on

the dependent outputs consist of the performance index,
𝐽, the relative error of 𝐽, 𝐸

𝐽
, the required computational

time, Time, the error of final state constraints, 𝜑
𝑓
and the

factor, 𝐾
𝜓
. The independent parameters are consist of the

number of time nodes in both two phases, 𝑁
𝑡1
and 𝑁

𝑡2
, the

size of population in both two phases, 𝑁
𝑝1

and 𝑁
𝑝2
, the

maximum number of generations without improvement,𝑁
𝑖
,
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Figure 11: (a) Convergence rates of the performance index and (b) the error of final state constraint for SI method, for NOCP number (15).
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Figure 12: (a) Convergence rates of the performance index and (b) the error of final state constraint for SI method, for NOCP number (16).

and the maximum number of generations, 𝑁
𝑔
. Because the

mutation implementation probability,𝑃
𝑚
, has a less influence

in numerical results, it is not considered. Also 𝑠𝑞𝑝𝑚𝑎𝑥𝑖𝑡𝑒𝑟 is
changed in each iteration of the proposed algorithm, so it is
not considered too.

At first, we selected at least four constant value for
each of parameters and then in each pose, 35 different
runs were made, independently. The statistical analysis is
done based on ANOVA. The descriptive statistics, which
contains the number of different runs (𝑁), the mean of each
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Figure 13: (a) Convergence rates of the performance index and (b) the error of final state constraint for SI method, for NOCP number (17).
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Figure 14: Convergence rate for the performance index of SI
method for NOCP numbers (18).

output in𝑁 different runs, (Mean), standard deviation, (S.d),
maximum, (Max) and minimum, (Min), of each output,
could be achieved. Among of the MHGA parameters, we
present the descriptive statistics of the ANOVA, only for the
𝑁
𝑡1
parameter, which is reported in Table 3.
Table 4, summarized the statistical data, contain the test

statistics (𝐹) and 𝑃-values, of ANOVA tests. Sensitivity
analysis for each parameter, separately, are done based on this
table, as follows.

𝑁
𝑡1
: From Table 4, the significant level, or 𝑃-value, for
𝐾
𝜓

is equal to 0.279, which is greater than 0.05.
So, from ANOVA, 𝑁

𝑡1
parameter has no significant

effect on the factor 𝐾
𝜓
. With similar analysis, this

parameter has no effect on the other outputs, except

required computational time, Time, because its 𝑃-
value is equal to 0, which is less than 0.05, that is, this
output sensitive to the parameter𝑁

𝑡1
.

𝑁
𝑡2
: From the second row of Table 4, the outputs 𝐽, 𝐸

𝐽
,𝐾
𝜓

and Time are sensitive to the parameter 𝑁
𝑡2
, and the

only output 𝜑
𝑓
is independent.

𝑁
𝑝1
: From the third row of Table 4, only the computational
required time, Time, is sensitive, because the its 𝑃-
value is equal to 0.006, which is less than 0.05, and the
other outputs, contain 𝐽, 𝐸

𝐽
, 𝜑
𝑓
,𝐾
𝜓
, are independent.

𝑁
𝑝2
: From the forth row of Table 4, the output 𝜑

𝑓
is

independent respect to the parameter 𝑁
𝑝2
, but other

outputs, contain 𝐽, 𝐸
𝐽
, Time, 𝐾

𝜙
are sensitive to this

parameter.
𝑁
𝑔
: From the fifth row of Table 4, the outputs 𝐽, 𝐸

𝐽
and

𝐾
𝜓
are independent to the parameter 𝑁

𝑔
, and other

outputs, contain 𝜑
𝑓
and Time are sensitive respect to

this parameter.
𝑁
𝑖
: The sensitivity analysis is similar to𝑁

𝑝1
.

From above cases, it is obvious that all parameters can
be effect on the required computational time, except 𝑁

𝑔
.

Moreover, intuitions shows the normof final state constraints,
𝜑
𝑓
is independent output with respect to all parameters, that

is, any of the parameters could not effect on this output and it
is not sensitive with respect to any of the MHGA parameters.

6.2. Comparison of LI and SI. To compare the efficiency of
the LI and SI methods, for NOCPs in the Appendix, we
used the Mann-Whitney nonparametric statistical test [37].
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Figure 15: (a) Convergence rates of the performance index and (b) the error of final state constraint for SI method, for NOCP number (19).
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Figure 16: (a) Convergence rates of the performance index and (b) the error of final state constraint for SI method, for NOCP number (20).

