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We define passive and active gravitational mass operators of the simplest composite quantum body—a hydrogen atom. Although
they do not commute with its energy operator, the equivalence between the expectation values of passive and active gravitational
masses and energy is shown to survive for stationary quantum states. In our calculations of passive gravitational mass operator,
we take into account not only kinetic and Coulomb potential energies but also the so-called relativistic corrections to electron
motion in a hydrogen atom. Inequivalence between passive and active gravitational masses and energy at a macroscopic level is
demonstrated to reveal itself as time-dependent oscillations of the expectation values of the gravitational masses for superpositions
of stationary quantum states. Breakdown of the equivalence between passive gravitational mass and energy at a microscopic level
reveals itself as unusual electromagnetic radiation, emitted bymacroscopic ensemble of hydrogen atoms, moved by small spacecraft
with constant velocity in the Earth’s gravitational field. We suggest the corresponding experiment on the Earth’s orbit to detect this
radiation, which would be the first direct experiment where quantum effects in general relativity are observed.

1. Introduction

Formulation of a successful quantum gravitational theory
is considered to be one of the most important problems in
physics and the major step towards the so-called “Theory
of Everything.” On the other hand, fundamentals of general
relativity and quantum mechanics are so different that it is
possible that these two theories will not be united in the feasi-
ble future. In this difficult situation, it seems to be important
to suggest a combination of quantum mechanics and some
nontrivial approximation of general relativity. In particular,
this is important in the case where such theory leads to
meaningful physical results, which can be experimentally
tested.

A notion of gravitational mass of a composite body is
known to be nontrivial in general relativity and related to
the following paradoxes. If we consider a free photon with
energy 𝐸 and apply to it the so-called Tolman’s formula for
active gravitational mass (see, e.g., [1]), we will obtain 𝑚𝑔

𝑎
=

2𝐸/𝑐
2 (i.e., two times bigger value than the expected one) [2].

If a photon is confined in a box with mirrors, then we have
a composite body at rest. In this case, as shown in [2], we
have to take into account a negative contribution to 𝑚𝑔

𝑎

from stress in the box walls to restore Einstein’s equation,
𝑚
𝑔

𝑎
= 𝐸/𝑐

2. It is important that the latter equation is restored
only after averaging over time. A role of the classical virial
theorem in establishing the equivalence between averaged
over time active and passive gravitational masses and energy
is discussed in detail in [3, 4] for different types of classical
composite bodies. In particular, for electrostatically bound
two bodies, it is shown that gravitational field is coupled
to a combination 3𝐾 + 2𝑈, where 𝐾 is kinetic and 𝑈 is
the Coulomb potential energies. Since the classical virial
theorem states that the following time average is equal to zero,
⟨2𝐾 + 𝑈⟩𝑡 = 0, then we conclude that averaged over time
active and passive gravitationalmasses are proportional to the
total amount of energy [3, 4],

⟨𝑚
𝑔

𝑎,𝑝
⟩
𝑡
= 𝑚1 + 𝑚2 +

⟨3𝐾 + 2𝑈⟩𝑡

𝑐2
=
𝐸

𝑐2
, (1)
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where 𝑚1 and 𝑚2 are bare masses of the above considered
bodies.

2. Goal

The main goal of our paper is to study a quantum problem
about passive [5–7] and active gravitational masses of a
composite body. As the simplest example, we consider a
hydrogen atom.We claim four main results in the paper. Our
first result is that the equivalence between passive and active
gravitational masses and energy survives at a macroscopic
level for stationary quantum states. In the calculations of
passive gravitational mass operator, we take into account
both nonrelativistic kinetic and Coulomb potential energies
and the so-called relativistic corrections (see, e.g., [8]) to an
electron motion in a hydrogen atom, whereas in calcula-
tions of active gravitational mass we take into account only
nonrelativistic kinetic and Coulomb potential energies. More
specifically, we show that the expectation values of passive
and active gravitational masses of the atom are equivalent
to its energy for stationary quantum states due to some
mathematical theorems. In the case of active gravitational
mass, the corresponding theorem is known as the quantum
virial theorem (see, e.g., [9]), whereas, in the case of pas-
sive gravitational mass, the corresponding theorem is more
complicated than that in [9]. In fact the latter is an extension
of the relativistic quantum virial theorem [10] for the case
of a particle with spin 1/2. We would like to draw attention
to the fact that the abovementioned results are nontrivial.
Indeed, below we define passive and active gravitational
mass operators of an electron, 𝑚̂𝑔𝑝 and 𝑚̂𝑔𝑎 , respectively, in
the post-Newtonian approximation to general relativity. It is
important that these operators occur not to commute with
electron energy operator, taken in the absence of the field.
Therefore, from the first point of view, it seems that the
equivalence between passive and active gravitational masses
and energy is broken.Nevertheless, using rather sophisticated
mathematical tools, we show that the expectation values of
passive and active gravitational mass operators are ⟨𝑚̂𝑔𝑝⟩ =
⟨𝑚̂
𝑔

𝑎
⟩ = 𝑚𝑒 + 𝐸𝑛/𝑐

2 for stationary quantum states in a
hydrogen atom, where 𝑚𝑒 is the bare electron mass and 𝐸𝑛
is the total electron energy of 𝑛th atomic energy level.

Our second result is that the equivalence between elec-
tron energy and its passive and active gravitational masses is
shown to be broken for superpositions of stationary quantum
states. More strictly speaking, we demonstrate that there exist
such quantum states where the expectation values of energy
are constant, whereas the expectation values of passive and
active gravitational masses are oscillatory functions of time.
Our third result is a breakdown of the equivalence between
passive gravitational mass and energy at a microscopic
level. It is a consequence of the fact that passive electron
gravitational mass operator, 𝑚̂𝑔𝑝, does not commute with its
energy operator, taken in the absence of the field. Therefore,
an atom with a definite energy in the absence of gravitational
field, 𝐸, is not characterized by a definite passive gravitational
mass in an external gravitational field. Passive gravitational
mass is shown to be quantized and can significantly differ

from the value 𝐸/𝑐2. Our fourth result is that we suggest how
the abovementioned inequivalence can be experimentally
observed. In particular, we propose experimental detection of
electromagnetic radiation, emitted by macroscopic ensemble
of hydrogen atoms (in a real experiment—molecules), sup-
ported by and moving with constant velocity in the Earth’s
gravitational field, using small spacecraft or satellite. If such
experiment is done, to the best of our knowledge, it will
be the first direct experimental test of quantum effects in
general relativity. We stress that so far only quantum effects
in the Newtonian variant of gravity, where general relativity
corrections are negligible, have been directly studied in the
famous COW [11] and ILL [12] experiments.

