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We generalize the well-known minimax theorems to 𝐿
0-valued functions on random normed modules. We first give some basic

properties of an 𝐿0-valued lower semicontinuous function on a randomnormedmodule under the two kinds of topologies, namely,
the (𝜀, 𝜆)-topology and the locally 𝐿0-convex topology. Then, we introduce the definition of random saddle points. Conditions for
an 𝐿

0-valued function to have a random saddle point are given. The most greatest difference between our results and the classical
minimax theorems is that we have to overcome the difficulty resulted from the lack of the condition of compactness. Finally, we,
using relations between the two kinds of topologies, establish the minimax theorem of 𝐿0-valued functions in the framework of
random normed modules and random conjugate spaces.

1. Introduction

The classical minimax theorem, which originated from game
theory, is an important content of nonlinear analysis. It
has been applied in many fields, such as optimization the-
ory, different equations, and fixed point theory. The first
mathematical formulation was established by Neumann in
1928 [1]. Since then, various generalizations of Neumann’s
minimax theorem have been given by several scholars; see
[2–7]. The classical minimax theorems for extended real-
valued functions 𝐿 : 𝐴 × 𝐵 → 𝑅 show that, under some
suitable conditions of compactness, convexity, and continuity,
the equality

inf
𝑦∈𝐵

sup
𝑥∈𝐴

𝑓 (𝑥, 𝑦) = sup
𝑥∈𝐴

inf
𝑦∈𝐵

𝑓 (𝑥, 𝑦) (1)

holds. In 1980s, to meet the needs of vectorial optimization,
minimax problems in this more general setting have been
investigated; see [4–7]. In this paper, we generalize the well-
knownminimax theorems to 𝐿0-valued functions on random
normed modules (briefly RN modules).

Random metric theory is based on the idea of random-
izing the classical space theory of functional analysis. All
the basic notions such as RN modules and random inner

product modules (briefly RIP modules) and random locally
convex modules (briefly RLC modules) together with their
random conjugate spaces were naturally presented by Guo in
the course of the development of random functional analysis,
(cf. [8–12]). In the last ten years, randommetric theory and its
applications in the theory of conditional risk measures have
undergone a systematic and deep development. Especially
after 2009, in [13] Guo gives the relations between the
basic results currently available derived from the two kinds
of topologies, namely, the (𝜀, 𝜆)-topology and the locally
𝐿
0-convex topology. In [14], Guo gives some basic results

on 𝐿
0-convex analysis together with some applications to

conditional risk measures and studies the relations among
the three kinds of conditional convex risk measures. Fur-
thermore, in [15] Guo et al. establish a complete random
convex analysis over RN modules and RLC modules by
simultaneously considering the two kinds of topologies in
order to provide a solid analytic foundation for the module
approach to conditional risk measures. These results pave
the way for further research of the theory of random convex
analysis and conditional risk measures.

Motivated by the recent applications of random metric
theory to conditional risk measures [13, 16, 17], in this paper,
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we establish a minimax theorem for 𝐿
0-valued functions

on random normed modules. Theorem 1, which is the main
result of this paper, can be seen as a natural extension of the
classical minimax theorems and has potential applications in
the further study of conditional risk measures.

To introduce themain result of this paper, let us first recall
some notation and terminology as follows:

𝐾: the scalar field R of real numbers or C of complex
numbers;
(Ω,F, 𝑃): a probability space;
𝐿
0
(F, 𝐾) = the algebra of equivalence classes of 𝐾-

valuedF-measurable random variables on (Ω,F,𝑃);
𝐿
0
(F) = 𝐿

0
(F, 𝑅);

𝐿
0

(F) = the set of equivalence classes of extended
real-valued F-measurable random variables on (Ω,
F, 𝑃).

Theorem 1. Let (𝐸, ‖ ⋅ ‖) be a random strictly convex and
random reflexive random normed module over 𝑅 with base
(Ω,F, 𝑃), 𝐴 and 𝐵 T

𝑐
-closed, 𝐿0

(F)-convex subset with the
countable concatenation property of𝐸 and𝐿 : 𝐸×𝐸 → 𝐿

0

(F).
If 𝐿 satisfies the following:

(1) for any fixed 𝑝 ∈ 𝐵, 𝐿(⋅, 𝑝) : 𝐸 → 𝐿
0

(F) is proper
𝐿
0
(F)-convex, T

𝑐
-lower semicontinuous function on

𝐴 and has the local property;

(2) for any fixed 𝑢 ∈ 𝐴, −𝐿(𝑢, ⋅) : 𝐸 → 𝐿
0

(F) is proper
𝐿
0
(F)-convex, T

𝑐
-lower semicontinuous function on

𝐵 and has the local property;
(3) 𝐴 and 𝐵 are a.s. bounded,

then there exists a random saddle point (𝑢
0
, 𝑝

0
) ∈ 𝐴 × 𝐵 of 𝐿

with respect to 𝐴 × 𝐵, namely,

⋀

𝑢∈𝐴

⋁

𝑝∈𝐵

𝐿 (𝑢, 𝑝) = 𝐿 (𝑢
0
, 𝑝

0
) = ⋁

𝑝∈𝐵

⋀

𝑢∈𝐴

𝐿 (𝑢, 𝑝) . (2)

Theorem 1 has the same shape as the classical minimax
theorems, and its proof follows a known pattern in [18], but
it is not trivial since the complicated stratification structure
in the random setting needs to be considered. Besides, the
most greatest difference between our results and the classical
minimax theorems is that we have to overcome the difficulty
resulted from the lack of the condition of compactness. In
order to overcome this obstacle, we make full use of the
respective advantages of the (𝜀, 𝜆)-topology and the locally
𝐿
0-convex topology. In [13], Guo pointed out that these two

kinds of topologies can complement each other (see also
Propositions 14 and 15 in this paper), and we can consider
them simultaneously in some cases. Specifically, on one
hand, in Theorem 1 we require the functions to be T

𝑐
-lower

semicontinuous; namely, the functions are lower semicon-
tinuous under the locally 𝐿

0-convex topology, because we
need a very important inequality to establish this theorem;
see Definition 21 and Proposition 22 of this paper for details.
On the other hand, in the process of the proof of Theorem 1

we must employ the (𝜀, 𝜆)-topology also, because the (𝜀, 𝜆)-
topology is very natural from the viewpoint of probability
theory, and under this type of topology we can use the
relations between random normed modules and classical
normed spaces to prove the main result; see the proof of
Theorem 1 in Section 4.

The remainder of this paper is organized as follows: in
Section 2 we will briefly collect some necessary known facts;
in Section 3wewill give somebasic properties of an𝐿0-valued
lower semicontinuous function on a randomnormedmodule
under the two kinds of topologies, namely, Theorems 26 and
28; in Section 4 we will present the definition of random
saddle points and prove our main result.

2. Preliminaries

It is well known from [19] that 𝐿0

(F) is a complete lattice
under the ordering ≤: 𝜉 ≤ 𝜂 if and only if 𝜉0(𝜔) ≤ 𝜂

0
(𝜔),

for almost all 𝜔 in Ω (briefly, a.s.), where 𝜉
0 and 𝜂

0 are
arbitrarily chosen representatives of 𝜉 and 𝜂, respectively.
Furthermore, every subset 𝐺 of 𝐿0

(F) has a supremum,
denoted by ⋁𝐺, and an infimum, denoted by ⋀𝐺. Finally
𝐿
0
(F), as a sublattice of𝐿0

(F), is also a complete lattice in the
sense that every subset with upper bound has a supremum.
The pleasant properties of 𝐿0

(F) are summarized as follows.

Proposition 2 (see [19]). For every subset 𝐺 of 𝐿0

(F), there
exist countable subsets {𝑎

𝑛
| 𝑛 ∈ 𝑁} and {𝑏

𝑛
| 𝑛 ∈ 𝑁} of

𝐺 such that ⋁𝐺 = ⋁
𝑛≥1

𝑎
𝑛
and ⋀𝐺 = ⋀

𝑛≥1
𝑏
𝑛
. Further, if 𝐺

is directed (dually directed) with respect to ≤, then the above
{𝑎

𝑛
| 𝑛 ∈ 𝑁} (accordingly, {𝑏

𝑛
| 𝑛 ∈ 𝑁}) can be chosen as

nondecreasing (correspondingly, nonincreasing) with respect to
≤.

Specially, 𝐿0

+
= {𝜉 ∈ 𝐿

0
(F) | 𝜉 ≥ 0}, 𝐿0

++
= {𝜉 ∈

𝐿
0
(F) | 𝜉 > 0 on Ω}, where for 𝐴 ∈ F, “𝜉 > 𝜂” on 𝐴

means 𝜉0(𝜔) > 𝜂
0
(𝜔) a.s. on𝐴 for any chosen representatives

𝜉
0 and 𝜂0 of 𝜉 and 𝜂, respectively. As usual, 𝜉 > 𝜂means 𝜉 ≥ 𝜂

and 𝜉 ̸= 𝜂. For any 𝐴 ∈ F, 𝐴𝑐 denotes the complement of 𝐴,
and 𝐴 = {𝐵 ∈ F | 𝑃(𝐴Δ𝐵) = 0} denotes the equivalence
class of 𝐴, where Δ is the symmetric difference operation, 𝐼

𝐴

is the characteristic function of 𝐴, and 𝐼
𝐴
is used to denote

the equivalence class of 𝐼
𝐴
; given two 𝜉 and 𝜂 in 𝐿

0
(F), and

𝐴 = {𝜔 ∈ Ω | 𝜉
0

̸= 𝜂
0
}, where 𝜉0 and 𝜂

0 are arbitrarily chosen
representatives of 𝜉 and 𝜂 respectively, then we always write
[𝜉 ̸= 𝜂] for the equivalence class of 𝐴 and 𝐼

[𝜉 ̸= 𝜂]
for 𝐼

𝐴
; one

can also understand the implication of such notation as 𝐼
[𝜉≤𝜂]

,
𝐼
[𝜉<𝜂]

and 𝐼
[𝜉=𝜂]

.
For an arbitrarily chosen representative 𝜉

0 of 𝜉 ∈

𝐿
0
(F, 𝐾), define the two random variables (𝜉0)−1 and |𝜉

0
| by

(𝜉
0
)
−1
(𝜔) = 1/𝜉

0
(𝜔) if 𝜉0(𝜔) ̸= 0, and (𝜉0)−1(𝜔) = 0 otherwise,

and by |𝜉0|(𝜔) = |𝜉
0
(𝜔)|, for all 𝜔 ∈ Ω. Then the equivalent

class 𝜉−1 of (𝜉0)−1 is called the generalized inverse of 𝜉, and
the equivalent class |𝜉| of |𝜉0| is called the absolute value of 𝜉.