Using the nonparametric statistical tests for comparing the
performance of several algorithms presented in [38]. For
this purpose, At first, 15 different runs, for each of NOCP
were made. Table 5, shows the mean of numerical results,
separately. Here, we apply the fixMHGAparameters as𝑁

𝑝1
=

9,𝑁
𝑝2

= 12,𝑁
𝑡1
= 31,𝑁

𝑡2
= 91,𝑁

𝑔
= 100 and𝑁

𝑖
= 50 with

the previous problem parameters in Table 2. Comparison

criterions contain: 𝐽, 𝜑
𝑓
, 𝐾
𝜓
and Time. The results of Mann-

Whitney test are shown in Tables 6–9. From Table 6, since
𝑍 = 0 > 𝑍

0.01
= −2.34, then the average relative error of

the LI and SI methods are same with the significant level 0.01.
In other words, with probability 99%, we can say that LI and
SI methods have same effectiveness form the perspective of
error for 𝐽. Similarly, the results of Tables 7–9 indicate that LI



Mathematical Problems in Engineering 17

Table 3: Descriptive statistics for the sensitivity analysis of𝑁
𝑡1
, for VDP problem.

Output 𝑁
𝑡1

𝑁 Mean S.d Min Max

𝐽

11 35 1.5333 0.0069 1.5286 1.5598
21 35 1.5328 0.0097 1.5285 1.5849
31 35 1.5329 0.0076 1.5285 1.5699
41 35 1.5455 0.0607 1.5285 1.8449

Total 140 1.5357 0.0294 1.5285 1.8449

𝜑
𝑓

11 35 2.81 × 10
−8

9.52 × 10
−8

1 × 10
−12

4.52 × 10
−7

21 35 4.67 × 10
−8

2.35 × 10
−7

1 × 10
−12

1.41 × 10
−6

31 35 1.63 × 10
−8

4.91 × 10
−8

1 × 10
−12

2.21 × 10
−7

41 35 8.17 × 10
−8

2.85 × 10
−7

1 × 10
−12

1.26 × 10
−6

Total 140 4.26 × 10−8 1.91 × 10−7 1 × 10−12 1.41 × 10−6

Time

11 35 89.7838 27.2081 45.6614 155.4394
21 35 109.8147 46.0264 60.4192 284.0310
31 35 116.3591 30.0227 77.2673 179.5103
41 35 144.8290 39.3091 81.0425 284.9514

Total 140 114.2131 41.0891 45.6615 284.9514

𝐸
𝐽

11 35 0.0031 0.0045 0 0.0204
21 35 0.0028 0.0064 0 0.0369
31 35 0.0029 0.0050 0 0.0271
41 35 0.0111 0.0397 0 0.2070

Total 140 0.0047 0.0192 0 0.2070

𝐾
𝜓

11 35 0.0031 0.0045 4.75 × 10
−9

0.0204

21 35 0.0027 0.0064 5.50 × 10
−10

0.0369

31 35 0.0029 0.0050 1.54 × 10
−13

0.0271

41 35 0.0111 0.0397 1.93 × 10
−10

0.2070

Total 140 0.0047 0.0192 1.54 × 10−13 0.2070

Table 4: Summary statistical data of ANOVA test for the parameters,𝑁
𝑡1
, 𝑁
𝑡2
, 𝑁
𝑝1
, 𝑁
𝑝2
, 𝑁
𝑔
, 𝑁
𝑖
.

Parameters 𝐽 𝐸
𝐽

𝜑
𝑓

Time 𝐾
𝜓

Test statistic (𝐹)

𝑁
𝑡1

1.294 1.296 0.624 10.79 1.296
𝑁
𝑡2

1105.72 3.93 0.868 59.39 3.93
𝑁
𝑝1

1.945 1.835 1.271 4.317 1.835
𝑁
𝑝2

2.740 2.478 1.011 23.02 2.478
𝑁
𝑔

3.541 3.591 0.491 0.890 3.591
𝑁
𝑖

0.495 0.309 0.301 5.849 1.046

𝑃 value

𝑁
𝑡1

0.280 0.279 0.601 0 0.279
𝑁
𝑡2

0 0.005 0.489 0 0.005
𝑁
𝑝1

0.125 0.143 0.286 0.006 0.143
𝑁
𝑝2

0.021 0.034 0.413 0 0.034
𝑁
𝑔

0.009 0.008 0.743 0.472 0.008
𝑁
𝑖

0.739 0.819 0.877 0 0.386

and SI methods, from the perspective of errors for 𝜑
𝑓
, Time,

and𝐾
𝜓
, have same behaviour.