Most of the abovementioned results, related to passive
gravitational mass, have been recently published by us in [5–
7]. All results, related to active gravitationalmass, and results,
related to the so-called relativistic corrections to passive
gravitational mass, are new and, to the best of our knowledge,
have not been published.

3. Equivalence of the Expectation Values of
Passive Gravitational Mass and Energy for
Stationary States

Let us use the standard weak field approximation to describe
spacetime outside the Earth (see, e.g., [13]). (We pay attention
to the fact that, to calculate the Hamiltonian in a linear with
respect to a small parameter 𝜙(𝑅)/𝑐2 approximation, we do
not need to keep the terms of the order of [𝜙(𝑅)/𝑐2]2 in
the metric (2), in contrast to the classical problem about
perihelion precession of Mercury’s orbit [13].),

𝑑𝑠
2
= −(1 +

2𝜙

𝑐2
) (𝑐𝑑𝑡)

2
+ (1 −

2𝜙

𝑐2
) (𝑑𝑥

2
+ 𝑑𝑦
2
+ 𝑑𝑧
2
) ,

𝜙 = −
𝐺𝑀

𝑅
,

(2)

where𝐺 is the gravitational constant, 𝑐 is the velocity of light,
𝑀 is the Earth’s mass, and 𝑅 is a distance from center of the
Earth. Then, in the local proper spacetime coordinates:

𝑥
󸀠
= (1 −

𝜙

𝑐2
)𝑥, 𝑦

󸀠
= (1 −

𝜙

𝑐2
)𝑦,

𝑧
󸀠
= (1 −

𝜙

𝑐2
)𝑧, 𝑡

󸀠
= (1 +

𝜙

𝑐2
) 𝑡,

(3)

the Schrödinger equation for an electron motion in a hydro-
gen atom can be approximately written in the following
standard form:

𝑖ℏ

𝜕Ψ (r󸀠, 𝑡󸀠)
𝜕𝑡󸀠

= 𝐻̂ (p̂󸀠, r󸀠)Ψ (r󸀠, 𝑡󸀠) , (4)

where 𝐻̂(p̂󸀠, r󸀠) is the standard Hamiltonian. We stress that,
in (4) and everywhere below,we disregard all tidal effects (i.e.,
we do not differentiate gravitational potential with respect
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to electron coordinates, r and r󸀠, corresponding to electron
positions in the center of mass coordinate systems). It is
possible to show that this means that we consider a hydrogen
atom as a point-like body and disregard all tidal terms in
electronHamiltonian, which are usually very small and of the
order of (𝑟𝐵/𝑅0)|𝜙/𝑐

2
| ∼ 10

−17
|𝜙/𝑐
2
| ∼ 10

−26 in the Earth’s
gravitational field. (Here 𝑟𝐵 is the so-called Bohr’s radius and
𝑅0 is the Earth’s radius.)

3.1. Nonrelativistic Case. Let us first consider nonrelativistic
Schrödinger equation for electron motion in a hydrogen
atom, where we take into account only kinetic and Coulomb
potential energies:

𝑖ℏ

𝜕Ψ (r󸀠, 𝑡󸀠)
𝜕𝑡󸀠

= 𝐻̂0 (p̂󸀠, r
󸀠
)Ψ (r󸀠, 𝑡󸀠) ,

𝐻̂0 (p̂󸀠, r
󸀠
) = 𝑚𝑒𝑐

2
+

p̂󸀠
2

2𝑚𝑒

−
𝑒
2

𝑟󸀠
,

(5)

where 𝑒 is the electron charge, 𝑟󸀠 is a distance between elec-
tron and proton, and p̂󸀠 = −𝑖ℏ𝜕/𝜕r󸀠 is electron momentum
operator in the local proper spacetime coordinates. Below,
we treat the weak gravitational field (2) as a perturbation
in inertial coordinate system, corresponding to spacetime
coordinates (𝑥, 𝑦, 𝑧, 𝑡) in (3) [3, 4], and calculate the corre-
sponding Hamiltonian:

𝐻̂0 (p̂, r, 𝜙) = 𝑚𝑒𝑐
2
+

p̂2

2𝑚𝑒

−
𝑒
2

𝑟

+ 𝑚𝑒𝜙 + (3
p̂2

2𝑚𝑒

− 2
𝑒
2

𝑟
)
𝜙

𝑐2
.

(6)

From (6), it is clear that the Hamiltonian can be rewritten in
the following form:

𝐻̂0 (p̂, r, 𝜙) = 𝑚𝑒𝑐
2
+

p̂2

2𝑚𝑒

−
𝑒
2

𝑟
+ 𝑚̂
𝑔

𝑒
𝜙, (7)

where we introduce passive gravitational mass operator of an
electron:

𝑚̂
𝑔

𝑝
= 𝑚𝑒 +

((p̂2/2𝑚𝑒) − (𝑒2/𝑟))
𝑐2

+

((2 (p̂2/2𝑚𝑒)) − (𝑒2/𝑟))
𝑐2

,

(8)

which is proportional to its weight operator in the weak
gravitational field (2). (Note that passive gravitational mass
of a composite body, as a measurable quantity, has to be
represented in quantummechanics by someHermitian oper-
ator. The most logical and straightforward way is to define
the passive gravitational mass operator to be proportional
to a weight operator in a weak gravitational field (i.e., the
operator which couples with gravitational potential in a
linear approximation in (6)). This extends definitions of
gravitational mass in classical case [3, 4] and corresponds to

the so-called Eötvös method to measure gravitational mass
[13].). Note that, in (8), the first term corresponds to the bare
electron mass, 𝑚𝑒, and the second term corresponds to the
expected electron energy contribution to the gravitational
mass operator, whereas the third nontrivial term is the virial
contribution to passive gravitational mass operator. It is
possible to make sure [5, 14] that (7) and (8) can be obtained
directly from the Dirac equation in a curved spacetime,
corresponding to the weak centrosymmetric gravitational
field (2) (see, e.g., (3.24) in [15]), if we disregard all tidal
terms).

