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We study the stabilization problem of discrete-time planar switched linear systems with impulse. When all subsystems are
controllable, based on an explicit estimation on the state transitionmatrix, we establish a sufficient condition such that the switched
impulsive system is stabilizable under arbitrary switching signal with given switching frequency. When there exists at least one
uncontrollable subsystem, a sufficient condition is also given to guarantee the stabilization of the switched impulsive system under
appropriate switching signal.

1. Introduction

Recent years havewitnessed a rapid progress for switched sys-
tems, for example, see monographs [1–3] and survey papers
[4, 5]. As usual, a switched system means a type of hybrid
dynamic system that consists of a family of continuous-time
(discrete-time) subsystems and a switching signal, which
determines the switching between subsystems. It is well
known that switched systems have a deep background in
engineering such as computer disk system [6], robotics [7],
power systems [8], air trafficmanagement [9], and automated
vehicles [10].

During the last three decades, there is an increasing
interest on the stability analysis for switched systems. For
stability issues; one important problem is to find conditions
that guarantee asymptotic stability of the switched system for
arbitrary switching signal. Such a problem is usually studied
by using a commonLyapunov functional approach, especially
by using a common quadratic Lyapunov functional approach
[11–14]. A multiple Lyapunov functional method was used to
study the stability of switched systems with delays in [15].

For systems that switch among a finite set of controllable
linear systems, the stabilization problem of continuous-time
switched systems with arbitrary switching frequency was

studied in [16, 17] by developing an improved estimation
on transition matrices. Very recently, the results in [16, 17]
were further extended to switched systems with impulses
and perturbations [18]. So far, the stability and stabilization
problems for switched systems were studied in [19–31], to
name a few.

In this paper, motivated by the work in [16–18], we study
the stabilization problem of discrete-time planar switched
linear systems under impulse and arbitrary switching signal
with given switching frequency. When all subsystems are
controllable, we obtain a discrete analogue of the main
result in [17]. We also consider the case when there exist
both controllable subsystems and uncontrollable subsystems.
Before giving ourmain results, we first establish an estimation
on the transition matrix for each controllable subsystem,
which plays a key role in the stabilization problem of
the switched system. For the uncontrollable subsystems,
an estimation on the solution is given by using the Lya-
punov functional approach. Then, we show that the discrete-
time switched impulsive system is also stabilizable under
appropriate switching signal when there exist uncontrollable
subsystems.

This paper is organized as follows. In Section 2, some
preliminaries are formulated. The main results of this paper
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are given in Section 3. Two examples are worked out in
Section 4 to illustrate the main results. Section 5 concludes
the paper.

2. Preliminaries

Consider the following planar discrete-time linear system:

𝑥 (𝑘 + 1) = 𝐺𝑥 (𝑘) + 𝐻𝑢 (𝑘) , 𝑘 ≥ 0, (1)

where 𝑥 ∈ 𝑅
2 is the state, 𝑢 ∈ 𝑅

𝑚 is the controlled input, and
𝐺 and 𝐻 are matrices of appropriate dimensions.

Under the following linear feedback law:

𝑢 (𝑘) = 𝐾𝑥 (𝑘) , (2)

the solution of the system (1) takes the form

𝑥 (𝑘) = (𝐺 + 𝐻𝐾)
𝑘
𝑥 (0) , (3)

where (𝐺 + 𝐻𝐾)
𝑘 is called the transition matrix.

When the system (1) is controllable, we first establish an
estimation on the transition matrix (𝐺 + 𝐻𝐾)

𝑘.

Lemma 1. Let 𝐺 ∈ 𝑅
2×2 and 𝐻 ∈ 𝑅

2×𝑚 be constant matrices
such that the pair (𝐺,𝐻) is controllable. Then, for any 0 < 𝜆 <

1, there exists a matrix 𝐾 ∈ 𝑅
𝑚×2 such that






(𝐺 + 𝐻𝐾)

𝑘



≤ 𝑁𝜆
𝑘−1

, 𝑘 ≥ 0, (4)

where 𝑁 > 0 is a constant, which is independent of 𝜆 and can
be estimated precisely in terms of 𝐺 and 𝐻.