7. The Impact of SQP

In this section, we investigation the impact of the SQP, on the
proposed algorithm. For this purpose, we remove the SQP
from Algorithm 2, as without SQP algorithm. For comparing
the numerical results with the previous results, the required

running time in each NOCP is considered fixed, which is the
maximum of running time in 12 different runs, were done in
Section 5. Also, the all of the parameters for each problemwas
set as same as Section 5. The numerical results of the without
SQP algorithm is summarized in Table 10. By comparing the
results of Tables 10 and 1, it is obvious that, for all NOCPs
in the Appendix, the obtained values of the performance
index and the norm of final state constraint for the proposed
algorithm (Algorithm 2), are more accurate than the without
SQP algorithm.
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Table 5: The mean of numerical results of 15 different runs for NOCPs in the Appendix, using LI and SI methods.

Problem LI SI
𝐽 𝜑

𝑓
𝐾
𝜓

Time 𝐽 𝜑
𝑓

𝐾
𝜓

Time
VDP 1.5977 1.57 × 10

−9

1.70 × 10
−3 177.20 1.6002 6.67 × 10

−8

3.26 × 10
−3 157.57

CRP 0.0126 3.07 × 10
−8

3.07 × 10
−8 197.14 0.0119 1.61 × 10

−8

1.61 × 10
−8 195.32

FFPP 47.74 8.05 × 10
−5 0.3277 1332.80 53.51 5.92 × 10

−5 0.4868 1379.89
MSNIC 0.1702 — — 136.78 0.1703 — — 140.92
CSTCR 0.1120 — — 173.85 0.1120 — — 176.06
Number 6 −5.4307 — — 105.41 −5.4308 — — 103.72
Number 7 0.2015 3.26 × 10

−9

6.95 × 10
−6 208.07 0.2020 3.13 × 10

−9

6.62 × 10
−6 210.19

Number 8 6.30 × 10
−15 — — 63.76 1.24 × 10

−14 — — 58.37
Number 9 1.6512 — — 592.39 1.6512 — — 581.25
Number 10 0.1550 — — 631.53 0.1550 — — 655.97
Number 11 2.9701 2.70 × 10

−9

2.72 × 10
−7 228.60 2.9701 3.37 × 10

−9

8.11 × 10
−7 232.76

Number 12 −0.2499 2.01 × 10
−8

4.64 × 10
−5 547.18 −0.2499 1.15 × 10

−9

8.27 × 10
−5 527.65

Number 13 0.0147 1.15 × 10
−8

0.0252 577.97 0.0151 1.39 × 10
−8

0.0472 660.98
Number 14 3.4761 6.72 × 10

−6

0.0237 1045.85 3.4290 7.57 × 10
−6

9.50 × 10
−3 1087.67

Number 15 1.95 × 10
−4

1.11 × 10
−8

5.69 × 10
−3 363 1.94 × 10

−4

7.04 × 10
−9

4.86 × 10
−3 365

Number 16 2.0571 1.66 × 10
−10

1.66 × 10
−10 543.91 2.0571 1.15 × 10

−10

1.15 × 10
−10 544.31

Number 17 −8.8692 8.03 × 10
−8

8.03 × 10
−8 227.44 −8.8692 6.61 × 10

−8

6.61 × 10
−8 232.54

Number 18 0.0326 — — 659.57 0.0326 — — 708.97
Number 19 0.11588 6.55 × 10

−4 0.6828 1618.13 0.1091 8.84 × 10
−4 0.8808 1599.90

Number 20 52.42 0.0176 0.5429 841.65 44.64 4.53 × 10
−4 0.3765 868.91

Table 6: Results of Mann-Whitney test on relative errors of the pair (LI, SI) for 𝐽.

Method Mean rank Sum of ranks Test statistics Value
LI 20.50 410.0 Mann-Whitney 𝑈 200
SI 20.50 410.0 Wilcoxon𝑊 410
— — — 𝑍 0

Table 7: Results of Mann-Whitney test on relative errors of the pair (LI, SI) for 𝜑
𝑓
.