Now, we introduce the definition of a random normed
module, which is a random generalization of an ordinary
normed space, and give some important examples.
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Definition 3 (see [11, 20]). An ordered pair (𝐸, ‖ ⋅ ‖) is called a
randomnormed space (briefly, anRN space) over𝐾with base
(Ω,F, 𝑃) if 𝐸 is a linear space over 𝐾, and ‖ ⋅ ‖ is a mapping
from 𝐸 to 𝐿0

+
(F) such that the following are satisfied:

(RN-1) ‖𝛼𝑥‖ = |𝛼|‖𝑥‖, for all 𝛼 ∈ 𝐾 and 𝑥 ∈ 𝐸;

(RN-2) ‖𝑥‖ = 0 implies 𝑥 = 𝜃 (the null element of 𝐸);

(RN-3) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖, for all 𝑥, 𝑦 ∈ 𝐸.

Here ‖ ⋅‖ is called the random norm on 𝐸 and ‖𝑥‖ the random
norm of 𝑥 ∈ 𝐸 (if ‖ ⋅ ‖ only satisfies (RN-1) and (RN-3) above,
it is called a random seminorm on 𝐸).

Furthermore, if, in addition, 𝐸 is a left module over the
algebra 𝐿0

(F, 𝐾) (briefly, an 𝐿
0
(F, 𝐾)-module) such that

(RNM-1) ‖𝜉𝑥‖ = |𝜉|‖𝑥‖, for all 𝜉 ∈ 𝐿
0
(F, 𝐾) and 𝑥 ∈

𝐸,

then (𝐸, ‖ ⋅ ‖) is called a random normed module (briefly, an
RN module) over 𝐾 with base (Ω,F, 𝑃), and the random
norm ‖ ⋅ ‖ with the property (RNM-1) is also called an 𝐿

0-
norm on 𝐸 (a mapping only satisfying (RN-3) and (RNM-1)
above is called an 𝐿

0-seminorm on 𝐸).

Example 4. Let 𝐿0
(F, 𝐵) be the 𝐿0

(F, 𝐾)-module of equiv-
alence classes of F-random variables (or strongly F-
measurable functions) from (Ω,F, 𝑃) to a normed space
(𝐵, ‖ ⋅ ‖) over 𝐾. ‖ ⋅ ‖ induces an 𝐿

0-norm (still denoted by
‖ ⋅ ‖) on 𝐿

0
(F, 𝐵) by ‖𝑥‖ := the equivalence class of ‖𝑥0

(⋅)‖

for all 𝑥 ∈ 𝐿
0
(F, 𝐵), where 𝑥0

(⋅) is a representative of 𝑥. Then
(𝐿

0
(F, 𝐵), ‖ ⋅ ‖) is an RNmodule over𝐾 with base (Ω,F, 𝑃).

Specially, 𝐿0
(F, 𝐾) is an RN module, and the 𝐿0-norm ‖ ⋅ ‖

on 𝐿
0
(F, 𝐾) is still denoted by | ⋅ |.

The next example of RNmodules 𝐿𝑝

F
(E)(1 ≤ 𝑝 ≤ +∞) is

constructed by Filipović et al. in [16].

Example 5. Let (Ω,E, 𝑃) be a probability space and F a 𝜎-
subalgebra of E. Define ||| ⋅ |||

𝑝
: 𝐿

0
(E) → 𝐿

0

+
(F) by

|||𝑥|||𝑝 =

{{

{{

{

𝐸[|𝑥|
𝑝
| F]

1/𝑝
, when 1 ≤ 𝑝 < ∞,

⋀{𝜉 ∈ 𝐿
0

+
(F) | |𝑥| ≤ 𝜉} , when 𝑝 = +∞,

(3)

for all 𝑥 ∈ 𝐿
0
(E).

Denote 𝐿
𝑝

F
(E) = {𝑥 ∈ 𝐿

0
(E)|||𝑥|||

𝑝
∈ 𝐿

0

+
(F)}, then

(𝐿
𝑝

F
(E), ||| ⋅ |||

𝑝
) is an RNmodule over 𝑅with base (Ω,F, 𝑃)

and 𝐿
𝑝

F
(E) = 𝐿

0
(F) ⋅ 𝐿

𝑝
(E) = {𝜉𝑥 | 𝜉 ∈ 𝐿

0
(F) and

𝑥 ∈ 𝐿
𝑝
(E)}.

To put some important classes of stochastic processes
into the framework of RN modules, Guo constructed a more
general RN module 𝐿𝑝

F
(𝑆) in [13] for each 𝑝 ∈ [1, +∞] as

follows.

Example 6. Let (𝐸, ‖ ⋅ ‖) be an RN module over 𝐾 with base
(Ω,E, 𝑃) andF a𝜎-subalgebra.Define ||| ⋅ |||

𝑝
: 𝐸 → 𝐿

0

+
(F)

by

|||⋅|||𝑝 =

{{

{{

{

𝐸[‖𝑥‖
𝑝
| F]

1/𝑝
, when 1 ≤ 𝑝 < ∞,

⋀{𝜉 ∈ 𝐿
0

+
(F) | ‖𝑥‖ ≤ 𝜉} , when 𝑝 = +∞,

(4)

for all 𝑥 ∈ 𝐸.
Denote 𝐿

𝑝

F
(𝐸) = {𝑥 ∈ 𝑆 | |||𝑥|||

𝑝
∈ 𝐿

0

+
(F)}; then

(𝐿
𝑝

F
(𝐸), ||| ⋅ |||

𝑝
) is an RNmodule over𝐾with base (Ω,F, 𝑃).

When 𝐸 = 𝐿
0
(E), 𝐿𝑝

F
(𝐸) is exactly 𝐿𝑝

F
(E).

Remark 7. For a given RN module (𝐸, ‖ ⋅ ‖) over 𝐾 with base
(Ω, 𝐹, 𝑃) and a given real or extended real number𝑝 such that
1 ≤ 𝑝 ≤ +∞, define ‖ ⋅ ‖

𝑝
: 𝐸 → [0, +∞] by

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑝

=

{{

{{

{

(∫

Ω

(
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩)

𝑝
)

1/𝑝

, if 1 ≤ 𝑝 < +∞,

the 𝑃-essential supremum, if 𝑝 = +∞.

(5)

Let 𝐿𝑝
(𝐸) = {𝑔 ∈ 𝐸 : ‖𝑔‖

𝑝
< +∞}. As mentioned in [13],

(𝐿
𝑝
(𝐸), ‖ ⋅ ‖

𝑝
) is a normed space over 𝐾 and is further a

Banach space if (𝐸, ‖ ⋅ ‖) is complete.

For each RNmodule (𝐸, ‖ ⋅ ‖) over𝐾 with base (Ω,F, 𝑃),
‖ ⋅ ‖ can induce two kinds of topologies, namely, the (𝜀, 𝜆)-
topology and the locally 𝐿0-convex topology.

Definition 8 (see [12–14]). Let (𝐸, ‖ ⋅ ‖) be an RNmodule over
𝐾 with base (Ω,F, 𝑃). For any positive real numbers 𝜀 and
𝜆 such that 0 < 𝜆 < 1, let 𝑁

𝜃
(𝜀, 𝜆) = {𝑥 ∈ 𝐸 | 𝑃{𝜔 ∈ Ω |

‖𝑥‖(𝜔) < 𝜀} > 1 − 𝜆}; then {𝑁
𝜃
(𝜀, 𝜆) | 𝜀 > 0, 0 < 𝜆 < 1} is

easily verified to be a local base at the null vector 𝜃 of some
Hausdorff linear topology. The linear topology is called the
(𝜀, 𝜆)-topology for 𝐸 induced by ‖ ⋅ ‖.

From now on, the (𝜀, 𝜆)-topology for each RN module is
always denoted byT

𝜀,𝜆
when no confusion occurs.

Proposition 9 (see [12–14]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module
over 𝐾 with base (Ω,F, 𝑃). Then one has the following
statements.

(1) The (𝜀, 𝜆)-topology for 𝐿0
(F, 𝐾) is exactly the topology

of convergence in probability 𝑃, and (𝐿
0
(F, 𝐾),T

𝜀,𝜆
)

is a topological algebra over 𝐾.
(2) If (𝐸, ‖ ⋅ ‖) is an RN modules, then (𝐸,T

𝜀,𝜆
) is a topo-

logical module over the topological algebra 𝐿0
(𝐹,𝐾).