Proof. First, we consider the case of single input, that is, 𝑚 =

1. Noting that (𝐺,𝐻) is controllable, we can choose a feedback
matrix 𝐾 ∈ 𝑅

1×2 such that eigenvalues 𝜆
𝑖
of 𝐺 + 𝐻𝐾 satisfy

0 < 𝜆
𝑖
< 1, 𝜆

𝑖
̸= 𝜆
𝑗
, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2. (5)

In particular, for any 0 < 𝜆 < 1, we can choose

𝜆
𝑖
=

𝜆

𝑖

, 𝑖 = 1, 2. (6)

Set

𝐹 = [𝐺𝐻 𝐻] × [

1 0

𝑎
1

1
] , (7)

where 𝑎
𝑖
, 𝑖 = 1, 2, are determined by

det (𝑆𝐼 − 𝐺) = 𝑠
2
+ 𝑎
1
𝑠 + 𝑎
0
. (8)

Let

𝐺
𝑐
= 𝐹
−1

𝐺𝐹, 𝐻
𝑐
= 𝐹
−1

𝐻, 𝐾
𝑐
= 𝐾𝐹. (9)

We have that 𝜆
𝑖
, 𝑖 = 1, 2, are also eigenvalues of (𝐺

𝑐
+ 𝐻
𝑐
𝐾
𝑐
),

and (𝐺
𝑐
, 𝐻
𝑐
) is in controller canonical form. Let

𝑃 = [

1 1

𝜆
1

𝜆
2

] . (10)

It is not difficult to see that

𝑃
−1

(𝐺
𝑐
+ 𝐻
𝑐
𝐾
𝑐
) 𝑃 = 𝐽 = diag {𝜆

1
, 𝜆
2
} , (11)

that is,

𝑃
−1

𝐹
−1

(𝐺 + 𝐻𝐾)𝐹𝑃 = 𝐽. (12)

It implies that

𝐺 + 𝐻𝐾 = 𝐹𝑃𝐽𝑃
−1

𝐹
−1

. (13)

Consequently,





(𝐺 + 𝐻𝐾)

𝑘



=






𝐹𝑃𝐽
𝑘
𝑃
−1

𝐹
−1





≤ ‖𝐹‖






𝐹
−1




‖𝑃‖






𝑃
−1










𝐽
𝑘



.

(14)

Let 𝑃 = [𝑝
𝑖𝑗
] and 𝑃

−1
= [𝑒
𝑖𝑗
]. First, we have

‖𝑃‖ ≤ 2 max
1≤𝑖,𝑗≤2

{






𝑝
𝑖𝑗






} = 2. (15)

Second, noting that 𝑃−1 = adj𝑃/ det𝑃, we get from (6) that

𝑃
−1

=

[

[

[

[

−1

2

𝜆

2

−2

𝜆

]

]

]

]

. (16)

So,






𝑃
−1




≤

4

𝜆

. (17)

Since





𝐽
𝑘



≤ 𝜆
𝑘

1
= 𝜆
𝑘
, (18)

substituting (15), (17), and (18) into (14) yields that






(𝐺 + 𝐻𝐾)

𝑘



≤ ‖𝐹‖






𝐹
−1




× 2 ×

4

𝜆

× 𝜆
𝑘
= 𝑁𝜆
𝑘−1

, (19)

where𝑁 = 8‖𝐹‖‖𝐹
−1

‖, which is independent of 𝜆. Therefore,
we have that Lemma 1 holds for the single input case.