Method Mean rank Sum of ranks Test statistics Value
LI 13.62 177 Mann-Whitney 𝑈 83
SI 13.38 174 Wilcoxon𝑊 174
— — — 𝑍 −0.077

Table 8: Results of Mann-Whitney test on relative errors of the pair (LI, SI) for Time.

Method Mean rank Sum of ranks Test statistics Value
LI 20.25 405.0 Mann-Whitney 𝑈 195
SI 20.75 415.0 Wilcoxon𝑊 405
— — — 𝑍 −0.135

Table 9: Results of Mann-Whitney test on relative errors of the pair (LI, SI) for𝐾
𝜓
.

Method Mean rank Sum of ranks Test statistics Value
LI 13.54 176.0 Mann-Whitney 𝑈 84
SI 13.46 175.0 Wilcoxon𝑊 175
— — — 𝑍 −0.026
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Table 10: The numerical results of the without SQP algorithm, for NOCPs in the Appendix.

Problem no.
1 2 3 4 5 6 7 8 9 10

𝐽 1.7296 0.0174 213.80 0.1702 0.1130 −5.2489 0.2390 1.69 × 10
−1 1.8606 0.2048

𝜙
𝑓

3.30 × 10
−9

1.35 × 10
−5 1.1445 — — — 7.58 × 10

−9 — — —
Problem no.

11 12 13 14 15 16 17 18 19 20
𝐽 4.8816 −0.1273 0.0153 4.5727 9.79 × 10

−4 2.3182 −9.0882 0.0336 25.13 202.74
𝜙
𝑓

1.67 × 10
−5

4.68 × 10
−9 0.0161 4.33 × 10

−4

5.94 × 10
−3

1.56 × 10
−5 1.64 — 17.06 2.5283

8. Conclusions

Here, a two-phase algorithm was proposed for solving
bounded continuous-time NOCPs. In each phase of the
algorithm, a MHGA was applied, which performed a local
search on offsprings. In first phase, a random initial popu-
lation of control input values in time nodes was constructed.
Next, MHGA started with this population. After phase 1, to
achieve more accurate solutions, the number of time nodes
was increased. The values of the associated new control
inputs were estimated by Linear interpolation (LI) or Spline
interpolation (SI), using the curves obtained from phase 1. In
addition, to maintain the diversity in the population, some
additional individuals were added randomly. Next, in the
second phase, MHGA restarted with the new population
constructed by above procedure and tried to improve the
obtained solutions at the end of phase 1. We implemented
our proposed algorithm on 20 well-known benchmark and
real world problems; then the results were compared with
some recently proposed algorithms. Moreover, two statistical
approaches were considered for the comparison of the LI and
SI methods and investigation of sensitivity analysis for the
MHGA parameters.

Appendix

Test Problems

The following problems are presented using notation given in
(1)–(6).

(1) (VDP) [9] 𝑔 = (1/2)(𝑥
2

1
+ 𝑥
2

2
+ 𝑢
2

), 𝑡
0
= 0, 𝑡
𝑓
= 5, 𝑓 =

[𝑥
2
, −𝑥
2
+(1−𝑥

2

1
)𝑥
2
+𝑢]
𝑇, 𝑥
0
= [1, 0]

𝑇,𝜓 = 𝑥
1
−𝑥
2
+1.

(2) (CRP) [9] 𝑔 = (1/2)(𝑥
2

1
+𝑥
2

2
+0.1𝑢

2

), 𝑡
0
= 0, 𝑡
𝑓
= 0.78,

𝑓 = [𝑥
1
−2(𝑥
1
+0.25)+(𝑥

2
+0.5) exp(25𝑥

1
/(𝑥
1
+2))−

(𝑥
1
+0.25)𝑢, 0.5−𝑥

2
−(𝑥
2
+0.5) exp(25𝑥

1
/(𝑥
1
+2))]
𝑇,

𝑥
0
= [0.05, 0]

𝑇, 𝜓 = [𝑥
1
, 𝑥
2
]
𝑇.