(3) A net {𝑥
𝛿
, 𝛿 ∈ Γ} converges in the (𝜀, 𝜆)-topology to

some 𝑥 in 𝐸 if and only if {‖𝑥
𝛿
− 𝑥‖, 𝛿 ∈ Γ} converges

in probability 𝑃 to 0.

The following locally 𝐿
0-convex topology is easily seen

to be much stronger than the (𝜀, 𝜆)-topology and was first
introduced by Filipović et al. in [16].
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Definition 10 (see [14, 16]). Let (𝐸, ‖ ⋅ ‖) be an RN module
over 𝐾 with base (Ω,F, 𝑃). For any 𝜀 ∈ 𝐿

0

++
, let 𝑁

𝜃
(𝜀) =

{𝑥 ∈ 𝐸 | ‖𝑥‖ ≤ 𝜀}. A subset 𝐺 of 𝐸 is called T
𝑐
-open if for

each 𝑥 ∈ 𝐺 there exists some𝑁
𝜃
(𝜀) such that 𝑥 + 𝑁

𝜃
(𝜀) ⊂ 𝐺,

andT
𝑐
denotes the family ofT

𝑐
-open subsets of 𝐸.Then it is

easy to see that (𝐸,T
𝑐
) is a Hausdorff topological group with

respect to the addition on𝐸.T
𝑐
is called the locally𝐿0-convex

topology for 𝐸 induced by ‖ ⋅ ‖.

From now on, the locally 𝐿
0-convex topology for each

random locally convex space is always denoted by T
𝑐
when

no confusion occurs.

Proposition 11 (see [13, 14, 16]). Let (𝐸, ‖⋅‖) be an𝑅𝑁module
over 𝐾 with base (Ω,F, 𝑃). Then

(1) 𝐿0
(F, 𝐾) is a topological ring endowed with its locally

𝐿
0-convex topology;

(2) 𝐸 is a topological module over the topological ring
𝐿
0
(F, 𝐾) when 𝐸 and 𝐿

0
(F, 𝐾) are endowed with

their respective locally 𝐿0-convex topologies;
(3) a net {𝑥

𝛼
| 𝛼 ∈ Γ} in 𝐸 converges in the locally 𝐿

0-
convex topology to𝑥 ∈ 𝐸 if and only if {‖𝑥

𝛼
−𝑥‖ | 𝛼 ∈ Γ}

converges in the locally 𝐿0-convex topology of 𝐿0
(F, 𝐾)

to 0.

T
𝑐
is called locally 𝐿

0-convex because it has a striking
local baseU

𝜃
= {𝐵(𝜀) | 𝜀 ∈ 𝐿

0

++
}, each member 𝑈 of which is

as follows:

(i) 𝐿0-convex: 𝜉 ⋅ 𝑥 + (1 − 𝜉) ⋅ 𝑦 ∈ 𝑈 for any 𝑥, 𝑦 ∈ 𝑈 and
𝜉 ∈ 𝐿

0

+
such that 0 ⩽ 𝜉 ⩽ 1;

(ii) 𝐿0-absorbent: there is 𝜉 ∈ 𝐿
0

++
for each 𝑥 ∈ 𝐸 such

that 𝑥 ∈ 𝜉 ⋅ 𝑈;
(iii) 𝐿0-balanced: 𝜉 ⋅ 𝑥 ∈ 𝑈 for any 𝑥 ∈ 𝑈 and any 𝜉 ∈

𝐿
0
(𝐹, 𝐾) such that |𝜉| ⩽ 1.

Remark 12. Let (𝐸, ‖ ⋅ ‖) be an RN module over 𝐾 with base
(Ω,F, 𝑃) endowed with the locally 𝐿0-convex topology T

𝑐
.

Although𝐸 can be viewed as a linear space over𝐾with scalar
multiplication 𝛼 ⋅ 𝑥 := (𝛼 ⋅ 1) ⋅ 𝑥 for 𝛼 ∈ 𝐾, 1 ∈ 𝐿

0 and
𝑥 ∈ 𝐸, (𝐸,T

𝑐
) is not a topological linear space since the map

𝐾 → (𝐸,T
𝑐
), 𝛼 → 𝛼 ⋅ 𝑥, is not necessarily continuous for

𝑥 ̸= 𝜃; see [16] for details.

In the sequel of this paper, for a subset𝐺 of an RNmodule
(𝐸, ‖ ⋅ ‖), 𝐺

𝜀,𝜆
denotes the T

𝜀,𝜆
-closure of 𝐺, and 𝐺

𝑐
denotes

theT
𝑐
-closure of 𝐺.

For giving the relations of the two kinds of topologies,
which Guo has studied the [13], we need to introduce the
definition of the countable concatenation property.

Definition 13 (see [13]). Let𝐸 be a leftmodule over the algebra
𝐿
0
(F, 𝐾). A formal sum Σ

𝑛≥1
𝐼
𝐴
𝑛

𝑥
𝑛
for some countable

partition {𝐴
𝑛
, 𝑛 ∈ 𝑁} of Ω to F and some sequence {𝑥

𝑛
|

𝑛 ∈ 𝑁} in 𝐸 is called a countable concatenation of {𝑥
𝑛
| 𝑛 ∈

𝑁} with respect to {𝐴
𝑛
, 𝑛 ∈ 𝑁}. Furthermore a countable

concatenation Σ
𝑛≥1

𝐼
𝐴
𝑛

𝑥
𝑛
is well defined or Σ

𝑛≥1
𝐼
𝐴
𝑛

𝑥
𝑛
∈ 𝐸 if

there is 𝑥 ∈ 𝐸 such that 𝐼
𝐴
𝑛

𝑥 = 𝐼
𝐴
𝑛

𝑥
𝑛
, for all 𝑛 ∈ 𝑁. A subset

𝐺 of 𝐸 is said to have the countable concatenation property
if every countable concatenation Σ

𝑛≥1
𝐼
𝐴
𝑛

𝑥
𝑛
with 𝑥

𝑛
∈ 𝐺 for

each 𝑛 ∈ 𝑁 still belongs to 𝐺; namely, Σ
𝑛≥1

𝐼
𝐴
𝑛

𝑥
𝑛
is well

defined and there exists 𝑥 ∈ 𝐺 such that 𝑥 = Σ
𝑛≥1

𝐼
𝐴
𝑛

𝑥
𝑛
.

Proposition 14 (see [13]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁module over
𝐾with base (Ω,F, 𝑃). Then 𝐸 isT

𝜀,𝜆
-complete if and only if E

isT
𝑐
-complete and has the countable concatenation property.

Proposition 15 (see [13]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁module over
𝐾 with base (Ω,F, 𝑃) and 𝐺 ⊂ 𝐸 a subset with the countable
concatenation property. Then 𝐺

𝜀,𝜆
= 𝐺

𝑐
.

Now, we introduce the definition of random conjugate
spaces of RN modules.

Definition 16 (see [7, 10, 11, 13]). Let (𝐸, ‖ ⋅ ‖) be an RN
module over𝐾with base (Ω,F, 𝑃). A linear operator 𝑓 from
𝐸 to 𝐿

0
(F, 𝐾) is said to be an a.s. bounded random linear

functional on 𝐸 if there exists some 𝜉 in 𝐿
0

+
(F, 𝑅) such that

|𝑓(𝑥)| ≤ 𝜉 ⋅ ‖𝑥‖, for all 𝑥 ∈ 𝐸. Denote by 𝐸
∗ the linear

space of a.s. bounded random linear functionals on 𝐸 with
the pointwise addition and scalar multiplication on linear
operators; define ‖ ⋅ ‖∗ : 𝐸

∗
→ 𝐿

0

+
(F, 𝑅) by ‖𝑓‖∗ = ⋀{𝜉 ∈

𝐿
0

+
(F) | |𝑓(𝑥)| ≤ 𝜉‖𝑥‖, for all 𝑥 ∈ 𝐸} for all 𝑓 ∈ 𝐸

∗ and
define ⋅ : 𝐿0

(F, 𝐾) ×𝐸
∗
→ 𝐸

∗ by (𝜂 ⋅ 𝑓)(𝑥) = 𝜂(𝑓(𝑥)) for all
𝜂 ∈ 𝐿

0
(F, 𝐾), 𝑓 ∈ 𝐸

∗, and 𝑥 ∈ 𝐸; then it is easy to check that
(𝐸

∗
, ‖ ⋅ ‖

∗
) is also an RN module over 𝐾 with base (Ω,F, 𝑃),

called the random conjugate space of (𝐸, ‖ ⋅ ‖).

Guo et al. gave the topological characterizations of an
a.s. bounded random linear functional in [10, 11, 16] as
follows: let (𝐸, ‖ ⋅ ‖) be an RN module over 𝐾 with base
(Ω,F, 𝑃), 𝐸∗

𝜀,𝜆
the 𝐿0

(F, 𝐾)-module of continuous module
homomorphisms from (𝐸,T

𝜀,𝜆
) to (𝐿0

(F, 𝐾),T
𝜀,𝜆
), and 𝐸

∗

𝑐

the 𝐿0
(𝐹, 𝐾)-module of continuousmodule homomorphisms

from (𝐸,T
𝑐
) to (𝐿0

(𝐹, 𝐾),T
𝑐
), then it was proved that 𝐸∗

𝜀,𝜆
=

𝐸
∗

𝑐
. In fact, Guo et al. also proved in [10, 11, 13] ‖𝑓‖∗ =

⋁{|𝑓(𝑥)| | 𝑥 ∈ 𝐸 and ‖𝑥‖ ≤ 1} for any 𝑓 ∈ 𝐸.
Let (𝐸, ‖ ⋅ ‖) be an RN module, 𝐸∗∗ denotes (𝐸∗

)
∗, and

the canonical embedding mapping 𝐽 : 𝐸 → 𝐸
∗∗ defined

by (𝐽𝑥)(𝑓) = 𝑓(𝑥), for all 𝑥 ∈ 𝐸 and for all 𝑓 ∈ 𝐸
∗,

is random-norm preserving. If 𝐽 is subjective, then 𝐸 is
called random reflexive. In [13] Guo proved that the random
reflexivity is independent of a special choice ofT

𝜀,𝜆
andT

𝑐
.