For the multiple-input case, one sees that for any 𝑐 ∈ 𝑅
𝑚

such that 𝐻𝑐 ̸= 0, there exists 𝐾
0

∈ 𝑅
𝑚×2 such that (𝐺 +

𝐻𝐾
0
, 𝐻𝑐) is itself controllable. Hence, the conclusion of the

single-input case that has been proved above is applicable
to the controllable pair (𝐺 + 𝐻𝐾

0
, 𝐻𝑐). Therefore, for any

0 < 𝜆 < 1, there exists 𝑘
1
∈ 𝑅
1×2 such that








(𝐺 + 𝐻𝐾
0
+ 𝐻𝑐𝑘

1
)
𝑘







≤ 𝑁 ⋅ 𝜆
𝑘−1

. (20)

The proof of Lemma 1 is completed.

When (𝐺,𝐻) is uncontrollable, for any given feedback𝐾,
there always exist a positive-definite symmetric matrix 𝑃 and
an appropriate constant 𝜇 > 0 such that

(𝐺 + 𝐻𝐾)
𝑇
𝑃 (𝐺 + 𝐻𝐾) − 𝑃 < 𝜇𝑃, (21)
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which can be solved by using the GEVP solver in the LMI
Toolbox of MATLAB [32].

Define the following Lyapunov function:

𝑉 (𝑥 (𝑘)) = 𝑥
𝑇
(𝑘) 𝑃𝑥 (𝑘) , 𝑘 ≥ 0. (22)

It is easy to see that

𝜆min (𝑃) ‖𝑥‖
2
≤ 𝑉 (𝑥) ≤ 𝜆max (𝑃) ‖𝑥‖

2
, (23)

where 𝜆min(𝑃) and 𝜆max(𝑃) denote the smallest and the
largest eigenvalue of the positive definite symmetric matrix
𝑃.

Lemma 2. For system (1), if the pair (𝐺,𝐻) is uncontrollable
and (21) holds, then for any given feedback matrix 𝐾, there
exists a constant 𝜇 > 0 such that

‖𝑥 (𝑘)‖ <
[

[

√

(1 + 𝜇) 𝜆max (𝑃)

𝜆min (𝑃)

]

]

𝑘

‖𝑥 (0)‖ , 𝑘 ≥ 0. (24)

Proof. Let the Lyapunov function be defined by (22). Along
the solution of system (1), we have

Δ𝑉 (𝑥 (𝑘)) = 𝑥
𝑇
(𝑘 + 1) 𝑃𝑥 (𝑘 + 1) − 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘)

= 𝑥
𝑇
(𝑘) [(𝐺 + 𝐻𝐾)

𝑇
𝑃 (𝐺 + 𝐻𝐾) − 𝑃] 𝑥 (𝑘) .

(25)

By (21) and (25), we obtain

Δ𝑉 (𝑥 (𝑘)) − 𝜇𝑉 (𝑥 (𝑘))

= 𝑥
𝑇
(𝑘) [(𝐺 + 𝐻𝐾)

𝑇
𝑃 (𝐺 + 𝐻𝐾) − 𝑃 − 𝜇𝑃] 𝑥 (𝑘) < 0,

(26)

which implies that

𝑉 (𝑥 (𝑘 + 1)) < (1 + 𝜇)𝑉 (𝑥 (𝑘)) . (27)

By (23) and (27), we have

𝜆min (𝑃) ‖𝑥 (𝑘 + 1)‖
2
< (1 + 𝜇) 𝜆max (𝑃) ‖𝑥 (𝑘)‖

2
. (28)

Thus,

‖𝑥 (𝑘 + 1)‖ < √

(1 + 𝜇) 𝜆max (𝑃)

𝜆min (𝑃)

‖𝑥 (𝑘)‖ . (29)

By induction, we have

‖𝑥 (𝑘)‖ <
[

[

√

(1 + 𝜇) 𝜆max (𝑃)

𝜆min (𝑃)

]

]

𝑘

‖𝑥 (0)‖ , 𝑘 ≥ 0. (30)

This completes the proof of Lemma 2.