(3) (FFRP) [9] 𝑔 = (1/2)(𝑢
2

1
+ 𝑢
2

2
+ 𝑢
2

3
+ 𝑢
2

4
), 𝑡
0

=

0, 𝑡
𝑓

= 5, 𝑓 = [𝑥
2
, (1/10)((𝑢

1
+ 𝑢
2
) cos𝑥

5
−

(𝑢
2
+ 𝑢
4
) sin𝑥

5
), 𝑥
4
, (1/10)((𝑢

1
+ 𝑢
3
) sin𝑥

5
+ (𝑢
2
+

𝑢
4
) cos𝑥

5
), 𝑥
6
, (5/12)((𝑢

1
+ 𝑢
3
) − (𝑢

2
+ 𝑢
4
))]
𝑇, 𝑥
0
=

[0, 0, 0, 0, 0, 0]
𝑇, 𝜓 = [𝑥

1
− 4, 𝑥
2
, 𝑥
3
− 4, 𝑥
4
, 𝑥
5
, 𝑥
6
]
𝑇.

(4) (MSNIC) [20] 𝜙 = 𝑥
3
, 𝑡
0
= 0, 𝑡
𝑓
= 1, 𝑓 = [𝑥

2
, −𝑥
2
+

𝑢, 𝑥
2

1
+ 𝑥
2

2
+ 0.005𝑢

2

]
𝑇, 𝑑 = [−(𝑢 − 20)(𝑢 + 20), 𝑥

2
+

0.5 − 8(𝑡 − 0.5)
2

]
𝑇, 𝑥
0
= [0, −1, 0]

𝑇.

(5) (CSTCR) [20] 𝑔 = 𝑥
2

1
+ 𝑥
2

2
+ 0.1𝑢

2, 𝑡
0
= 0, 𝑡
𝑓
= 0.78,

𝑓 = [−(2 + 𝑢)(𝑥
1
+ 0.25) + (𝑥

2
+ 0.5) exp(25𝑥

1
/(𝑥
1
+

2)), 0.5 − 𝑥
2
− (𝑥
2
+ 0.5) exp(25𝑥

1
/(𝑥
1
+ 2))]

𝑇, 𝑥
0
=

[0.09, 0.09]
𝑇.

(6) [34] 𝑔 = 2𝑥
1
, 𝑡
0
= 0, 𝑡
𝑓
= 3, 𝑓 = [𝑥

2
, 𝑢]
𝑇, 𝑑 = [−(2 +

𝑢)(2 − 𝑢), −(6 + 𝑥
1
)]
𝑇, 𝑥
0
= [2, 0]

𝑇.
(7) [36] 𝑔 = 𝑢

2, 𝑡
0
= 0, 𝑡

𝑓
= 1, 𝑓 = (1/2)𝑥

2 sin𝑥 + 𝑢,
𝑥
0
= 0, 𝜓 = 𝑥 − 0.5.

(8) [26] 𝑔 = 𝑥
2cos2𝑢, 𝑡

0
= 0, 𝑡
𝑓
= 𝜋, 𝑓 = sin(𝑢/2), 𝑥

0
=

𝜋/2.
(9) [26] 𝑔 = (1/2)(𝑥

2

1
+ 𝑥
2

2
+ 𝑢
2

), 𝑡
0
= 0, 𝑡

𝑓
= 5, 𝑓 =

[𝑥
2
, −𝑥
1
+ (1 − 𝑥

2

1
)𝑥
2
+ 𝑢]
𝑇, 𝑑 = −(𝑥

2
+ 0.25), 𝑥

0
=

[1, 0]
𝑇.

(10) [26] 𝑔 = 𝑥
2

1
+ 𝑥
2

2
+ 0.005𝑢

2

, 𝑡
0
= 0, 𝑡

𝑓
= 1, 𝑓 =

[𝑥
2
, −𝑥
2
+𝑢]
𝑇

, 𝑑 = [−(20 + 𝑢)(20 − 𝑢), −(8(𝑡 − 0.5)(𝑡 −

0.5) − 0.5 − 𝑥
2
)]
𝑇

, 𝑥
0
= [0, −1]

𝑇.
(11) [26] 𝑔 = (1/2)𝑢

2, 𝑡
0
= 0, 𝑡

𝑓
= 2, 𝑓 = [𝑥

2
, 𝑢]
𝑇, 𝑥
0
=

[1, 1]
𝑇, 𝜓 = [𝑥

1
, 𝑥
2
]
𝑇.

(12) [26] 𝑔 = −𝑥
2
, 𝑡
0
= 0, 𝑡

𝑓
= 1, 𝑓 = [𝑥

2
, 𝑢]
𝑇, 𝑑 =

−(1 − 𝑢)(1 + 𝑢), 𝑥
0
= [0, 0]

𝑇, 𝜓 = 𝑥
2
.