The following propositions are very essential relations, which
are established by Guo in [12, 21], between classical reflexive
spaces and random reflexive RN modules.

Proposition 17 (see [21]). 𝐿0
(F, 𝐵) is random reflexive if and

only if 𝐵 is a reflexive Banach space.

Proposition 18 (see [12]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁module over
𝐾 with base (Ω,F, 𝑃). Then 𝐸 is random reflexive if and only
if (𝐿𝑝

(𝐸), ‖ ⋅ ‖
𝑝
) is reflexive, where 1 < 𝑝 < +∞.
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Proposition 19 (see [12]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module
over 𝐾 with base (Ω,F, 𝑃), 1 ≤ 𝑝 < +∞ and 1 < 𝑞 ≤

+∞ a pair of Hölder conjugate numbers. Then (𝐿
𝑞
(𝐸

∗
), ‖ ⋅ ‖

𝑞
)

is isometrically isomorphic with the classical conjugate space
of (𝐿𝑝

(𝐸), ‖ ⋅ ‖), denoted by (𝐿
𝑝
(𝐸))

󸀠, under the canonical
mapping 𝑇 : 𝐿

𝑞
(𝐸

∗
) → (𝐿

𝑝
(𝐸))

󸀠 defined as follows. For each
𝑓 ∈ 𝐿

𝑞
(𝐸

∗
), 𝑇

𝑓
(denoting 𝑇(𝑓)): 𝐿𝑝

(𝐸) → 𝐾 is defined by
𝑇
𝑓
(𝑔) = ∫

Ω
𝑓(𝑔)𝑑𝑃 for all 𝑔 ∈ 𝐿

𝑝
(𝐸).

3. Some Basic Properties of 𝐿
0

-Valued Lower
Semicontinuous Functions

In this section, we give some basic properties of 𝐿0-valued
lower semicontinuous functions. First, we recall the defini-
tion of 𝐿0-valued lower semicontinuous functions under two
kinds of topologies, which was presented by Guo in [14] for
the first time.

Let 𝐸 be a left module over the algebra 𝐿
0
(F). The

effective domain of function 𝑓 : 𝐸 → 𝐿
0

(F) is denoted by
dom(𝑓) := {𝑥 ∈ 𝐸 | 𝑓(𝑥) ∈ 𝐿

0
(F)}. The epigraph of 𝑓 is

denoted by epi(𝑓) := {(𝑥, 𝑦) ∈ 𝐸 × 𝐿
0
(F) | 𝑓(𝑥) ≤ 𝑦}. The

function𝑓 is called proper if𝑓(𝑥) > −∞ onΩ for every𝑥 ∈ 𝐸

and dom(𝑓) ̸= 0.

Definition 20 (see [14]). Let 𝐸 be a left module over the alge-
bra 𝐿0

(F) and 𝑓 : 𝐸 → 𝐿
0

(F).

(1) 𝑓 is 𝐿0
(F)-convex if 𝑓(𝜉𝑥 + (1 − 𝜉)𝑦) ≤ 𝜉𝑓(𝑥) + (1 −

𝜉)𝑓(𝑦) for all 𝑥 and 𝑦 in 𝐸 and 𝜉 ∈ 𝐿
0

+
such that 0 ≤

𝜉 ≤ 1 (here wemake the convention that 0 ⋅ (±∞) = 0

and∞−∞ = ∞).

(2) 𝑓 has the local property if 𝐼
𝐴
𝑓(𝑥) = 𝐼

𝐴
𝑓(𝐼

𝐴
𝑥) for all

𝑥 ∈ 𝐸 and 𝐴 ∈ F.

(3) 𝑓 is regular if 𝐼
𝐴
𝑓(𝑥) = 𝑓(𝐼

𝐴
𝑥) for all 𝑥 ∈ 𝐸 and

𝐴 ∈ F.

Definition 21 (see [14]). Let (𝐸, ‖ ⋅ ‖) be an RN module
over 𝑅 with base (Ω,F, 𝑃). A function 𝑓 : 𝐸 → 𝐿

0

(F)

is called T
𝑐
-lower semicontinuous if epi(𝑓) is closed in

(𝐸,T
𝑐
) × (𝐿

0
(F),T

𝑐
). A function 𝑓 : 𝐸 → 𝐿

0

(F) is called
T

𝜀,𝜆
-lower semicontinuous if epi(𝑓) is closed in (𝐸,T

𝜀,𝜆
) ×

(𝐿
0
(F),T

𝜀,𝜆
).

Proposition 22 (see [14]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module
over 𝑅 with base (Ω,F, 𝑃) such that 𝐸 has the countable
concatenation property and 𝑓 : 𝐸 → 𝐿

0

(F) a function with
the local property. Then the following are equivalent to each
other:

(1) 𝑓 isT
𝑐
-lower semicontinuous;

(2) {𝑥 ∈ 𝐸 | 𝑓(𝑥) ≤ 𝑟} isT
𝑐
-closed for each 𝑟 ∈ 𝐿

0
(F);

(3) lim
𝛼
𝑓(𝑥

𝛼
) ≥ 𝑓(𝑥

0
) for each 𝑥

0
∈ 𝐸 and each net

{𝑥
𝛼
, 𝛼 ∈ Γ} in 𝐸 such that {𝑥

𝛼
, 𝛼 ∈ Γ} isT

𝑐
-convergent

to 𝑥
0
, where lim

𝛼
𝑓(𝑥

𝛼
) = ⋁

𝛼∈Γ
(⋀

𝛽≥𝛼
𝑓(𝑥

𝛽
)).

Remark 23. Proposition 22 first occurred in [16] where the
countable concatenation property of 𝐸 was not assumed, but
this condition should be added (see [14] for details).

For T
𝜀,𝜆
-lower semicontinuous functions, we only have

the following proposition.

Proposition 24 (see [14]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁module over
𝑅 with base (Ω,F, 𝑃) and 𝑓 : 𝐸 → 𝐿

0

(F) a function. Then
one has the following statements:

(1) 𝑓 is T
𝜀,𝜆
-lower semicontinuous if lim

𝛼
𝑓(𝑥

𝛼
) ≥ 𝑓(𝑥

0
)

for each 𝑥
0
∈ 𝐸 and each net {𝑥

𝛼
, 𝑥 ∈ Γ} in 𝐸 such that

{𝑥
𝛼
, 𝛼 ∈ Γ} isT

𝜀,𝜆
-convergent to 𝑥

0
;

(2) {𝑥 ∈ 𝐸 | 𝑓(𝑥) ≤ 𝑟} isT
𝜀,𝜆
-closed for each 𝑟 ∈ 𝐿

0
(F) if

𝑓 isT
𝜀,𝜆
-lower semicontinuous.

If we define 𝑓 to be lower semicontinuous via
“lim

𝛼
𝑓(𝑥

𝛼
) ≥ 𝑓(𝑥) for all net {𝑥

𝛼
, 𝛼 ∈ Λ} in 𝐸 such

that it converges in the (𝜀, 𝜆)-topology to some 𝑥 ∈ 𝐸”, the
notion is, however, meaningless in the random setting, since
we can construct an RN module 𝐸 and a T

𝜀,𝜆
-continuous

𝐿
0-convex function 𝑓 from 𝐸 to 𝐿

0
(F), whereas 𝑓 is not a

T
𝜀,𝜆
-lower semicontinuous function. Hence, we cannot use

this inequality for T
𝜀,𝜆
-lower semicontinuous functions.

Since this inequality is very important for the proof of
Theorem 1 (see Section 4 for details), we can only establish
𝐿
0-valued minimax theorems for T

𝑐
-lower semicontinuous

functions.

Proposition 25 (see [14]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module
over 𝐾 with base (Ω,F, 𝑃) such that 𝐸 has the countable
concatenation property and 𝑓 : 𝐸 → 𝐿

0

(F) a function with
the local property. Then 𝑓 isT

𝜀,𝜆
-lower semicontinuous if and

only if 𝑓 is T
𝑐
-lower semicontinuous, specially this is true for

an 𝐿
0
(F)-convex function 𝑓.

Now, we give some important properties of 𝐿0-valued
lower semicontinuous functions on RN modules. To pave
the way for Theorem 26, we first introduce some notation:
if (𝐸, ‖ ⋅ ‖) is an RN module over 𝐾 with base (Ω,F, 𝑃),
Π denotes the set of all probability measures equivalent to
𝑃 on (Ω,F), 𝐿𝑝

𝑄
(𝐸) = {𝑥 ∈ 𝐸 | ∫

Ω
‖𝑥‖

𝑝
𝑑𝑄 < +∞},

where𝑄 ∈ Π, and ‖ ⋅ ‖𝑄
𝑝
denotes the norm on 𝐿𝑝

𝑄
(𝐸), namely,

‖𝑥‖
𝑄

𝑝
= (∫

Ω
‖𝑥‖

𝑝
𝑑𝑄)

1/𝑝 for any 𝑥 ∈ 𝐿
𝑝

𝑄
(𝐸).