3. Stabilization of Discrete-Time Planar
Switched Impulsive Systems

Now, we study the stabilization of the following discrete-time
switched linear system:

𝑥 (𝑘 + 1) = 𝐺
𝜎(𝑘)

𝑥 (𝑘) + 𝐻
𝜎(𝑘)

𝑢 (𝑘) , 𝑘 ̸= 𝑘
𝑗
,

𝑥 (𝑘
+

𝑗
) = 𝐹 (𝜎 (𝑘

𝑗
) , 𝜎 (𝑘

𝑗+1
)) 𝑥 (𝑘

𝑗
) ,

(31)

where 𝑥 ∈ 𝑅
2 is the state, 𝑢 ∈ 𝑅

𝑚 is the input, and 𝜎(𝑘) ∈ Λ =

{1, 2, . . . , 𝑁} is a switching signal for some positive integer
𝑁 > 1, which is a piecewise constant function. When 𝜎(𝑘) =

𝑖, 𝑖 ∈ Λ, system (31) switches to the 𝑖th subsystem. Moreover,
𝐹(⋅, ⋅) is a constant matrix, representing the impulse effect
on the system at the switching time. Moreover, 0 = 𝑘

0
<

𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ denote the discontinuous points (or switching

points) of 𝜎(𝑘), and denote 𝜎(𝑘
𝑗−1

) = 𝑝
𝑗
, (𝑗 = 1, 2, . . .). 𝐺

𝑖

and𝐻
𝑖
, 𝑖 ∈ Λ, are systemmatrices of appropriate dimensions.

Throughout this paper, we assume that

(H1) max
1≤𝑖,𝑗≤𝑁

‖𝐹(𝑖, 𝑗)‖ ≤ 𝛿, where 𝛿 > 0 is a positive
constant.

Under the linear feedback law 𝑢(𝑘) = 𝐾
𝜎(𝑘)

𝑥(𝑘) for 𝑘 ̸= 𝑘
𝑗
,

𝑗 = 1, 2 . . ., system (31) reduces to the following closed-loop
system:

𝑥 (𝑘 + 1) = [𝐺
𝜎(𝑘)

+ 𝐻
𝜎(𝑘)

𝐾
𝜎(𝑘)

] 𝑥 (𝑘) , 𝑘 ̸= 𝑘
𝑗
. (32)

Denote the frequency of the switching signal by

𝑓 = lim sup
𝑘→∞

𝑁
𝜎
(0, 𝑘)

𝑘

, (33)

where 𝑁
𝜎
(0, 𝑘) is the number of activated subsystems on

[0, 𝑘]. If (𝐺
𝑖
, 𝐻
𝑖
) is controllable for 𝑖 ∈ Λ, we have the

following result.

Theorem 3. Assume that (H1) and (H2) hold and (𝐺
𝑖
, 𝐻
𝑖
)

is controllable for 𝑖 ∈ Λ. Then, there exist a set of feedback
matrices {𝐾

𝑖
}
𝑖∈Λ

such that the closed-loop system (32) is asymp-
totically stable for any switching signal 𝜎 with a frequency
𝑓 < 1.

Proof. For any 𝑘 > 0, assume that 𝑘 ∈ (𝑘
𝑖
, 𝑘
𝑖+1

] for some
positive integer 𝑖. Note that 𝑓 < 1. By the definition of 𝑓,
we can choose a constant 0 < 𝛼 < 1 such that 𝑖 + 1 ≤ 𝑘𝛼

for sufficiently large 𝑘. Without loss of generality, we assume
that 𝑖 + 1 ≤ 𝑘𝛼 for 𝑘 ≥ 0. Set 𝛽 = 1 − 𝛼. It is easy to see that
𝛽 > 0. Let 𝑐 = (𝛿𝑁)

𝛼/𝛽 and 𝜆 be sufficiently small such that
𝜆𝑐 < 1. For such a choice of 𝜆, by Lemma 1, there exist a set
of feedback matrices {𝐾