Here, we discuss some important consequence of (7) and
(8). It is crucial that the operator (8) does not commute with
electron energy operator, taken in the absence of gravitational
field. Therefore, it is not clear from the beginning that the
equivalence between electron passive gravitational mass and
its energy exists. To establish the equivalence at amacroscopic
level, we consider amacroscopic ensemble of hydrogen atoms
with each of them being in a stationary quantum state
with a definite energy 𝐸𝑛. Then, from (8), it follows that
the expectation value of electron passive gravitational mass
operator per atom is

⟨𝑚̂
𝑔

𝑝
⟩ = 𝑚𝑒 +

𝐸𝑛

𝑐2
+

⟨(2 (p̂2/2𝑚𝑒)) − (𝑒2/𝑟)⟩
𝑐2

= 𝑚𝑒 +
𝐸𝑛

𝑐2
,

(9)

where the third term in (9) is zero in accordance with the
quantum virial theorem [9]. Therefore, we conclude that the
equivalence between passive gravitational mass and energy
survives at a macroscopic level for stationary quantum states,
if we consider only pairings of nonrelativistic kinetic and
Coulomb potential energies with an external gravitational
field. Note that an important difference between our result (9)
and the corresponding result in classical case [3, 4] is that the
expectation value of passive gravitational mass corresponds
to averaging procedure over a macroscopic ensemble of
hydrogen atoms, whereas in classical case we average over
time.

3.2. Relativistic Corrections. In this section, we study a more
general case, where the so-called relativistic corrections to an
electron motion in a hydrogen atom are taken into account.
As well-known [8], there exist three relativistic correction
terms, which have different physical meanings. The total
Hamiltonian in the absence of gravitational field can be
written as

𝐻̂ (p̂, r) = 𝐻̂0 (p̂, r) + 𝐻̂1 (p̂, r) , (10)

where

𝐻̂1 (p̂, r) = 𝛼p̂
4
+ 𝛽𝛿
3
(r) + 𝛾 Ŝ ⋅ L̂

𝑟3
, (11)

with the parameters 𝛼, 𝛽, and 𝛾 being

𝛼 = −
1

8𝑚3
𝑒
𝑐2
, 𝛽 =

𝜋𝑒
2
ℏ
2

2𝑚2
𝑒
𝑐2
, 𝛾 =

𝑒
2

2𝑚2
𝑒
𝑐2
. (12)
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(Here, 𝛿3(r) = 𝛿(𝑥)𝛿(𝑦)𝛿(𝑧) is a three-dimensional Dirac’s
delta function.)Note that the first contribution in (11) is called
the kinetic term, the second one is the so-called Darwin’s
term, and the third one is the spin-orbital interaction,
where L̂ = −𝑖ℏ[r × 𝜕/𝜕r] is electron angular momentum
operator. In the presence of the weak gravitational field
(2), the Schrödinger equation for an electron motion in the
local proper spacetime coordinates (3) can be approximately
written as

𝑖ℏ

𝜕Ψ (r󸀠, 𝑡󸀠)
𝜕𝑡󸀠

= [𝐻̂0 (p̂󸀠, r
󸀠
) + 𝐻̂1 (p̂󸀠, r

󸀠
)]Ψ (r󸀠, t󸀠) . (13)

(Note that, as discussed above, we disregard everywhere all
tidal effects.)

By means of the coordinates transformation (3), the
corresponding Hamiltonian in inertial coordinate system
(𝑥, 𝑦, 𝑧, 𝑡) can be expressed as

𝐻̂ (p̂, r, 𝜙)

= [𝐻̂0 (p̂, r) + 𝐻̂1 (p̂, r)] (1 +
𝜙

𝑐2
)

+ (2
p̂2

2𝑚𝑒

−
𝑒
2

𝑟
+ 4𝛼p̂4 + 3𝛽𝛿3 (r) + 3𝛾 Ŝ ⋅ L̂

𝑟3
)
𝜙

𝑐2
.

(14)

For the Hamiltonian (14), passive gravitational mass operator
of an electron can bewritten in amore complicated form than
(8):

𝑚̂
𝑔

𝑝

= 𝑚𝑒

+

((p̂2/2𝑚𝑒) − (𝑒2/𝑟) + 𝛼p̂4 + 𝛽𝛿3 (r) + (𝛾 ((Ŝ ⋅ L̂) /𝑟3)))
𝑐2

+

((2 (p̂2/2𝑚𝑒))−(𝑒2/𝑟)+4𝛼p̂4+3𝛽𝛿3(r)+(3𝛾 ((Ŝ ⋅ L̂)/𝑟3)))
𝑐2

.

(15)

Let us consider again a macroscopic ensemble of hydrogen
atoms with each of them being in a stationary quantum state
with a definite energy 𝐸󸀠

𝑛
, where 𝐸󸀠

𝑛
takes into account the

relativistic corrections (11) to electron energy. In this case, the
expectation value of the electron mass operator (15) per atom
can be written as

⟨𝑚̂
𝑔

𝑝
⟩

= 𝑚𝑒 +
𝐸
󸀠

𝑛

𝑐2

+

⟨(2 (p̂2/2𝑚𝑒))−(𝑒2/𝑟)+4𝛼p̂4+3𝛽𝛿3(r)+(3𝛾 ((Ŝ ⋅ L̂)/𝑟3))⟩
𝑐2

.

(16)

Below, we show that the expectation value of the third
term in (16) is zero and, therefore, Einstein’s equation, related

to the expectation value of passive gravitational mass and
energy, can be applied to stationary quantum states. Here, we
define the so-called virial operator [9] as

𝐺 =
1

2
(p̂r + rp̂) , (17)

and write the standard equation of motion for its expectation
value:

𝑑

𝑑𝑡
⟨𝐺⟩ =

𝑖

ℏ
⟨[𝐻̂0 (p̂, r) + 𝐻1 (p̂, r) , 𝐺]⟩ , (18)

where [𝐴, 𝐵], as usual, stands for a commutator of two
operators,𝐴 and 𝐵. If we consider a stationary quantum state
with a definite energy, 𝐸󸀠

𝑛
, then the derivative 𝑑⟨𝐺⟩/𝑑𝑡 in (18)

has to be zero and, thus,

⟨[𝐻̂0 (p̂, r) + 𝐻1 (p̂, r) , 𝐺]⟩ = 0, (19)

where the Hamiltonians 𝐻̂0(p̂, r) and 𝐻̂1(p̂, r) are defined by
(5) and (11). By means of rather lengthy but straightforward
calculations it is possible to show that

[𝐻̂0 (p̂, r) , 𝐺]
−𝑖ℏ

= 2
p̂2

2𝑚𝑒

−
𝑒
2

𝑟
,

[𝛼p̂4, 𝐺]
−𝑖ℏ

= 4𝛼p̂4,

[𝛽𝛿
3
(r) , 𝐺]
−𝑖ℏ

= 3𝛽𝛿
3
(r) , 1

−𝑖ℏ
[𝛾

Ŝ ⋅ L̂
𝑟3
, 𝐺] = 3𝛾

Ŝ ⋅ L̂
𝑟3
,

(20)

where we take into account the following equality: 𝑥𝑖(𝑑𝛿(𝑥𝑖)/
𝑑𝑥𝑖) = −𝛿(𝑥𝑖). As directly follows from (19) and (20):

⟨2
p̂2

2𝑚𝑒

−
𝑒
2

𝑟
+ 4𝛼p̂4 + 3𝛽𝛿3 (r) + 3𝛾 Ŝ ⋅ L̂

𝑟3
⟩ = 0, (21)

and, therefore, (16) can be rewritten in Einstein’s form:

⟨𝑚̂
𝑔

𝑝
⟩ = 𝑚𝑒 +

𝐸
󸀠

𝑛

𝑐2
. (22)

(Note that (21) extends the so-called relativistic quantum
virial theorem [10], derived for spinless particles, to the case
of particles with spin 1/2.)