Theorem 26. Let (𝐸, ‖ ⋅ ‖) be a random reflexive 𝑅𝑁 module
over𝑅with base (Ω,F, 𝑃),𝐺 ⊂ 𝐸 aT

𝑐
-closed, 𝐿0

(F)-convex,
and a.s. bounded set with the countable concatenation property
and 𝑓 : 𝐸 → 𝐿

0

(F) a T
𝑐
-lower semicontinuous function

with the local property. If 𝑓|
𝐺
is proper, then𝑓 is bounded from

below on 𝐺.
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Proof. Let 𝜂 = ∨{‖𝑥‖ : 𝑥 ∈ 𝐺}; then it is easy to see that
𝜂 ∈ 𝐿

0

+
. If 𝑓 is not bounded from below on 𝐺, then there

exists 𝐵 ∈ F such that 𝑃(𝐵) > 0 and

⋀{𝑓 (𝑥) | 𝑥 ∈ 𝐺} = −∞ (6)

on 𝐵. Since 𝐺 is 𝐿0
(F)-convex and 𝑓 has the local property,

it is easy to see that {𝑓(𝑥) | 𝑥 ∈ 𝐺} is directed. Hence
there exists a sequence {𝑥

𝑛
, 𝑛 ∈ 𝑁} such that {𝑓(𝑥

𝑛
), 𝑛 ∈

𝑁} ↘ ⋀{𝑓(𝑥) | 𝑥 ∈ 𝐺}. Let 𝐺
𝑛

= {𝑥 ∈ 𝐸 |

𝑓(𝑥) ≤ 𝑓(𝑥
𝑛
)}⋂𝐺; then it is clear that 𝐺

𝑛
is T

𝑐
-closed by

Definition 21. Since 𝑓 has the local property and 𝐺 has the
countable concatenation property, for any 𝑛 ∈ 𝑁, we have that
𝐺

𝑛
has the countable concatenation property and 𝐺

𝑛
isT

𝜀,𝜆
-

closed by Proposition 15. By the fact that𝐺 is a.s. bounded, we
can define a probability measure 𝑄 on (Ω,F) by 𝑑𝑄/𝑑𝑃 =

1/𝑐(1 + 𝜂)
2, where 𝑐 = 𝐸[1/(1 + 𝜂)

2
]. Then 𝑄 is equivalent

to 𝑃 and ∫
Ω
‖𝑥‖

2
𝑑𝑄 ≤ ∫

Ω
(𝜂

2
/𝑐(1 + 𝜂)

2
)𝑑𝑃 < +∞, for any

𝑥 ∈ 𝐺, which means that 𝐺 is bounded in (𝐿
2

𝑄
(𝐸), ‖ ⋅ ‖

𝑄

2
).

Noting that replacing the probability measure 𝑃 of the base
space (Ω,F, 𝑃)with a probabilitymeasure𝑄 does not change
the (𝜀, 𝜆)-topology of 𝐸, for any given 𝑛 ∈ 𝑁, we can obtain
that 𝐺

𝑛
is norm-closed and convex in (𝐿

2

𝑄
(𝐸), ‖ ⋅ ‖

𝑄

2
). Since

(𝐸, ‖ ⋅ ‖) is a random reflexive RN module, we have that
(𝐿

2

𝑄
(𝐸), ‖ ⋅ ‖

𝑄

2
) is reflexive normed space from Proposition 18.

Hence𝐺
𝑛
is compact under the weak topology of the normed

space 𝐿2

𝑄
(𝐸). Let O = {𝐺

𝑛
| 𝑛 ∈ 𝑁}, then one can obtain

that O has the finite intersection property and ⋂O ̸= 0. Let
𝑥
∗
∈ ⋂O; then

𝑓 (𝑥
∗
) = −∞ (7)

on 𝐵, which it contradicts to the fact that 𝑓|
𝐺
is proper.

For giving Theorem 28, we need to introduce the follow-
ing Proposition 27, whichwas established byGuo andYang in
[22] for studying Ekeland’s variational principle for 𝐿0-valued
functions on RN modules.

Proposition 27 (see [22]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁module over
𝑅 with base (Ω,F, 𝑃), 𝐺 ⊂ 𝐸 a subset with the countable
concatenation property and 𝑓 : 𝐸 → 𝐿

0

(F) have the local
property. If 𝑓|

𝐺
is proper and bounded from below on 𝐺 (resp.,

bounded from above on 𝐺), then for each 𝜀 ∈ 𝐿
0

++
(F), there

exists 𝑥
𝜀
∈ 𝐺 such that 𝑓(𝑥

𝜀
) ≤ ⋀𝑓(𝐺) + 𝜀 (accordingly,

𝑓(𝑥
𝜀
) ≥ ⋁𝑓(𝐺) − 𝜀).

Theorem 28. Let (𝐸, ‖ ⋅ ‖) be a random reflexive 𝑅𝑁 module
over 𝑅 with base (Ω,F, 𝑃), 𝐺 ⊂ 𝐸 aT

𝑐
-closed, 𝐿0

(F)-convex
and a.s. bounded set with the countable concatenation property
and 𝑓 : 𝐸 → 𝐿

0

(F) aT
𝑐
-lower semicontinuous and 𝐿0

(F)-
convex function with the local property. If 𝑓|

𝐺
is proper, then

there exists 𝑥∗
∈ 𝐺 such that 𝑓(𝑥∗

) = ⋀𝑓(𝐺).

Proof. Let 𝜉 = ⋁{‖𝑥‖ | 𝑥 ∈ 𝐺} and 𝜂 = ⋀𝑓(𝐺). It is clear that
𝜉 ∈ 𝐿

0

+
and 𝜂 ∈ 𝐿

0
(F) by Theorem 26. Take 𝐵

𝑗
= [𝑗 − 1 ≤

𝜉 < 𝑗], for all 𝑗 ∈ 𝑁, then {𝐵
𝑗
| 𝑗 = 1, 2, . . .} is a countable

partition of Ω to F. For any 𝑗 ∈ 𝑁; define a function 𝑓
𝑗
:

𝐼
𝐵
𝑗

⋅ 𝐸 → 𝐿
0

(F) as follows:

𝑓
𝑗
(𝐼

𝐵
𝑗

𝑥) = 𝐼
𝐵
𝑗

𝑓 (𝑥) , ∀𝑥 ∈ 𝐸. (8)

Since 𝑓 has the local property, for any 𝑗 ∈ 𝑁, we have that
𝑓
𝑗
(𝐼

𝐵
𝑗

𝑥) = 𝐼
𝐵
𝑗

𝑓(𝐼
𝐵
𝑗

𝑥) and 𝐼
𝐵
𝑗

⋅ ⋀𝑓(𝐺) = ⋀𝑓
𝑗
(𝐼

𝐵
𝑗

⋅ 𝐺).
Because 𝑓|

𝐺
is proper and 𝑓 is T

𝑐
-lower semicontinuous

and 𝐿0
(F)-convex, it is clear that 𝑓

𝑗
|
𝐼
𝐵
𝑗

⋅𝐺
is proper,T

𝑐
-lower

semicontinuous, and 𝐿
0
(F)-convex. Next, we prove that 𝑓

𝑗

has the local property. We need only to prove that

𝐼
𝐴
𝑓
𝑗
(𝐼

𝐴
𝐼
𝐵
𝑗

𝑥) = 𝐼
𝐴
𝑓
𝑗
(𝐼

𝐵
𝑗

𝑥) , ∀𝐴 ∈ F⋂𝐵
𝑗
. (9)

In fact, since𝑓 has the local property, for any𝐴 ∈ F⋂𝐵
𝑗
, we

have that

𝐼
𝐴
𝑓
𝑗
(𝐼

𝐵
𝑗

𝑥) = 𝐼
𝐴
𝐼
𝐵
𝑗

𝑓 (𝑥) = 𝐼
𝐴
𝐼
𝐵
𝑗

𝑓(𝐼
𝐵
𝑗

𝑥)

= 𝐼
𝐴
𝐼
𝐵
𝑗

𝑓(𝐼
𝐴
𝐼
𝐵
𝑗

𝑥)

= 𝐼
𝐴
𝑓
𝑗
(𝐼

𝐴
𝐼
𝐵
𝑗

𝑥) .

(10)

Let 𝜂
𝑗

= 𝐼
𝐵
𝑗

⋅ 𝜂 for any 𝑗 ∈ 𝑁. It is easy to see that
𝐼
𝑗
𝐺 ⊆ (𝐿

2
(𝐸), ‖ ⋅ ‖

2
) is a bounded and convex set. Since 𝐼

𝐵
𝑗

𝐺

is 𝐿0
(F)-convex, T

𝑐
-closed, and a.s. bounded in 𝐸 and has

the countable concatenation, we can obtain that 𝐼
𝐵
𝑗

𝐺 isT
𝜀,𝜆
-

closed in 𝐸 by Proposition 15. It is easy to see that 𝐼
𝐵
𝑗

𝐺 is
convex and ‖ ⋅ ‖

2
-closed in (𝐿

2
(𝐸), ‖ ⋅ ‖

2
) from the fact that

the topology induced by ‖ ⋅ ‖
2
is stronger than the (𝜀, 𝜆)-

topology. Since (𝐸, ‖ ⋅ ‖) is random reflexive, (𝐿2
(𝐸), ‖ ⋅ ‖

2
)

is reflexive normed space, and 𝐼
𝐵
𝑗

𝐺 is compact in 𝐿
2
(𝐸)

under the weak topology of 𝐿2
(𝐸). For any 𝜀 ∈ 𝐿

0

++
, define

𝐺
𝑗
(𝜀) = {𝐼

𝐵
𝑗

𝑥 | 𝑓
𝑗
(𝐼

𝐵
𝑗

𝑥) ≤ 𝐼
𝐵
𝑗

𝜂 + 𝜀, 𝑥 ∈ 𝐺}. It is clear
that 𝐺

𝑗
(𝜀) ̸= 0 by Proposition 27. Since 𝑓

𝑗
|
𝐼
𝐵
𝑗

⋅𝐺
is T

𝑐
-lower

semicontinuous, we have that 𝐺
𝑗
(𝜀) is T

𝑐
-closed. Thus, we

have that 𝐺
𝑗
(𝜀) is 𝐿0

(F)-convex and ‖ ⋅ ‖
2
-closed in 𝐿

2
(𝐸) by

the fact that 𝑓
𝑗
has the local property and Proposition 15. By

Hahn-Banach theorem,we have that𝐺
𝑗
(𝜀) is closed under the

weak topology of 𝐿2
(𝐸). Take

O = {𝐺
𝑗
(𝜀) | 𝜀 ∈ 𝐿

0

++
} , (11)

it is easy to prove that O has the finite intersection property.
Since 𝐼

𝐵
𝑗

𝐺 is compact under the weak topology of 𝐿2
(𝐸), we

have that⋂O ̸= 0. Let 𝑥
𝑗
∈ ⋂O for any 𝑗 ∈ 𝑁 and

𝑥
∗
=

∞

∑

𝑗=1

𝐼
𝐵
𝑗

⋅ 𝑥
𝑗
. (12)