𝑖
}
𝑖∈Λ

such that for any 𝑘 >
̃
𝑘 ≥ 0,









(𝐺
𝑖
+ 𝐻
𝑖
𝐾
𝑖
)
𝑘−�̃�









≤ 𝑁𝜆
𝑘−�̃�−1

, (34)
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where 𝑁 = max
𝑖∈Λ

𝑁
𝑖
. For any 𝑙 ∈ [𝑘

𝑗−1
, 𝑘
𝑗
), (1 ≤ 𝑗 ≤ 𝑖 + 1),

we have

𝜎 (𝑙) = 𝜎 (𝑘
𝑗−1

) = 𝑝
𝑗
,

𝑥 (𝑙 + 1) = (𝐺
𝑝𝑗

+ 𝐻
𝑝𝑗
𝐾
𝑝𝑗
) 𝑥 (𝑙) ,

𝑥 (𝑘
+

𝑗
) = 𝐹 (𝑝

𝑗
, 𝑝
𝑗+1

) 𝑥 (𝑘
𝑗
) ,

𝑥 (𝑘
𝑗
) = (𝐺

𝑝𝑗
+ 𝐻
𝑝𝑗
𝐾
𝑝𝑗
)

𝑘𝑗−𝑘𝑗−1

𝑥 (𝑘
+

𝑗−1
) .

(35)

Since 𝑘
𝑖
≤ 𝑘 < 𝑘

𝑖+1
, that is, 𝑘 ∈ [𝑘

𝑖
, 𝑘
𝑖+1

), we obtain

𝑥 (𝑘) = (𝐺
𝑝𝑖+1

+ 𝐻
𝑝𝑖+1

𝐾
𝑝𝑖+1

)

𝑘−𝑘𝑖
𝑥 (𝑘
+

𝑖
)

= (𝐺
𝑝𝑖+1

+ 𝐻
𝑝𝑖+1

𝐾
𝑝𝑖+1

)

𝑘−𝑘𝑖
𝐹 (𝑝
𝑖
, 𝑝
𝑖+1

)

× (𝐺
𝑝𝑖

+ 𝐻
𝑝𝑖
𝐾
𝑝𝑖
)

𝑘𝑖−𝑘𝑖−1
𝑥 (𝑘
+

𝑖−1
)

= (𝐺
𝑝𝑖+1

+ 𝐻
𝑝𝑖+1

𝐾
𝑝𝑖+1

)

𝑘−𝑘𝑖
𝐹 (𝑝
𝑖
, 𝑝
𝑖+1

)

× (𝐺
𝑝𝑖

+ 𝐻
𝑝𝑖
𝐾
𝑝𝑖
)

𝑘𝑖−𝑘𝑖−1

× 𝐹 (𝑝
𝑖−1

, 𝑝
𝑖
) (𝐺
𝑝𝑖−1

+ 𝐻
𝑝𝑖−1

𝐾
𝑝𝑖−1

)

𝑘𝑖−1−𝑘𝑖−2
𝑥 (𝑘
+

𝑖−2
)

= (𝐺
𝑝𝑖+1

+ 𝐻
𝑝𝑖+1

𝐾
𝑝𝑖+1

)

𝑘−𝑘𝑖

𝑖

∏

𝑗=1

𝐹 (𝑝
𝑗
, 𝑝
𝑗+1

)

× (𝐺
𝑝𝑗

+ 𝐻
𝑝𝑗
𝐾
𝑝𝑗
)

𝑘𝑗−𝑘𝑗−1

𝑥 (0) .

(36)

By the analysis and (H1), we obtain

‖𝑥 (𝑘)‖ ≤









(𝐺
𝑝𝑖+1

+ 𝐻
𝑝𝑖+1

𝐾
𝑝𝑖+1

)

𝑘−𝑘𝑖








×

𝑖

∏

𝑗=1






𝐹 (𝑝
𝑗
, 𝑝
𝑗+1

)







×










(𝐺
𝑝𝑗

+ 𝐻
𝑝𝑗
𝐾
𝑝𝑗
)