It is important that (22) directly establishes the equiv-
alence between the expectation value of electron passive
gravitational mass and its energy in a hydrogen atom,
including the relativistic corrections, for the Eötvös’ type of
experiments [13]. We speculate that such equivalence exists
also formore complicated quantum systems, includingmany-
body systems with arbitrary interactions of particles. These
reveal and establish the physical meaning of a coupling of
a macroscopic quantum test body with a weak gravitational
field.

4. Inequivalence between Passive Gravitational
Mass and Energy for Superpositions of
Stationary States

In the previous section, we have shown that the expectations
values of passive gravitational mass and energy are equiv-
alent to each other in stationary quantum states. Here, we
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investigate if such equivalence survives for superpositions of
stationary quantum states. For this purpose, we consider the
simplest superposition of the ground and first excited 𝑠-wave
states in a hydrogen atom, where electron wave function has
the following form:

Ψ1,2 (𝑟, 𝑡) =
1

√2

[Ψ1 (𝑟) exp (−𝑖𝐸1𝑡) + Ψ2 (𝑟) exp (−𝑖𝐸2𝑡)] .

(23)

It is important that wave function (23) is characterized by
the time-independent expectation value of energy, ⟨𝐸⟩ =
(𝐸1 + 𝐸2)/2. Nevertheless, the expectation value of passive
gravitational mass operator (8) occurs to be the following
time-dependent oscillatory function:

⟨𝑚̂
𝑔

𝑝
⟩ = 𝑚𝑒 +

𝐸1 + 𝐸2

2𝑐2
+
𝑉1,2

𝑐2
cos[

(𝐸1 − 𝐸2) 𝑡

ℏ
] , (24)

where 𝑉1,2 is a matrix element of the virial operator:

𝑉1,2 = ∫Ψ
∗

1
(𝑟) (2

p̂2

2𝑚𝑒

−
𝑒
2

𝑟
)Ψ2 (𝑟) 𝑑

3r. (25)

Note that the above obtained result holds both for non-
relativistic passive gravitational mass operator (8) and for
the operator (15), which takes into account the so-called
relativistic corrections (11). Therefore, we make a conclusion
that the oscillations of passive gravitation mass (24) directly
demonstrate inequivalence of passive gravitational mass and
energy at a macroscopic level at any given moment of time.

Let us discuss a relativemagnitude of the oscillations (24).
By using actual numbers for a hydrogen atom, it is possible to
obtain the following numerical value of the matrix element
of the virial operator: 𝑉1,2 = 5.7 eV. Since 𝑚𝑒𝑐

2
≃ 0.5MeV

and 𝑚𝑝 ≃ 1800𝑚𝑒, we can come to the conclusion that
the oscillations (24) are weak but not negligible: 𝛿𝑚𝑒/𝑚𝑒 ∼
10
−5 and 𝛿𝑚𝑒/𝑚𝑝 ∼ 10

−8. They correspond to the following
angular and linear frequencies: 𝜔1,2 ≃ 1.6 × 10

16Hz and ] ≃
2.5×10

15Hz, respectively. We hope that the abovementioned
oscillations of passive gravitational mass are experimentally
measured, despite the fact that the quantum state (23) decays
with time.

On the other hand, if we average the oscillations (24)
over time, we obtain the modified equivalence principle
between the averaged over time expectation value of passive
gravitational mass and the expectation value of energy in the
following form:

⟨⟨𝑚̂
𝑔

𝑝
⟩⟩
𝑡
= 𝑚𝑒 +

(𝐸1 + 𝐸2)

2𝑐2
= ⟨

𝐸

𝑐2
⟩ . (26)

We pay attention that the physical meaning of averaging
procedure in (26) is completely different from that for
classical time averaging procedure (1) and does not have the
corresponding classical analogs.

5. Breakdown of the Equivalence between
Passive Gravitational Mass and Energy at
a Microscopic Level

In this section, we study how noncommutation of passive
gravitational mass operators (8) and (15) and the correspond-
ing energy operators, taken in the absence of gravitational
field, results in a breakdown of the equivalence between
passive gravitational mass and energy. This conclusion does
not depend on the relativistic corrections (11); therefore,
for certainty, below we consider passive gravitational mass
operator in the form of (8). The physical meaning of the
abovementioned breakdown is that an electron in its ground
state with a definite energy,𝑚𝑒𝑐

2
+𝐸1, is not characterized by

a definite passive gravitational mass and, thus, measurements
of the mass can give values, which are not related to electron
energy by Einstein’s equation, 𝑚𝑔𝑝 ̸= 𝑚𝑒 + 𝐸1/𝑐

2. As we show
below, the passive electron gravitational mass values in a
hydrogen atom are quantized: 𝑚𝑔𝑝 = 𝑚𝑒 + 𝐸𝑛/𝑐

2, where 𝐸𝑛
is energy corresponding to 𝑛th energy level.

5.1. First Thought Experiment. Here, we describe the first
thought experiment, illustrating inequivalence of energy and
passive gravitational mass at a microscopic level. Suppose
that we create quantum state of a hydrogen atom with a
definite energy in the absence of a gravitational field and
then adiabatically switch on the gravitational field (2). More
specifically, at 𝑡 → −∞ (i.e., in the absence of gravitational
field), a hydrogen atom is in its ground state with wave
function,

Ψ1 (𝑟, 𝑡) = Ψ1 (𝑟) exp(−
𝑖𝑚𝑒𝑐
2
𝑡

ℏ
−
𝑖𝐸1𝑡

ℏ
) , (27)

whereas, in the vicinity of 𝑡 = 0 (i.e., in the presence of the
gravitational field (2)), it is characterized by the following
wave function:

Ψ (𝑟, 𝑡) =

∞

∑

𝑛=1

𝑎𝑛 (𝑡) Ψ𝑛 (𝑟) exp(−
𝑖𝑚𝑒𝑐
2
𝑡

ℏ
−
𝑖𝐸𝑛𝑡

ℏ
) . (28)

(Here, Ψ𝑛(𝑟) is a normalized electron wave function in a
hydrogen atom in the absence of gravitational field, corre-
sponding to energy 𝐸𝑛 (due to symmetry of our problem, we
need to keep in (28) only wave functions, corresponding to
𝑛𝑆 quantum states).)