We have that 𝑓
𝑗
(𝑥

𝑗
) = 𝜂

𝑗
and

𝑓 (𝑥
∗
) = ⋀𝑓 (𝐺) . (13)

This completes the proof.
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Definition 29. Let (𝐸, ‖ ⋅ ‖) be an RN module over 𝑅 with
base (Ω,F, 𝑃), and 𝐺 a 𝐿0

(F)-convex subset in 𝐸. 𝑓 : 𝐺 →

𝐿
0

(F) is called strictly 𝐿0
(F)-convex if

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) < 𝛼𝑓 (𝑥) + (1 − 𝛼) 𝑓 (𝑦) , (14)

for any 𝑥, 𝑦 ∈ 𝐺, 𝑥 ̸= 𝑦 and 0 < 𝛼 < 1 onΩ.

Corollary 30. Let (𝐸, ‖ ⋅ ‖) be a random reflexive 𝑅𝑁module
over 𝑅 with base (Ω,F, 𝑃), 𝐺 ⊂ 𝐸 aT

𝑐
-closed, 𝐿0

(F)-convex
and a.s. bounded set with the countable concatenation property,
and 𝑓 : 𝐸 → 𝐿

0

(F) a T
𝑐
-lower semicontinuous and strictly

𝐿
0
(F)-convex function with the local property. If𝑓|

𝐺
is proper,

then there exists an unique 𝑥∗
∈ 𝐺 such that 𝑓(𝑥∗

) = ⋀𝑓(𝐺).

4. Main Results

Now, we give the definition of random saddle points.

Definition 31. Let 𝐴 and 𝐵 be any two nonempty sets,
(𝑢

0
, 𝑝

0
) ∈ 𝐴 × 𝐵 and 𝐿 : 𝐴 × 𝐵 → 𝐿

0

(F). Then (𝑢
0
, 𝑝

0
)

is called a random saddle point of 𝑓 with respect to 𝐴 × 𝐵 if

𝐿 (𝑢
0
, 𝑝) ≤ 𝐿 (𝑢

0
, 𝑝

0
) ≤ 𝐿 (𝑢, 𝑝

0
) , ∀𝑢 ∈ 𝐴, 𝑝 ∈ 𝐵. (15)

Remark 32. Let 𝐴 and 𝐵 be any two nonempty sets, 𝐿 : 𝐴 ×

𝐵 → 𝐿
0

(F). It is easy to see that the following statements are
equivalent:

(1) (𝑢
0
, 𝑝

0
) ∈ 𝐴 × 𝐵 is a random saddle point of 𝑓 with

respect to 𝐴 × 𝐵;
(2) ⋀

𝑢∈𝐴
⋁

𝑝∈𝐵
𝐿(𝑢, 𝑝) ≤ ⋁

𝑝∈𝐵
⋀

𝑢∈𝐴
𝐿(𝑢, 𝑝);

(3) ⋀
𝑢∈𝐴

⋁
𝑝∈𝐵

𝐿(𝑢, 𝑝) = 𝐿(𝑢
0
, 𝑝

0
) = ⋁

𝑝∈𝐵
⋀

𝑢∈𝐴
𝐿(𝑢, 𝑝).

Before giving the proof of main result in this paper,
we first recall the definition of random strictly convex RN
module, which is presented by Guo and Zeng in [23] for the
first time.

Definition 33 (see [23]). An RNmodule (𝐸, ‖ ⋅ ‖) is said to be
random strictly convex if for any 𝑥 and 𝑦 ∈ 𝐸 \ {𝜃} such that
‖𝑥 + 𝑦‖ = ‖𝑥‖ + ‖𝑦‖, then there exist 𝐴 ∈ F and 𝜉 ∈ 𝐿

0

+
such

that 𝑃(𝐴) > 0, 𝜉 > 0 on 𝐴 and 𝐼
𝐴
𝑥 = 𝜉(𝐼

𝐴
𝑦).

Definition 34 (see [24]). Let (𝐸, ‖ ⋅ ‖) be an RN module over
𝑅 with base (Ω,F, 𝑃), 𝑥, 𝑦 ∈ 𝐸 and 𝐹 ∈ F. Then 𝑥 and 𝑦

are called 𝐿
0-independent on 𝐹 if 𝜉𝐼

𝐹
= 𝜂𝐼

𝐹
= 0 whenever

𝜉, 𝜂 ∈ 𝐿
0
(F) such that 𝜉𝐼

𝐹
𝑥 + 𝜂𝐼

𝐹
𝑦 = 𝜃.

By Definitions 33 and 34, we can obtain the following
lemma easily.

Lemma 35. Let (𝐸, ‖ ⋅ ‖) be a random strictly convex 𝑅𝑁

module over𝑅with base (Ω,F, 𝑃).Then themapping𝑓 : 𝐸 →

𝐿
0
(F)

𝑓 (𝑥) = ‖𝑥‖
2 (16)

is strictly 𝐿0
(F)-convex.

For giving the proof of Theorem 1, we need the following
lemma and remark.

Lemma 36 (Mazur lemma). Let (𝑋, ‖ ⋅ ‖) be a normed space,
{𝑢

𝑛
∈ 𝑋, 𝑛 ∈ 𝑁} converge to 𝑢 under the weak topology on

𝑋. Then there exists a sequence {V
𝑛
∈ 𝑋, 𝑛 ∈ 𝑁} such that it

converges to 𝑢 in norm, where

V
𝑛
=

𝑁
𝑛

∑

𝑘=𝑛

𝜆
𝑘
𝑢
𝑘
,

𝑁
𝑛

∑

𝑘=𝑛

𝜆
𝑘
= 1, 𝜆

𝑘
≥ 0.

(17)

Remark 37. Let {𝜉
𝑛
∈ 𝐿

0
(F), 𝑛 ∈ 𝑁} converge to 𝜉 uniformly.

Then we can obtain a net {𝜉
𝜀
∈ 𝐿

0
(F) | 𝜀 ∈ 𝐿

0

++
, 𝜀 ≤ 1} such

that it converges to 𝜉 under the locally 𝐿0-convex topology of
(𝐿

0
(F, 𝑅), | ⋅ |). In fact, for any 𝜀 ∈ 𝐿

0

++
let 𝐴

1
= [𝜀 > 1], 𝐴

𝑖
=

[1/(𝑖 + 1) < 𝜀 ≤ 1/𝑖], for all 𝑖 ∈ 𝑁. Then {𝐴
𝑛
, 𝑛 ∈ 𝑁} is a

countable partition ofΩ toF. Since the sequence {𝜉
𝑛
, 𝑛 ∈ 𝑁}

converges to 𝜉 uniformly, thus for any number 𝑘 > 0, there
exists𝑁(𝑘) ∈ 𝑁 such that

󵄨󵄨󵄨󵄨𝜉𝑛 − 𝜉
󵄨󵄨󵄨󵄨 <

1

𝑘
(18)

for any 𝑛 > 𝑁(𝑘). Let

𝜉
𝜀
=

∞

∑

𝑖=1

𝐼
𝐴
𝑖

𝜉
𝑁(𝑖)+1

; (19)

then it is easy to see that |𝜉
𝜀
−𝜉| < 𝜀. Set ∧ = {𝜀 ∈ 𝐿

0

++
| 𝜀 ≤ 1};

then ∧ is directed with respect to ≤, and one can easy to see
that the net {𝜉

𝜀
, 𝜀 ∈ ∧} converges to 𝜉 under the locally 𝐿0-

convex topology of (𝐿0
(F), | ⋅ |).

With the above preparations, we now give the proof of
Theorem 1.

Proof of Theorem 1. First, let us assume that for any 𝑝 ∈ 𝐵,
𝐿(⋅, 𝑝) is strictly 𝐿0

(F)-convex on 𝐴. Set 𝐹(𝑢) = ⋁
𝑝∈𝐵

𝐿(𝑢, 𝑝)

and 𝐺(𝑝) = ⋀
𝑢∈𝐴

𝐿(𝑢, 𝑝). We show that the functional 𝐹
has the local property and 𝐹 is 𝐿0

(F)-convex and T
𝑐
-lower

semicontinuous on𝐴. By conditions (1) and (2), it is clear that
𝐹 has the local property. For any 𝑥

1
, 𝑥

2
∈ 𝐴, 𝛼 ∈ 𝐿

0

+
, we have

that

𝐹 (𝛼𝑥
1
+ (1 − 𝛼) 𝑥

2
) = ⋁

𝑝∈𝐵

𝐿 (𝛼𝑥
1
+ (1 − 𝛼) 𝑥

2
, 𝑝)

≤ ⋁

𝑝∈𝐵

[𝛼𝐿 (𝑥
1
, 𝑝) + (1 − 𝛼) 𝐿 (𝑥

2
, 𝑝)]

≤ 𝛼⋁

𝑝∈𝐵

𝐿 (𝑥
1
, 𝑝) + (1 − 𝛼) ⋁

𝑝∈𝐵

𝐿 (𝑥
2
, 𝑝)

= 𝛼𝐹 (𝑥
1
) + (1 − 𝛼) 𝐹 (𝑥

2
) .