𝑘𝑗−𝑘𝑗−1









× ‖𝑥 (0)‖

≤ 𝛿
𝑖
𝑁
𝑖+1

𝜆
𝑘−𝑖−1

‖𝑥 (0)‖

≤ 𝛿
𝑖+1

𝑁
𝑖+1

𝜆
−(𝑖+1)

𝜆
𝑘
‖𝑥 (0)‖

≤ (𝛿𝑁𝜆
−1

)

𝑘𝛼

𝜆
𝑘
‖𝑥 (0)‖

= (𝛿𝑁)
𝛼𝑘

𝜆
𝛽𝑘

‖𝑥 (0)‖

= (𝜆𝑐)
𝛽𝑘

‖𝑥 (0)‖ .

(37)

Noting that 𝜆𝑐 < 1 and 𝛽 > 0, we have that system (31) is
stabilizable under arbitrary switching signal with a frequency
𝑓 < 1. This completes the proof of Theorem 3.

Next, we consider the case when there exist both control-
lable subsystems and uncontrollable subsystems for system
(31). For the sake of convenience, we suppose that

(H2) (𝐺
1
, 𝐻
1
), (𝐺
2
, 𝐻
2
), . . . , (𝐺

𝑝
, 𝐻
𝑝
) are uncontrollable

subsystems and (𝐺
𝑝+1

, 𝐻
𝑝+1

), (𝐺
𝑝+2

, 𝐻
𝑝+2

), . . . ,

(𝐺
𝐼
, 𝐻
𝐼
) are controllable subsystems, where 1 ≤

𝑝 < 𝐼.

Denote the switching frequency of those controllable subsys-
tems by

̃
𝑓 = lim sup

𝑘→∞

�̃�
𝜎
(0, 𝑘)

𝑘

, (38)

where �̃�
𝜎
(0, 𝑘) is the number of activated controllable sub-

systems on [0, 𝑘]. Denote the total activation time for those
controllable subsystems on [0, 𝑘] by 𝑇(0, 𝑘). In this paper, we
assume that there exists a constant 𝛾 > 0 such that

𝑇 (0, 𝑘) ≥ 𝛾𝑘, 𝑘 ≥ 0. (39)

Similar to the above analysis, for any given feedback matrices
𝐾
𝑖
(1 ≤ 𝑖 ≤ 𝑝), there exist positive definite symmetric

matrices 𝑃
𝑖
and positive constants 𝜇

𝑖
such that

(𝐺
𝑖
+ 𝐻
𝑖
𝐾
𝑖
)
𝑇

𝑃
𝑖
(𝐺
𝑖
+ 𝐻
𝑖
𝐾
𝑖
) − 𝑃
𝑖
< 𝜇
𝑖
𝑃
𝑖
, 1 ≤ 𝑖 ≤ 𝑝. (40)

Set

̃
𝜆 = max
1≤𝑖≤𝑝

{√

(1 + 𝜇
𝑖
) 𝜆max (𝑃𝑖)

𝜆min (𝑃
𝑖
)

} > 1. (41)

Theorem 4. Assume that (H2), (39), and (40) hold. Then,
there exist a set of feedback matrices {𝐾

𝑖
}
𝑖∈Λ

such that the
closed-loop system (32) is asymptotically stable for any switch-
ing signal 𝜎 with a frequency ̃

𝑓 < 𝛾.

Proof. For any 𝑘 > 0, assume that 𝑘 ∈ [𝑘
𝑖
, 𝑘
𝑖+1

) for
some positive integer 𝑖. Denote the number of activated
controllable subsystems in [0, 𝑘] by 𝑖

1
. Since ̃

𝑓 < 𝛾. By the
definition of ̃

𝑓, there exists a constant 0 < �̃� < 𝛾 such that
𝑖
1
≤ 𝑘�̃� for 𝑘 ≥ 0 without loss of generality. Set ̃