As follows from (7) and (8), adiabatically switched
on gravitational field corresponds to the following time-
dependent small perturbation:

𝑈̂ (r, 𝑅, 𝑡)

= 𝜙 (𝑅) [𝑚𝑒 +

((p̂2/2𝑚𝑒) − (𝑒2/𝑟))
𝑐2

+

((2 (p̂2/2𝑚𝑒)) − (𝑒2/𝑟))
𝑐2

] exp (𝜆𝑡) ,

(29)
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where 𝜆 → 0. (Note that our choice of adiabatically switched
on gravitational potential (29) with 𝜆 → 0 allows to avoid
extra velocity-dependent terms (see, e.g., the Largangian
in [3]).) The standard calculations by means of the time-
dependent quantummechanical perturbation theory [8] give
the following results:

𝑎1 (𝑡) = exp[−
𝑖𝜙 (𝑅)𝑚𝑒𝑐

2
𝑡 + 𝑖𝜙 (𝑅) 𝐸1𝑡

𝑐2ℏ
] , (30)

𝑎𝑛 (0) = −
𝜙 (𝑅)

𝑐2

𝑉𝑛,1

𝐸𝑛 − 𝐸1

, 𝑛 ̸= 1, (31)

where

𝑉𝑛,1 = ∫Ψ
∗

𝑛
(𝑟) (2

p̂2

2𝑚𝑒

−
𝑒
2

𝑟
)Ψ1 (𝑟) 𝑑

3r. (32)

(Note that the perturbation (29) is characterized by the
following selection rule. Electron from 1𝑆 ground state of a
hydrogen atom can be excited only into 𝑛𝑆 excited state.)

Let us discuss (30)–(32). It is important that (30) corre-
sponds to the well-known red shift of atomic ground state
energy 𝐸1 in the gravitational field (2). On the other hand,
(31) demonstrates that there is a finite probability,

𝑃𝑛 =
󵄨󵄨󵄨󵄨𝑎𝑛(0)

󵄨󵄨󵄨󵄨

2
= [
𝜙 (𝑅)

𝑐2
]

2

(
𝑉𝑛,1

𝐸𝑛 − 𝐸1

)

2

, 𝑛 ̸= 1, (33)

that, at 𝑡 = 0, electron occupies 𝑛th energy level. In fact,
this means that measurements of gravitational mass (8) in
a quantum state with definite energy (27) give the following
quantized values:

𝑚
𝑔

𝑝
(𝑛) = 𝑚𝑒 +

𝐸𝑛

𝑐2
, (34)

with the probabilities (33) for 𝑛 ̸= 1. Note that although the
probabilities (33) are quadratic with respect to gravitational
potential and, thus, small, the corresponding changes of
gravitational mass (34) are large and of the order of 𝛼2𝑚𝑒,
where 𝛼 is the fine structure constant. It is important that
the excited levels of a hydrogen atom spontaneously decay;
therefore, one can detect the above discussed quantization
law of gravitational mass (34) by measuring electromagnetic
radiation, emitted by a macroscopic ensemble of hydrogen
atoms.

5.2. Second Thought Experiment. Let us discuss the second
thought experiment, which directly demonstrates inequiv-
alence between energy and passive gravitational mass at a
microscopic level. Suppose that, at 𝑡 = 0, we create a ground
state wave function of a hydrogen atom, corresponding to
the absence of gravitational field (see (27)). Then, in the
presence of the gravitational field (2), the wave function (27)
is not anymore a ground state of the Hamiltonian (7) and (8),
where we treat gravitational field as a small perturbation in
inertial coordinate system [3, 4, 15]. It is important that, for an
inertial observer, in accordance with (3), a general solution of

the Schrödinger equation, corresponding to the Hamiltonian
(7) and (8), can be written as

Ψ (𝑟, 𝑡) = (1 −
𝜙

𝑐2
)

3/2 ∞

∑

𝑛=1

𝑎𝑛Ψ𝑛 [(1 −
𝜙

𝑐2
) 𝑟]

× exp[
−𝑖𝑚𝑒𝑐

2
(1 + 𝜙/𝑐

2
) 𝑡

ℏ
]

× exp[
−𝑖𝐸𝑛 (1 + 𝜙/𝑐

2
) 𝑡

ℏ
] .

(35)

We pay attention to the fact that wave function (35) is a series
of eigenfunctions of passive gravitational mass operator (8),
if we take into account only linear terms with respect to small
parameter 𝜙/𝑐2. (Here, factor 1−𝜙/𝑐2 is due to a curvature of
space, whereas the term 𝐸𝑛(1 + 𝜙/𝑐

2
) represents the famous

red shift in gravitational field.We also pay attention to the fact
that the wave function (35) contains a normalization factor
(1 − 𝜙/𝑐

2
)
3/2.)

In accordance with the basic principles of the quantum
mechanics, probability that, at 𝑡 > 0, an electron occupies
excited state with energy𝑚𝑒𝑐

2
(1 + 𝜙/𝑐

2
) + 𝐸𝑛(1 + 𝜙/𝑐

2
) is

𝑃𝑛 =
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

2
,

𝑎𝑛 = ∫Ψ
∗

1
(𝑟) Ψ𝑛 [(1 −

𝜙

𝑐2
) 𝑟] 𝑑

3r

= −(
𝜙

𝑐2
)∫Ψ

∗

1
(𝑟) 𝑟Ψ

󸀠

𝑛
(𝑟) 𝑑
3r.

(36)

(Note that it is possible to demonstrate that for 𝑎1 in (36)
a linear term with respect to gravitational potential, 𝜙, is
zero, which is a consequence of the quantum virial theorem.)
Taking into account that the Hamiltonian is a Hermitian
operator, it is possible to show that, for 𝑛 ̸= 1,

∫Ψ
∗

1
(𝑟) 𝑟Ψ

󸀠

𝑛
(𝑟) 𝑑
3r =

𝑉𝑛,1

(𝐸𝑛 − 𝐸1)
, (37)

where 𝑉𝑛,1 is a matrix element of the virial operator given by
(32).