(20)
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Thus, 𝐹 is 𝐿0
(F)-convex on𝐴. For any 𝑟 ∈ 𝐿

0
(F, 𝑅), let𝐴

𝑟
=

{𝑢 ∈ 𝐴 | 𝐹(𝑢) ≤ 𝑟}. Since 𝐹 has the local property, we have
that𝐴

𝑟
has the countable concatenation property. Let {𝑥

𝛼
, 𝛼 ∈

∧} ⊂ 𝐴
𝑟
converge to 𝑥

0
under the locally 𝐿0-convex topology

of 𝐸. By 𝐹(𝑥
𝛼
) ≤ 𝑟, we can obtain that

𝐿 (𝑥
𝛼
, 𝑝) ≤ 𝑟, ∀𝑝 ∈ 𝐵. (21)

Since 𝐿(⋅, 𝑝) isT
𝑐
-lower semicontinuous, it is easy to see that

𝐿 (𝑥
0
, 𝑝) ≤ 𝑟, ∀𝑝 ∈ 𝐵. (22)

Hence, 𝐹(𝑥
0
) ≤ 𝑟 and 𝑥

0
∈ 𝐴

𝑟
. So we have that 𝐹 is T

𝑐
-

lower semicontinuous. Similarly, replacing 𝐿 with −𝐿, we see
that −𝐺 has the local property and −𝐺 is 𝐿0

(F)-convex and
T

𝑐
-lower semicontinuous on 𝐵.
ByTheorems 26 and 28, we have that⋁

𝑝∈𝐵
𝐺(𝑝) ∈ 𝐿

0
(F),

and there exists 𝑝
0
∈ 𝐵 such that

𝐺 (𝑝
0
) = ⋁

𝑝∈𝐵

𝐺 (𝑝) . (23)

Since for all 𝑝 ∈ 𝐵, 𝐿(⋅, 𝑝) is strictly 𝐿
0
(F)-convex on 𝐴,

according to Corollary 30 there exists an unique 𝑢
𝑝
∈ 𝐴 such

that

𝐺 (𝑝) = ⋀

𝑢∈𝐴

𝐿 (𝑢, 𝑝) = 𝐿 (𝑢
𝑝
, 𝑝) , (24)

for any 𝑝 ∈ 𝐵. Let 𝑢
0
= 𝑢

𝑝
0

, we need only to prove that

𝐺 (𝑝
0
) ≥ 𝐿 (𝑢

0
, 𝑝) , ∀𝑝 ∈ 𝐵. (25)

For every 𝑝 ∈ 𝐵, let 𝑝
𝑛
= (1−𝑛

−1
)𝑝

0
+𝑛

−1
𝑝 and 𝑢

𝑛
= 𝑢

𝑝
𝑛

,
for all 𝑛 ∈ 𝑁. It is clear that

𝐺 (𝑝
0
) ≥ 𝐺 (𝑝

𝑛
) = 𝐿 (𝑢

𝑛
, 𝑝

𝑛
) . (26)

By condition (2), we have that

𝐺 (𝑝
0
) ≥ 𝐿 (𝑢

𝑛
, 𝑝

𝑛
) ≥ (1 − 𝑛

−1
) 𝐿 (𝑢

𝑛
, 𝑝

0
) + 𝑛

−1
𝐿 (𝑢

𝑛
, 𝑝) ,

𝐺 (𝑝
0
) ≥ (1 − 𝑛

−1
)𝐺 (𝑝

0
) + 𝑛

−1
𝐿 (𝑢

𝑛
, 𝑝) ,

(27)

namely, 𝐺(𝑝
0
) ≥ 𝐿(𝑢

𝑛
, 𝑝). Let 𝜂 = ⋁{‖𝑥‖ | 𝑥 ∈ 𝐴} and 𝐶

𝑛
=

{𝜔 ∈ Ω | 𝑛 − 1 ≤ 𝜂 < 𝑛}, for all 𝑛 ∈ 𝑁, according to the
condition that𝐴 is a.s. bounded in 𝐸, and it is easy to see that
{𝐶

𝑛
, 𝑛 ∈ 𝑁} is a countable partition ofΩ toF.
For any fixed 𝑖 ∈ 𝑁, we have that 𝐼

𝐶
𝑖

⋅ 𝑢
𝑛
∈ 𝐿

2
(𝐸), for all

𝑛 ∈ 𝑁. It is easy to see that 𝐼
𝐶
𝑖

⋅ 𝐴 is a bounded and closed
subset of (𝐿2

(𝐸), ‖ ⋅ ‖
2
). Thus, there exists a subsequence {𝐼

𝐶
𝑖

⋅

𝑢
𝑛
𝑘

, 𝑘 ∈ 𝑁} and 𝜔
𝑖
∈ 𝐼

𝐶
𝑖

⋅ 𝐴 such that {𝐼
𝐶
𝑖

⋅ 𝑢
𝑛
𝑘

, 𝑘 ∈ 𝑁}

converges to 𝜔
𝑖
under the weak topology of 𝐿2

(𝐸). Without
loss of generality, denote this subsequence by {𝐼

𝐶
𝑖

⋅𝑢
𝑛
, 𝑛 ∈ 𝑁}.

By Lemma 36, there exists a sequence {V
𝑛
∈ 𝐼

𝐶
𝑖

⋅ 𝐴, 𝑛 ∈ 𝑁}

such that it converges to 𝜔
𝑖
in norm, where

V
𝑛
=

𝑁
𝑛

∑

𝑘=𝑛

𝜆
𝑘
𝑢
𝑘
, (28)

∑
𝑁
𝑛

𝑘=𝑛
𝜆
𝑘
= 1, 𝜆

𝑘
≥ 0. Since ‖V

𝑛
− 𝜔

𝑖
‖
2

→ 0, we have that
{‖V

𝑛
− 𝜔

𝑖
‖, 𝑛 ∈ 𝑁} converges in probability 𝑃 to 𝜃. By Egoroff

theorem, for any number 𝛿 > 0, there exists𝐶
𝛿
∈ F such that

𝑃(𝐶
𝛿
) < 𝛿 and {‖V

𝑛
− 𝜔

𝑖
‖, 𝑛 ∈ 𝑁} converges uniformly to 0

on 𝐶
𝑐

𝛿
. Then there is a net

{
󵄩󵄩󵄩󵄩V𝜀 − 𝜔

𝑖

󵄩󵄩󵄩󵄩 , 𝜀 ∈ ∧} (29)

as in Remark 37, which converges 0 on 𝐶
𝑐

𝛿
under the locally

𝐿
0-convex topology of (𝐿0

(F), | ⋅ |). By the construction of
{‖V

𝜀
− 𝜔

𝑖
‖, 𝜀 ∈ ∧} as in Remark 37, we have that

lim
𝑛→∞

𝐿 (V
𝑛
, 𝑝) ≥ lim

𝜀∈∧

𝐿 (V
𝜀
, 𝑝) . (30)

Since 𝐿(⋅, 𝑝) is 𝐿0
(F)-convex for any 𝑝 ∈ 𝐵, we have that

𝐼
𝐶
𝑐

𝛿

𝐼
𝐶
𝑖

𝐺 (𝑝
0
) ≥ 𝐼

𝐶
𝑐

𝛿

𝐼
𝐶
𝑖

lim
𝑛→∞

𝑁
𝑛

∑

𝑘=𝑛

𝜆
𝑘
𝐿 (𝑢

𝑘
, 𝑝)

≥ 𝐼
𝐶
𝑐

𝛿

𝐼
𝐶
𝑖

lim
𝑛→∞

𝐿 (V
𝑛
, 𝑝)

≥ 𝐼
𝐶
𝑐

𝛿

𝐼
𝐶
𝑖

lim
𝜀∈∧

𝐿 (V
𝜀
, 𝑝) ≥ 𝐼

𝐶
𝑐

𝛿

𝐼
𝐶
𝑖

𝐿 (𝜔
𝑖
, 𝑝) .

(31)

Hence, one can obtain that 𝐼
𝐶
𝑐

𝛿

𝐼
𝐶
𝑖

𝐺(𝑝
0
) ≥ 𝐼

𝐶
𝑐

𝛿

𝐼
𝐶
𝑖

𝐿(𝜔
𝑖
, 𝑝).

Because 𝛿 is an arbitrary nonnegative number and 𝐿(⋅, 𝑝) has
the local property, we have that

𝐼
𝐶
𝑖

𝐺 (𝑝
0
) ≥ 𝐼

𝐶
𝑖

𝐿 (𝜔
𝑖
, 𝑝) , (32)

for any 𝑝 ∈ 𝐵.
Now, we prove that 𝜔

𝑖
= 𝐼

𝐶
𝑖

𝑢
0
for any 𝑖 ∈ 𝑁. By the

definition of 𝑢
𝑛
, it is clear that

𝐿 (𝑢
𝑛
, 𝑝

𝑛
) ≤ 𝐿 (𝑢, 𝑝

𝑛
) , ∀𝑢 ∈ 𝐴. (33)

By condition (2), we have that

(1 − 𝑛
−1
) 𝐿 (𝑢

𝑛
, 𝑝

0
) + 𝑛

−1
𝐿 (𝑢

𝑛
, 𝑝) ≤ 𝐿 (𝑢, 𝑝

𝑛
) , ∀𝑝 ∈ 𝐵.