𝛽 = 𝛾 − �̃�. It
is easy to see that ̃

𝛽 > 0 since 0 < �̃� < 𝛾. Let the constant 𝑐
satisfies

𝛿𝑁
�̃�̃
𝜆 = 𝑐
𝛽
, (42)

where ̃
𝜆 is determined by (41) under any given feedback

matrices {𝐾
𝑖
}
1≤𝑖≤𝑝

.
For any 𝑘 ≥ 0, assume that 𝜎(𝑘

𝑗−1
) = 𝑝
𝑗
, 1 ≤ 𝑗 ≤ 𝑖 + 1 and

𝑘
𝑖
≤ 𝑘 < 𝑘

𝑖+1
. By (35), we have

𝑥 (𝑘) = (𝐺
𝑝𝑖+1

+ 𝐻
𝑝𝑖+1

𝐾
𝑝𝑖+1

)

𝑘−𝑘𝑖
𝑥 (𝑘
+

𝑖
)

= (𝐺
𝑝𝑖+1

+ 𝐻
𝑝𝑖+1

𝐾
𝑝𝑖+1

)

𝑘−𝑘𝑖
𝐹 (𝑝
𝑖
, 𝑝
𝑖+1

) 𝑥 (𝑘
𝑖
) .

(43)

If 𝑝
𝑗
∈ {𝑝 + 1, 𝑝 + 2, . . . , 𝑁}, by (34) and (H1), we have

‖𝑥 (𝑘)‖ ≤









(𝐺
𝑝𝑖+1

+ 𝐻
𝑝𝑖+1

𝐾
𝑝𝑖+1

)

𝑘−𝑘𝑖








⋅




𝐹 (𝑝
𝑖
, 𝑝
𝑖+1

)




⋅




𝑥 (𝑘
𝑖
)





≤ 𝛿𝑁𝜆
𝑘−𝑘𝑖−1 



𝑥 (𝑘
𝑖
)




.

(44)
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If 𝑝
𝑗
∈ {1, 2, . . . , 𝑝}, by Lemma 2, (41), and (H1), we have

‖𝑥 (𝑘)‖ ≤ (√

(1 + 𝜇) 𝜆max (𝑃)

𝜆min (𝑃)

)

𝑘−𝑘𝑖

𝛿




𝑥 (𝑘
𝑖
)





≤ 𝛿
̃
𝜆
𝑘−𝑘𝑖 



𝑥 (𝑘
𝑖
)




.

(45)

Based on the same analysis, there exists a feedback matrix
𝐾
𝑝𝑚−1

for each 𝑚 ∈ {1, 2, . . . , 𝑗} such that





𝑥 (𝑘
𝑚
)




≤

{
{
{
{

{
{
{
{

{

𝛿𝑁𝜆
𝑘𝑚−𝑘𝑚−1





𝑥 (𝑘
𝑚−1

)




,

𝜎 (𝑘
𝑚−1

) ∈ {𝑝 + 1, 𝑝 + 2, . . . , 𝑁} ,

𝛿
̃
𝜆
𝑘𝑚−𝑘𝑚−1





𝑥 (𝑘
𝑚−1

)




,

𝜎 (𝑘
𝑚−1

) ∈ {1, 2, . . . , 𝑝} .

(46)

We now choose 𝜆 sufficiently small such that 𝜆𝑐 < 1. Under
the feedback law 𝑢(𝑘) = 𝐾

𝑖𝑚
𝑥(𝑡) for 𝑚 = 0, 1, . . . , 𝑗, we get

from (39) and (44)–(46) by induction that

‖𝑥 (𝑘)‖ ≤ 𝛿
𝑘
[𝑁𝜆
−1

]

𝑖1
𝜆
𝑇(0,𝑘)̃

𝜆
𝑘
‖𝑥 (0)‖

≤ 𝛿
𝑘
[𝑁𝜆
−1

]

�̃�𝑘

𝜆
𝛾𝑘̃

𝜆
𝑘
‖𝑥 (0)‖

= (𝛿𝑁
�̃�̃
𝜆)

𝑘

𝜆
𝛽𝑘

‖𝑥 (0)‖

= (𝑐𝜆)
𝛽𝑘

‖𝑥 (0)‖ .