Let us discuss (36) and (37). We stress that they directly
demonstrate that there is a finite probability,

𝑃𝑛 =
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

2
= [
𝜙 (𝑅)

𝑐2
]

2

(
𝑉𝑛,1

𝐸𝑛 − 𝐸1

)

2

, 𝑛 ̸= 1, (38)

that, at 𝑡 > 0, an electron occupies 𝑛th (𝑛 ̸= 1) energy level,
which breaks the expected Einstein’s equation, 𝑚𝑔𝑝 = 𝑚𝑒 +
𝐸1/𝑐
2. In fact, this means that quantum measurement of

passive gravitational mass (i.e., weight in the gravitational
field (2)) in a quantum state with a definite energy (27)
gives the quantized values (see (34)), corresponding to the
probabilities (33) and (38), which are equal. (Note that, as
it follows from quantum mechanics, we have to calculate
wave function (35) in a linear approximation with respect
to small parameter 𝜙/𝑐2 to obtain probabilities (38), which
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are proportional to (𝜙/𝑐2)2. A simple analysis shows that
inclusion in (35) terms of the order of (𝜙/𝑐2)2 would change
electron passive gravitational mass of the order of (𝜙/𝑐2)𝑚𝑒 ∼
10
−9
𝑚𝑒, which is much smaller than the typical distance

between the quantized values in (34), 𝛿𝑚𝑔𝑝 ∼ 𝛼
2
𝑚𝑒 ∼

10
−4
𝑚𝑒.) We pay attention to the fact that small values

of probabilities (33), (38), 𝑃𝑛 ∼ 10
−18, do not contradict

the existing Eötvos type measurements [13], which have
confirmed the equivalence principle with the accuracy of
the order of 𝛿𝑚/𝑚 ∼ 10

−12–10−13. As we mentioned in
the previous section, for our case, it is crucial that the
excited levels of a hydrogen atom spontaneously decay with
time; therefore, one can detect the quantization law (34) by
measuring electromagnetic radiation, emitted by a macro-
scopic ensemble of hydrogen atoms. The abovementioned
optical method is much more sensitive than the Eötvos type
measurements and we, therefore, believe that it will allow us
to detect the breakdown of the equivalence between passive
gravitational mass and energy, revealed in the paper.

6. Suggested Realistic Experiment

6.1. Hamiltonian. Let us consider a realistic experiment,
which can be done on the Earth’s orbit to detect photons,
emitted by a macroscopic ensemble of hydrogen atoms with
the following frequencies:

𝜔𝑛,1 =
(𝐸𝑛 − 𝐸1)

ℏ
. (39)

As discussed above, these photons are the consequences of
the quantization rule (34), breaking Einstein’s equation for
energy and passive gravitational mass. In the experiment we
have to use a macroscopic ensemble of hydrogen atoms to
make the number of the emitted photons to be large. More
specifically, a tank of a pressurized hydrogen is located in
small spacecraft or satellite and moved from a distant place,
where gravitational potential is small, |𝜙(𝑅)| ≪ |𝜙(𝑅0)|,
with constant velocity, 𝑢 ≪ 𝛼𝑐, towards the Earth. Note
that the latter inequality allows us to disregard additional
velocity-dependent corrections to the Hamiltonian (7) and
(8), which can be derived from the Lagrangian of [3]. It is
also important that each hydrogen atom is at rest with respect
to the spacecraft (satellite), which means that gravitational
force is compensated by some forces of nongravitational
nature. Note that this changes a little the allowed frequencies
(39). Nevertheless, the latter effect is out of our current
consideration, since it is possible to show [14] that the changes
of the frequencies (39) are less than the existing accuracies of
their measurements. Other words, each hydrogen atom does
not feel gravitational acceleration, g, but rather feels time-
dependent gravitational potential, 𝜙(𝑅 − 𝑢𝑡). Therefore, each
hydrogen atom is affected by the following time-dependent
Hamiltonian:

𝐻̂ =
p̂2

2𝑚𝑒

−
𝑒
2

𝑟
+
𝜙 (𝑅 − 𝑢𝑡) − 𝜙 (𝑅)

𝑐2
[𝑚𝑒 + 3

p̂2

2𝑚𝑒

− 2
𝑒
2

𝑟
] .

(40)

(For more rigorous derivation of (40), see [6].)

6.2. Photon Emission and Mass Quantization. Here, we de-
scribe the suggested realistic experiment in more detail. We
consider a hydrogen atom to be in its ground state, at 𝑡 = 0,
and located at distance𝑅 from a center of the Earth, where the
gravitational potential is small.Thewave function of a ground
state, corresponding to the Hamiltonian (7) and (8), can be
written as

Ψ̃1 (𝑟, 𝑡) = (1 −
𝜙

𝑐2
)

3/2

Ψ1 [(1 −
𝜙

𝑐2
) 𝑟]

× exp[
−𝑖𝑚𝑒𝑐

2
(1 + 𝜙/𝑐

2
) 𝑡

ℏ
]

× exp[
−𝑖𝐸1 (1 + 𝜙/𝑐

2
) 𝑡

ℏ
] ,

(41)

where 𝜙 = 𝜙(𝑅). At arbitrary moment of time, 𝑡 > 0, elec-
tron wave function and time-dependent perturbation for the
Hamiltonian (7) and (8) in inertial coordinate system, related
to the spacecraft (satellite), can be expressed as

Ψ̃ (𝑟, 𝑡) = (1 −
𝜙

𝑐2
)

3/2 ∞

∑

𝑛=1

𝑎𝑛 (𝑡) Ψ𝑛 [(1 −
𝜙

𝑐2
) 𝑟]

× exp[
−𝑖𝑚𝑒𝑐

2
(1 + 𝜙/𝑐

2
) 𝑡

ℏ
]

× exp[
−𝑖𝐸𝑛 (1 + 𝜙/𝑐

2
) 𝑡

ℏ
] ,

(42)

𝑈̂ (r, 𝑅, 𝑡) =
𝜙 (𝑅 − 𝑢𝑡) − 𝜙 (𝑅)

𝑐2
(3

p̂2

2𝑚𝑒

− 2
𝑒
2

𝑟
) . (43)

Application of the time-dependent quantum mechanical
perturbation theory [9] gives the following solutions for
functions 𝑎𝑛(𝑡) in (42):

