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Hybrid evolutionary computational technique is developed to jointly estimate the amplitude, frequency, range, and 2D direction
of arrival (elevation and azimuth angles) of near-field sources impinging on centrosymmetric cross array. Specifically, genetic
algorithm is used as a global optimizer, whereas pattern search and interior point algorithms are employed as rapid local search
optimizers. For this, a new multiobjective fitness function is constructed, which is the combination of mean square error and
correlation between the normalized desired and estimated vectors. The performance of the proposed hybrid scheme is compared
not only with the individual responses of genetic algorithm, interior point algorithm, and pattern search, but also with the existing
traditional techniques. The proposed schemes produced fairly good results in terms of estimation accuracy, convergence rate, and
robustness against noise. A large number of Monte-Carlo simulations are carried out to test out the validity and reliability of each
scheme.

1. Introduction

Parameter estimation of signals is one of the key issues
in array signal processing, which has direct applications in
radar, sonar, seismic exploration, electronic surveillance, and
so forth [1]. In the literature, various algorithms are available
to discuss this issue, such as the MUSIC algorithm [2], the
maximum likelihood (ML) algorithm [3], the matrix pencil
(MP) algorithm [4], and the ESPRIT algorithm [5]. Many
of these algorithms make a supposition that the sources are
positioned in the far field of sensors array so that the signal
received from them can be taken as plane waves. With this
supposition, the wave front of each signal is only a function of
the DOA of the sources, which is easy to deal with. However,
the situation becomes complicated if the sources are situated
closer to the sensor array (near field). In this case, the waves
are considered to be spherical, where the wave-front of each
signal is the function of DOA, as well as, range of the sources
[6].

Many classical algorithms are also available to discuss
the problem of near-field source localization, such as the

linear prediction algorithm [7], the 2D MUSIC algorithm
[8], and the ESPRIT based algorithms [9, 10]. However, these
algorithms mainly focus on 2D case, that is, estimation of the
elevation angle and range parameters. Some algorithms are
also available which deal with the 3D case (elevation angle,
azimuth angle, and range) of near-field sources, for example,
[11–14]. In [11] expectation-maximization (EM) algorithm
is proposed, but it suffers from heavy computations and
iterative process. A unitary ESPRIT algorithm is developed in
[12] which requires further parameter pairing process, while
the algorithm presented in [13] heavily relies on different
carrier frequencies and approximated sinusoidal signals and
also requires high sampling narrow band data. A spectral
search based method is presented in [14] which can only
be used for underwater environment. In [15], comparatively
an efficient algorithm based on cumulants is proposed for
4D parameter estimation of near-field sources (frequency,
range, and 2D DOA), but it also requires a large number of
snapshots and ends up with higher mean square error (MSE).
Moreover, it is also unable to estimate the amplitude of
signals.
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Now to estimate the parameters of near-field sources,
heuristic techniques like evolutionary computing techniques
(ECT) can also be used in the field of optimization. ECT,
which is also known as computational intelligence, is a sub-
field of artificial intelligence that can be employed for com-
binatorial as well as for continuous optimization problems.
ECT has stochastic or metaheuristic optimization nature
and is considered to be global optimization methods. These
techniques include genetic algorithm (GA) [16], particle
swarm optimization (PSO) [17], and differential evolution
(DE) [18]. These techniques are based on the principle of
biological evolution, such as genetic inheritance and natural
selection. One of the most important features of ECT is
that they become even more reliable and effective when
hybridized with any other efficient scheme such as pattern
search (PS), active set (AS), and interior point algorithm
(IPA) [19–24].

In this paper, 5D parameters (amplitude, frequency,
range, elevation angle, and azimuth angle) of near-field
sources impinging on centrosymmetric cross array are jointly
estimated. Initially we used GA, PS, and IPA alone, but
then we adopt hybrid evolutionary computing techniques
based on GA hybridized with PS or IPA. In these hybrid
approaches, the solution starts with a global optimizer (GA)
and ends up with local optimizers (PS or IPA). For this
a new multiobjective fitness function is used, which is the
combination of MSE and correlation between normalized
desired and estimated vectors. It requires only a single
snapshot, which obviously decreases the computational cost.
The performances of these two hybrid approaches (GA-PS
and GA-IPA) are compared not only with each other, but
also with the individual performance of GA, IPA, and PS.
Besides, the proposed hybrid schemes are also comparedwith
the traditional techniques available in the literature [15].