(13) [26] 𝑔 = (1/2)(𝑥
2

1
+ 𝑥
2

2
+ 0.1𝑢

2

), 𝑡
0
= 0, 𝑡

𝑓
= 0.78,

𝑓 = [−2(𝑥
1
+ 0.25) + (𝑥

2
+ 0.5) exp(25𝑥

1
/(𝑥
1
+ 2)) −

(𝑥
1
+0.25)𝑢, 0.5−𝑥

2
−(𝑥
2
+0.5) exp(25𝑥

1
/(𝑥
1
+2))]
𝑇,

𝑥
0
= [0.05, 0]

𝑇, 𝜓 = [𝑥
1
, 𝑥
2
]
𝑇.

(14) [26] 𝑔 = (1/2)𝑢
2, 𝑡
0
= 0, 𝑡

𝑓
= 10, 𝑓 = [cos 𝑢 −

𝑥
2
, sin 𝑢]𝑇, 𝑑 = −(𝜋 + 𝑢)(𝜋 − 𝑢), 𝑥

0
= [3.66, −1.86]

𝑇,
𝜓 = [𝑥

1
, 𝑥
2
]
𝑇.

(15) [26]𝑔 = (1/2)(𝑥
2

1
+𝑥
2

2
), 𝑡
0
= 0, 𝑡
𝑓
= 0.78,𝑓 = [−2(𝑥

1
+

0.25)+(𝑥
2
+0.5) exp(25𝑥

1
/(𝑥
1
+2))−(𝑥

1
+0.25)𝑢, 0.5−

𝑥
2
−(𝑥
2
+0.5) exp(25𝑥

1
/(𝑥
1
+2))]
𝑇, 𝑑 = −(1−𝑢)(1+𝑢),

𝑥
0
= [0.05, 0]

𝑇, 𝜓 = [𝑥
1
, 𝑥
2
]
𝑇.

(16) [26] 𝜙 = 𝑥
3
, 𝑡
0
= 0, 𝑡

𝑓
= 1, 𝑓 = [𝑥

2
, 𝑢, (1/2)𝑢

2

]
𝑇,

𝑑 = 𝑥
1
− 1.9, 𝑥

0
= [0, 0, 0]

𝑇, 𝜓 = [𝑥
1
, 𝑥
2
+ 1]
𝑇.

(17) [26] 𝜙 = −𝑥
3
, 𝑡
0
= 0, 𝑡

𝑓
= 5, 𝑓 = [𝑥

2
, −2 + 𝑢/𝑥

3
,

−0.01𝑢]
𝑇, 𝑑 = −(30 − 𝑢)(30 + 𝑢), 𝑥

0
= [10, −2, 10]

𝑇,
𝜓 = [𝑥

1
, 𝑥
2
]
𝑇.

(18) [26] 𝜙 = (𝑥
1
−1)
2

+𝑥
2

2
+𝑥
2

3
, 𝑔 = (1/2)𝑢

2, 𝑡
0
= 0, 𝑡
𝑓
= 5,

𝑓 = [𝑥
3
cos 𝑢, 𝑥

3
sin 𝑢, sin 𝑢]𝑇, 𝑥

0
= [0, 0, 0]

𝑇.
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(19) [26] 𝑔 = 4.5(𝑥
2

3
+ 𝑥
2

6
) + 0.5(𝑢

2

1
+ 𝑢
2

2
), 𝑡
0
= 0, 𝑡

𝑓
= 1,

𝑓 = [9𝑥
4
, 9𝑥
5
, 9𝑥
6
, 9(𝑢
1
+ 17.25𝑥

3
), 9𝑢
2
, −(9/𝑥

2
)(𝑢
1
−

27.075𝑥
3
+ 2𝑥
5
𝑥
6
)]
𝑇, 𝑥
0
= [0, 22, 0, 0, −1, 0]

𝑇, 𝜓 =

[𝑥
1
− 10, 𝑥

2
− 14, 𝑥

3
, 𝑥
4
− 2.5, 𝑥

5
, 𝑥
6
]
𝑇.

(20) [26] similar to problem (3) with 𝜓 = [𝑥
1
− 4, 𝑥

2
, 𝑥
3
−

4, 𝑥
4
, 𝑥
5
− 𝜋/4, 𝑥

6
]
𝑇.
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