𝑎𝑛 (𝑡) = −
𝑉𝑛,1

ℏ𝜔𝑛,1𝑐
2

× { [𝜙 (𝑅 − 𝑢𝑡) − 𝜙 (𝑅)] exp (𝑖𝜔𝑛,1𝑡)

+
𝑢

𝑖𝜔𝑛,1

∫

𝑡

0

𝑑𝜙 (𝑅 + 𝑢𝑡)

𝑑𝑅
𝑑 [exp (𝑖𝜔𝑛,1𝑡)]} ,

𝑛 ̸= 1,

(44)

where 𝑉𝑛,1 and 𝜔𝑛,1 are given by (32) and (39). It is important
that under the suggested experiment the following inequality
is obviously fulfilled:

𝑢 ≪ 𝜔𝑛,1𝑅 ∼ 𝛼𝑐(
𝑅0

𝑟𝐵

) ∼ 10
13
𝑐; (45)
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therefore, we can disregard the second term in the amplitude
(44):

𝑎𝑛 (𝑡) = −
𝑉𝑛,1

ℏ𝜔𝑛,1𝑐
2
[𝜙 (𝑅 − 𝑢𝑡) − 𝜙 (𝑅)] exp (𝑖𝜔𝑛,1𝑡) ,

𝑛 ̸= 1.

(46)

Since |𝜙(𝑅)| ≪ |𝜙(𝑅 − 𝑢𝑡)|, we can write probabilities,
corresponding to amplitudes of (46), in the following way:

𝑃̃𝑛 (𝑡) = (
𝑉𝑛,1

ℏ𝜔𝑛,1

)

2
𝜙(𝑅 − 𝑢𝑡)

2

𝑐4
= (

𝑉𝑛,1

𝐸𝑛 − 𝐸1

)

2

[

𝜙 (𝑅
󸀠
)

𝑐2
]

2

,

(47)

where 𝑅󸀠 = 𝑅 − 𝑢𝑡. It is important that the probabilities
(47) depend only on gravitational potential, 𝜙󸀠 = 𝜙(𝑅󸀠), in
the final position of a spacecraft (satellite). Moreover, they
coincide with the probabilities, obtained in both thought
experiments (see (33) and (38)).This allows us to clarify their
physical meaning. Indeed, since the probabilities (47), (33),
and (38) are equal, we can conclude that all photons, emitted
by a macroscopic ensemble of hydrogen atoms during the
suggested realistic experiment, correspond to the breakdown
of Einstein’s equation for passive gravitation mass due to
quantization of the mass (34). As we discussed above, the
excited levels spontaneously decay with time and, therefore,
it is possible to observe the quantization law (34) indirectly
by measuring electromagnetic radiation from a macroscopic
ensemble of the atoms. In this case, (47) gives probabilities
that a hydrogen atom emits a photon with frequencies (39)
during the time interval 𝑡. (We note that dipole matrix
elements for 𝑛𝑆 → 1𝑆 quantum transitions are zero. Nev-
ertheless, the corresponding photons can be emitted due to
quadrupole effects.)

Let us estimate the probabilities (47):

𝑃̃𝑛 = (
𝑉𝑛,1

𝐸𝑛 − 𝐸1

)

2 𝜙
2
(𝑅
󸀠
)

𝑐4
≃ 0.49 × 10

−18
(
𝑉𝑛,1

𝐸𝑛 − 𝐸1

)

2

,

(48)

where, in (48), we use the following numerical values of the
Earth’s mass, 𝑀 ≃ 6 × 10

24 kg, and its radius, 𝑅0 ≃ 6.36 ×
10
6m. It is important that although the probabilities (47)

and (48) are small, the number of photons, 𝑁, emitted by
macroscopic ensemble of the atoms, can be large since the
factor𝑉2

𝑛,1
/(𝐸𝑛 −𝐸1)

2 is of the order of unity. For instance, for
1000 moles of hydrogen atoms,𝑁 is estimated as

𝑁𝑛,1 = 2.95 × 10
8
(
𝑉𝑛,1

𝐸𝑛 − 𝐸1

)

2

,

𝑁2,1 = 0.9 × 10
8
,

(49)

which can be experimentally detected, where𝑁𝑛,1 stands for a
number of photons, emittedwith frequency𝜔𝑛,1 = (𝐸𝑛−𝐸1)/ℏ
(see (39)).

7. Active Gravitational Mass in
Classical Physics

Here, we introduce active gravitational mass for a classical
model of a hydrogen atom. Suppose that we have a heavy
positively charged particle (i.e., proton) with bare mass 𝑚𝑝
and light negatively charged particle (i.e., electron) with bare
mass 𝑚𝑒, where 𝑚𝑝 ≫ 𝑚𝑒. At large distances, 𝑅 ≫ 𝑟𝐵, from
the atom, gravitational potential in the first approximation is

𝜙 (𝑅) = −𝐺

𝑚𝑝 + 𝑚𝑒

𝑅
, (50)

where we do not take into account kinetic and Coulomb
potential energies contributions. Since 𝑚𝑝 ≫ 𝑚𝑒, we
below disregard kinetic energy of proton and consider it as
a center of mass of the atom. The next step is to define
how kinetic and Coulomb potential energies of electron
contribute to the electron active gravitational mass. To be
more specific, we define active gravitational mass of the atom
from gravitational potential acting on a small test body at
rest at distances much high than the “size” of the atom, 𝑟𝐵.
For simplicity, we prescribe potential and kinetic energies
to electron and, therefore, consider corrections to electron
gravitational mass. It is possible to show from general theory
of a weak gravitational field [1, 13] that gravitational potential
in our case can be written as

𝜙 (𝑅, 𝑡) = −𝐺

𝑚𝑝 + 𝑚𝑒

𝑅
− 𝐺∫

Δ𝑇
𝑘𝑖𝑛

𝛼𝛼
(𝑡, r) + Δ𝑇𝑝𝑜𝑡

𝛼𝛼
(𝑡, r)

𝑐2𝑅
𝑑
3r,
(51)

where Δ𝑇𝑘𝑖𝑛
𝛼𝛽
(𝑡, r) and Δ𝑇𝑝𝑜𝑡

𝛼𝛽
(𝑡, r) are changes of stress-energy

tensor component 𝑇𝛼𝛽(𝑡, r) due to kinetic and Coulomb
potential energies, respectively. (Note that in (51) and every-
where below we disregard the so-called retardation effects.)
Therefore, in the second approximation in 1/𝑐2, active elec-
tron gravitational mass can be written as

𝑚
𝑔

𝑎
= 𝑚𝑒 +

1

𝑐2
∫ [Δ𝑇

𝑘𝑖𝑛

𝛼𝛼
(𝑡, r) + Δ𝑇𝑝𝑜𝑡

𝛼𝛼
(𝑡, r)] 𝑑3r. (52)