(47)

Noting that 𝑐𝜆 < 1 and ̃
𝛽 > 0, we have that system (32) is

stabilizable under arbitrary switching signal with a frequency
̃
𝑓 < 𝛾. This completes the proof of Theorem 4.

4. Examples

In order to illustrate the theoretical result, we consider two
examples.

Example 1. Consider the switched systems (31), with 𝜎(𝑘) =

1, 2, 3, and

𝐺
1
= [

3 1

0 5
] , 𝐻

1
= [

1

4
] ,

𝐺
2
= [

7 4

10 −1
] , 𝐻

2
= [

3

1
] ,

𝐺
3
= [

8 3

5 1
] , 𝐻

3
= [

5

1
] .

(48)

It is not difficult to verify that (𝐺
𝑖
, 𝐻
𝑖
) is controllable for 𝑖 =

1, 2, 3.
By Lemma 1, we get 𝑁 = max

𝑖=1,2,3
𝑁
𝑖
= 161. We choose

𝜆 = 1/2, then the closed-loop poles of (32) are 1/2 and 1/4.
We have the feedback matrices

𝐾
1
= [3.4375 0.9531] ,

𝐾
2
= [1.1875 1.6875] ,

𝐾
3
= [1.5302 0.5991] .

(49)

Let 𝛿 = 2 and the switching frequency 𝑓 < 1. Based on
the proof of Theorem 3, we can choose that 𝛼 = 1/20, then

𝛽 = 1 − 𝛼 =

19

20

> 0,

𝑐 = (𝛿𝑁)
𝛼/𝛽

= 1.3552.

(50)

We can get 𝜆𝑐 = 0.6776 < 1. By Theorem 3, the system
(32) is asymptotically stable with 𝑓 < 1.

Example 2. Consider the switched systems (31), with 𝜎(𝑘) =

1, 2, 3, and

𝐺
1
= [

0 1

−1 0
] , 𝐻

1
= [

1

0
] ,

𝐺
2
= [

1 −4

2 0
] , 𝐻

2
= [

2

1
] ,

𝐺
3
= [

1 0

0 1
] , 𝐻

3
= [

1

0
] .

(51)

It is not difficult to verify that (𝐺
𝑖
, 𝐻
𝑖
) is controllable for 𝑖 =

1, 2, and (𝐺
3
, 𝐻
3
) is uncontrollable.

By Lemma 1, we get 𝑁 = max
𝑖=1,2

𝑁
𝑖
= 21. Choose 𝜆 =

1/10, we have the feedback matrices

𝐾
1
= [−0.1500 0.9950] ,

𝐾
2
= [1.0545 −1.2590] .

(52)

Let𝛿 = 3 and 𝛾 = 3.The switching frequency ̃
𝑓 < 3, �̃� = 1/10.

For given𝐾
3
= [2 1]. Based on the (40), we can choose 𝜇

3
=

12 and 𝑃
3
= [
3 1

1 1
], then

̃
𝜆 = 25.0889. (53)

ByTheorem 4, we have

̃
𝛽 =

29

10

> 0,

𝑐 = 4.92,

(54)

then

𝜆𝑐 = 0.492 < 1. (55)

By Theorem 4, the system (32) is asymptotically stable with
̃
𝑓 < 3.

5. Conclusion

In this paper, the stabilization problem of discrete-time
planar switched linear systems with impulse is investigated.
When all the subsystems are controllable, we first establish
an estimation on the transition matrix for each controllable
subsystem, which is a discrete analogue of the corresponding
result in [17]. By using such an estimation, we prove that the
discrete-time switched impulsive system is stabilizable under
arbitrary switching signal with a given switching frequency.
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When there exists at least one uncontrollable subsystem,
by using a Lyapunov functional approach, we show that
the stabilizability of the switched impulsive system can be
retained for the appropriate switching frequency of those
controllable subsystems.
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