Throughout the paper, matrices and vectors are repre-
sented by bold upper and lower case letters, respectively,
whereas 𝑇, 𝐻, and 𝑁 are used, respectively, for transpose,
hermitian, and normalization of vectors or matrix.

The rest of the work is organized as follows. In
Section 2, data model is developed for near-field sources,
while Section 3 describes the signal subspace dimension.The
proposed schemes are given in Section 4, while results and
simulations are provided in Section 5. Finally, conclusion and
future work direction are given in Section 6.

2. Signal Model for Near-Field Sources

In this section, signal model for near-field sources impinging
on centrosymmetric cross array (CSCA) is developed. All
sources are considered to be narrow band and mutually
statistically independent. The amplitude (𝑎), frequency (𝑓),
range (𝑟), and 2D DOA (𝜃, 𝜙) are different for different
sources. The CSCA is composed of two subarrays that are
placed along 𝑥-axis and 𝑦-axis, respectively, as shown in
Figure 1. The total number of sensors in the array is 4𝑄 +

1 where each subarray consists of 2𝑄 sensors, while the
reference sensor is common among both. If 𝑃 is the total
number of sources, then the signal received at 𝑚th and 𝑛th
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Figure 1: Signal model for near-field sources.

sensor in 𝑥-axis and 𝑦-axis subarrays, respectively, can be
modeled as
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where 𝜂
𝑚,0

and 𝜂
0,𝑛

represent the additive white Gaussian
noise (AWGN) added at 𝑚th and 𝑛th sensors in 𝑥-axis and
𝑦-axis subarrays, respectively.
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where 𝜆min = 𝑐/𝑓max. So, (3) can be represented as

𝛼
𝑥𝑝

= −

𝜋𝑓
𝑝

2𝑓max
(sin 𝜃

𝑝
cos𝜙
𝑝
) . (4)

In the same way,

𝛽
𝑥𝑝

=

𝜋𝑑
2

(1 − sin2𝜃
𝑝
cos2𝜙
𝑝
)

𝜆
𝑝
𝑟
𝑝

, (5)

where (5) can be further rewritten as
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By using (4) and ((6)-(7)) in (1) and (2), we get:
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(8)

where 𝑓
𝑝
represents the frequency of 𝑝th source, while 𝑓max

is the maximum frequency to be used. In vector form (8) can
be collectively represented as

w = Ba + 𝜂, (9)

where w, 𝜂, a, and B can be defined as
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From (8), one can see that the unknown parameters are
𝑎
𝑝
, 𝑓
𝑝
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𝑝
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𝑝
, and 𝜙

𝑝
where 𝑝 = 1, 2, . . . , 𝑃. So, the problem

in hand is to estimate these 5D parameters jointly and
efficiently; before starting the problem, it is important to find
out the dimension of the signal subspace from the received
snapshots.

3. Signal Subspace Dimension

For this purpose, we used nonparametric technique:

w = Ba + 𝜂, (12)

where a is a 𝑃 × 1 source vector, B is our (4𝑄 + 1) × 𝑃 array
manifold matrix, and 𝜂 is an AWGN vector with spectral
matrix 𝜎

2

𝜂
𝐼. The spectral matrix of w is given as
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Q
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expect the last (4𝑄 + 1) − 𝑃 eigenvalues representing noise to
be the smallest and also equal. For finding the dimensions of
two subspaces, we can use the following hypothesis [25]:
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This numerator is the arithmeticmean of (4𝑄+1)−𝑃being the
smallest eigenvalues, while denominator is their geometric
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Figure 2: Flow diagram for hybrid GA-PS and GA-IPA.

mean. We start with 𝑃 = 1, then 𝑃 is chosen correctly, and
then the last (4𝑄 + 1) − 𝑃 eigen values are the smallest and
equal, making 𝐿

𝑃
(𝑃) = 0. After having found 𝑃 by this test,

we know exactly the number of signals; whether any of these
signals is friend, foe, or indifferent is not the topic of concern
for this paper.