Let us write the standard expression for stress-energy
tensor of a moving point particle without electrical charge
[1, 13]:

𝑇
𝛼𝛽
(r, 𝑡) = 𝑚V

𝛼
(𝑡) V𝛽 (𝑡)

√1 − V2/𝑐2
𝛿
3
[r − rp (𝑡)] , (53)

where V𝛼 is a four-velocity, 𝛿3[⋅ ⋅ ⋅ ] is the three-dimensional
Dirac’s delta function, and rp(𝑡) is a trajectory of the particle
in three-dimensional space. It is easy to showbymeans of (53)
that at low enough velocity, V ≪ 𝑐,

Δ𝑇
𝑘𝑖𝑛

𝛼𝛼
= 3
𝑚V2

2
. (54)

The standard expression for stress-energy tensor of electro-
magnetic field [1] can be written as

𝑇
𝜇]
𝑒𝑚
=
1

4𝜋
[𝐹
𝜇𝛼
𝐹
]
𝛼
−
1

4
𝜂
𝜇]
𝐹𝛼𝛽𝐹
𝛼𝛽
] , (55)
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where 𝐹𝛼𝛽 is the so-called electromagnetic field tensor and
𝜂𝛼𝛽 ismetric of theMinkowski spacetime.This expression can
be significantly simplified in our case, where only electrical
field is present. As a result, we obtain the following formula
for change of the stress-energy tensor in the presence of the
Coulomb potential energy:

Δ𝑇
𝑝𝑜𝑡

𝛼𝛼
= −2

𝑒
2

𝑟
. (56)

Therefore, the total electron active gravitational mass can be
written in the same way as the electron passive mass:

𝑚
𝑔

𝑎
= 𝑚𝑒 +

((𝑚𝑒k
2
/2) − (𝑒

2
/𝑟))

𝑐2

+

((2 (𝑚𝑒k
2
/2)) − (𝑒

2
/𝑟))

𝑐2
,

(57)

where the last term is the virial one. Since the virial term
changes with time, we come to the conclusion that active
gravitational mass of a classical body changes with time.
Nevertheless we can introduce averaged over time active
gravitational mass, which occurs to be equivalent to energy
[3, 4], since the averaged over time virial term is zero:

⟨𝑚
𝑔

𝑎
⟩ = 𝑚𝑒 +

⟨((p̂2/2𝑚𝑒)) − (𝑒2/𝑟)⟩𝑡
𝑐2

+

⟨(2 (𝑚𝑒k
2
/2)) − (𝑒

2
/𝑟)⟩
𝑡

𝑐2

= 𝑚𝑒 +
𝐸

𝑐2
.

(58)

8. Equivalence of the Expectation Values of
Active Gravitational Mass and Energy for
Stationary States

Here, we use the so-called semiclassical approach to the gen-
eral relativity (see, e.g., [16, 17]), where Einstein’s gravitational
equation can be written as

𝑅𝜇] −
1

2
𝑅𝑔𝜇] =

8𝜋𝐺

𝑐2
⟨𝑇̂𝜇]⟩ , (59)

where the last term represents the expectation value of
quantum stress-energy operator of the matter. In our case,
expression for active gravitational mass (57) can be repre-
sented as the following Hamiltonian:

𝑚
𝑔

𝑎
= 𝑚𝑒 +

((p2/2𝑚𝑒) − (𝑒2/𝑟))
𝑐2

+

((2 (p2/2𝑚𝑒)) − (𝑒2/𝑟))
𝑐2

,

(60)

which can be easily quantized:

𝑚̂
𝑔

𝑎
= 𝑚𝑒 +

((p̂2/2𝑚𝑒) − (𝑒2/𝑟))
𝑐2

+

((2 (p̂2/2𝑚𝑒)) − (𝑒2/𝑟))
𝑐2

.

(61)

Therefore, in the framework of semiclassical theory of gravity,
the expectation value of active gravitational mass, corre-
sponding to macroscopic ensemble of the atoms with each
of them being in its ground state, is equal to

⟨𝑚̂
𝑔

𝑎
⟩ = 𝑚𝑒 +

⟨(p̂2/2𝑚𝑒) − (𝑒2/𝑟)⟩
𝑐2

+

⟨(2 (p̂2/2𝑚𝑒)) − (𝑒2/𝑟)⟩
𝑐2

= 𝑚𝑒 +
𝐸1

𝑐2
.

(62)

Thus, we conclude that the expectation values of active
gravitational mass and energy are equivalent for stationary
quantum states.

9. Inequivalence between Active Gravitational
Mass and Energy for Superpositions of
Stationary States

In the previous section we have established the equivalence
for the expectation values of active gravitational mass and
energy for stationary quantum states. Below, we study if
such equivalence survives for superpositions of stationary
quantum states. As in Section 4, we consider the simplest
superposition of the ground andfirst excited s-wave states in a
hydrogen atom, where electron wave function can be written
as

Ψ1,2 (𝑟, 𝑡) =
1

√2

[Ψ1 (𝑟) exp (−𝑖𝐸1𝑡) + Ψ2 (𝑟) exp (−𝑖𝐸2𝑡)] .

(63)

As we discussed this before, the expectation value of energy
for the wave function (63) does not depend on time. Nev-
ertheless, the expectation value of active gravitational mass
operator (61) oscillates with time and has the following form:

⟨𝑚̂
𝑔

𝑎
⟩ = 𝑚𝑒 +

𝐸1 + 𝐸2

2𝑐2
+
𝑉1,2

𝑐2
cos[

(𝐸1 − 𝐸2) 𝑡

ℏ
] , (64)

which coincides with (24), describing time-dependent oscil-
lations of passive gravitational mass, where matrix element
of the virial operator, 𝑉1,2, is given by (25). As we discussed
before such oscillations are of a pure quantum origin and
do not have classical analogs. They directly demonstrate
inequivalence of active gravitational mass and energy at
a macroscopic level. Nevertheless, in the same way as in
Section 4, we can introduce modified equivalence principle
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for the expectation values of active gravitational mass and
energy by means of averaging of (64) over time:

⟨⟨𝑚̂
𝑔

𝑎
⟩⟩
𝑡
= 𝑚𝑒 +

(𝐸1 + 𝐸2)

2𝑐2
= ⟨

𝐸

𝑐2
⟩ . (65)

As we stressed in Section 4, such averaging procedure is
principally different from that in (1) and (58) and does not
have classical analogs.
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