(34)

Hence, we can obtainthat

lim
𝑛→∞

(1 − 𝑛
−1
) 𝐿 (𝑢

𝑛
, 𝑝

0
) ≤ lim

𝑛→∞
𝐿 (𝑢, 𝑝

𝑛
) , ∀𝑝 ∈ 𝐵. (35)

Since 𝐿(𝑢
𝑛
, 𝑝) ≥ 𝐺(𝑝), we can obtain that (1−𝑛−1)𝐿(𝑢

𝑛
, 𝑝

0
) +

𝑛
−1
𝐺(𝑝) ≤ 𝐿(𝑢, 𝑝

𝑛
) and (1 − 𝑛

−1
)𝐿(V

𝑛
, 𝑝

0
) + 𝑛

−1
𝐺(𝑝) ≤ 𝐼

𝐶
𝑖

⋅

lim
𝑛→∞

((1 − 𝑛
−1
)𝐿(𝑢

𝑛
, 𝑝

0
) + 𝑛

−1
𝐿(𝑢

𝑛
, 𝑝)). According to

lim
𝑛→∞

𝐿 (V
𝑛
, 𝑝

0
) = lim

𝑛→∞

(1 − 𝑛
−1
) 𝐿 (V

𝑛
, 𝑝

0
)

≤ lim
𝑛→∞

(1 − 𝑛
−1
)

𝑁
𝑛

∑

𝑘=𝑛

𝜆
𝑘
𝐿 (𝑢

𝑘
, 𝑝

0
)

≤ lim
𝑛→∞

(1 − 𝑛
−1
) 𝐿 (𝑢

𝑛
, 𝑝

0
)

≤ lim
𝑛→∞

𝐿 (𝑢, 𝑝
𝑛
) ,

(36)
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where ∑𝑁
𝑛

𝑘=𝑛
𝜆
𝑘
= 1, it is obvious that

𝐼
𝐶
𝑖

𝐿 (𝜔
𝑖
, 𝑝

0
) ≤ lim

𝑛→∞

𝐼
𝐶
𝑖

𝐿 (V
𝑛
, 𝑝

0
) ≤ lim

𝑛→∞
𝐼
𝐶
𝑖

𝐿 (𝑢
𝑛
, 𝑝

0
)

≤ lim
𝑛→∞

𝐼
𝐶
𝑖

𝐿 (𝑢, 𝑝
𝑛
) .

(37)

Since {‖𝑝
𝑛
− 𝑝

0
‖, 𝑛 ∈ 𝑁} converges in probability to 0, by

Egoroff theorem, we can obtain that for any 𝜎 > 0, there exists
𝐶

𝜎
∈ F such that𝑃(𝐶

𝜎
) < 𝜎 and {‖𝑝

𝑛
−𝑝

0
‖, 𝑛 ∈ 𝑁} converges

to 0 uniformly on 𝐶
𝑐

𝜎
. By Remark 37, we can construct a net

{𝑝
𝛼
∈ 𝐵, 𝛼 ∈ ∧} as in Remark 37 such that ‖𝑝

𝛼
− 𝑝

0
‖ → 0

under the locally 𝐿0-convex topology of 𝐸. Hence, by (2) we
can obtain that

𝐼
𝐶
𝑐

𝜎

𝐼
𝐶
𝑖

𝐿 (𝜔
𝑖
, 𝑝

0
) ≤ 𝐼

𝐶
𝑐

𝜎

𝐼
𝐶
𝑖

lim
𝛼∈∧

𝐿 (𝑢, 𝑝
𝛼
) ≤ 𝐼

𝐶
𝑐

𝜎

𝐼
𝐶
𝑖

𝐿 (𝑢, 𝑝
0
) .

(38)

Since 𝜎 is an arbitrary nonnegative number, it is clear that

𝐼
𝐶
𝑖

𝐿 (𝜔
𝑖
, 𝑝

0
) ≤ 𝐼

𝐶
𝑖

𝐿 (𝑢, 𝑝
0
) . (39)

Therefore, for any 𝑖 ∈ 𝑁, 𝜔
𝑖
= 𝐼

𝐶
𝑖

𝑢
0
and 𝐺(𝑝

0
) ≥ 𝐿(𝑢

0
, 𝑝), for

all 𝑝 ∈ 𝐵; namely, (𝑢
0
, 𝑝

0
) is a random saddle point of 𝐿 with

respect to 𝐴 × 𝐵.
If there is 𝑝 ∈ 𝐵 such that 𝐿(⋅, 𝑝) is not strictly 𝐿

0
(F)-

convex on 𝐴, define

𝐿
𝑛
(𝑢, 𝑝) = 𝐿 (𝑢, 𝑝) + 𝑛

−1
‖𝑢‖

2
, ∀𝑛 ∈ 𝑁. (40)

Since 𝐸 is random strictly convex RN module, we can obtain
that 𝐿

𝑛
is strictly 𝐿

0
(F)-convex from Lemma 35. By the

similar method, we have that for any 𝑛 ∈ 𝑁, there exists
(𝑢

𝑛
, 𝑝

𝑛
) ∈ 𝐴×𝐵 such that it is a saddle point of 𝐿

𝑛
with respect

to 𝐴 × 𝐵.
Let 𝜁 = ⋁{‖𝑦‖ | 𝑦 ∈ 𝐵} and 𝐷

𝑚
be any representation

element of [𝑚 − 1 ≤ 𝜂 < 𝑚], for all 𝑚 ∈ 𝑁, according to the
condition that 𝐵 is a.s. bounded in 𝐸, and it is easy to see that
{𝐷

𝑚
, 𝑚 ∈ 𝑁} is a countable partition of Ω to F. It is easy to

see that {𝐶
𝑖
⋂𝐷

𝑗
, 𝑖, 𝑗 ∈ 𝑁} is also a countable partition of Ω

to F. For any 𝑖, 𝑗 ∈ 𝑁, let 𝐻
𝑖𝑗
= 𝐶

𝑖
⋂𝐷

𝑗
. We can suppose

that, without loss of generality, 𝐼
𝐻
𝑖𝑗

𝑢
𝑛
∈ 𝐿

2
(𝐸) converge to 𝜇

𝑖𝑗

under the weak topology of 𝐿2
(𝐸). Then we have that there

exists a net {𝐼
𝐻
𝑖𝑗

𝑢
𝛼
∈ 𝐸 | 𝛼 ∈ Λ} such that it converges to 𝜇

𝑖𝑗

under the locally 𝐿0-convex topology of 𝐸.Thus, we have that

𝐼
𝐻
𝑖𝑗

𝐿 (𝜇
𝑖𝑗
, 𝑝) ≤ lim

𝛼

𝐼
𝐻
𝑖𝑗

𝐿 (𝐼
𝐻
𝑖𝑗

𝑢
𝛼
, 𝑝)

≤ lim
𝑛→∞

𝐼
𝐻
𝑖𝑗

𝐿 (𝐼
𝐻
𝑖𝑗

𝑢
𝑛
, 𝑝) + 𝑛

−1󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

2

≤ lim
𝑛→∞

(𝐼
𝐻
𝑖𝑗

𝐿 (𝑢, 𝐼
𝐻
𝑖𝑗

𝑝
𝑛
) + 𝑛

−1
‖𝑢‖

2
)

(41)

for all 𝑢 ∈ 𝐴, 𝑝 ∈ 𝐵. Similarly, for any 𝑖, 𝑗 ∈ 𝑁, one can have
a net {𝐼

𝐻
𝑖𝑗

𝑝
𝛽
∈ 𝐸 | 𝛽 ∈ Γ} such that it converges to ]

𝑖𝑗
under

the locally 𝐿0-convex topology of 𝐸 and

lim
𝑛→∞

(𝐼
𝐻
𝑖𝑗

𝐿 (𝑢, 𝐼
𝐻
𝑖𝑗

𝑝
𝑛
) + 𝑛

−1
‖𝑢‖

2
)

≤ lim
𝑛→∞

𝐼
𝐻
𝑖𝑗

𝐿 (𝑢, 𝐼
𝐻
𝑖𝑗

𝑝
𝑛
) + lim

𝑛→∞
𝑛
−1
‖𝑢‖

2

≤ lim
𝛽∈Γ

𝐼
𝐻
𝑖𝑗

𝐿 (𝑢, 𝐼
𝐻
𝑖𝑗

𝑝
𝛽
) + lim

𝑛→∞
𝑛
−1
‖𝑢‖

2

≤ 𝐼
𝐻
𝑖𝑗

𝐿 (𝑢, ]
𝑖𝑗
) .

(42)

Let 𝑢
0
= ∑

𝑖,𝑗∈𝑁
𝐼
𝐻
𝑖𝑗

𝜇
𝑖𝑗
and 𝑝

0
= ∑

𝑖,𝑗∈𝑁
𝐼
𝐻
𝑖𝑗

]
𝑖𝑗
; it is easy to

check that

𝐿 (𝑢
0
, 𝑝) ≤ 𝐿 (𝑢

0
, 𝑝

0
) ≤ 𝐿 (𝑢, 𝑝

0
) (43)

for all 𝑢 ∈ 𝐴, 𝑝 ∈ 𝐵; namely, (𝑢
0
, 𝑝

0
) is a random saddle

point of 𝐿 with respect to 𝐴 × 𝐵.
This completes the proof.
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