4. Proposed Schemes

In this section, brief introduction and flow diagram are
provided for IPA, PS, and GA.

4.1. Interior Point Algorithm (IPA). Interior point methods
(barrier methods) can be used for linear and nonlinear con-
vex optimization problems. It uses either conjugate gradient
step through a trust region or Newton step by using linear

programming in order to get an optimum solution during
each iteration [26]. The IPA has extensive applications and
performs very well particularly in the presence of less local
minima. However, its performance is superb even in the
presence of more local minima when it is used as a local
search optimizer with PSO or GA. For detailed applications
and derivation of the algorithm, it is recommended that
reader should see [27]. By observing such applications, in this
work IPA is mainly used as a local search optimizer with GA.

4.2. Pattern Search (PS). Pattern search was introduced by
Hookes and Jeeves in 1961 which is gradient or derivative
free technique and can be used for both local and global
optimization problems. Basically, PS works on mesh which is
defined according to some specific rules. If no improvement
is achieved in cost function at the mesh points of current
iteration, then the mesh is polished and the process is
repeated. It has applications in many fields, such as signal
processing and soft computing [28]. In this work, PS is also
mainly used as a local search optimizer with GA in which
the best chromosome achieved through GA is given as the
starting point to PS.

4.3. Genetic Algorithm (GA). GA is basically different from
previously discussed algorithm (IPA and PS) and is applicable
to a wide range of optimization problems. GA is more promi-
nent and proficient algorithm than any other evolutionary
computing technique due to its ease in conception and ease
in implementation and more importantly less probable to get
stuck in the presence of local optima. GA is being successfully
applied to a wide range of applications from commerce to
scientific research [29].

The steps for GA and GA-PS in the form of pseudocode
are given below, while their flow diagram is shown in
Figure 2.

Step 1 (initialization). In this step, we randomly generate I
number of chromosomes, where the length of each chromo-
some is 5∗P. In each chromosome the first P genes represent
amplitudes, the second P genes contain the frequencies, and
the next P genes represent the ranges, while the fourth
and fifth P genes represent elevation and azimuth angles,
respectively, of the sources as follows:
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where 𝐿
𝑙
and 𝑙
𝑟
are the lowest, while𝐻

𝑙
and𝐻

𝑟
are the highest

limits of signals amplitude and range, respectively.

Step 2 (fitness function). Our goal is to minimize the errors
received for both subarrays. For 𝑖th chromosome, it can be
given as

err (𝑖) = err
𝑥
(𝑖) + err

𝑦
(𝑖) , (20)

err
𝑥
(𝑖) =

1

2𝑄
𝑥

𝑄
𝑥

∑

𝑚=−𝑄
𝑥
+1


𝑤
𝑚,0

− 𝑤
𝑖

𝑚,0



2

+



w𝐻
𝑥𝑁

⋅ ŵ𝑖
𝑥𝑁


− 1


,

err
𝑦
(𝑖) =

1

2𝑄
𝑦

𝑄
𝑦

∑

𝑛=−𝑄
𝑦
+1


𝑤
0,𝑛

− 𝑤
𝑖

0,𝑛



2

+



w𝐻
𝑦𝑁

⋅ ŵ𝑖
𝑦𝑁


− 1


,

(21)

where in (21), 𝑤
𝑚,0

and 𝑤
0,𝑛

are defined in (8), respectively,
while 𝑤

𝑖

𝑚,0
and 𝑤

𝑖

0,𝑛
are given as

𝑤
𝑖

𝑚,0
=

𝑃

∑

𝑝=1

𝑐
𝑖

𝑝
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2
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𝑖
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2
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2

/16(𝑐
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.

(22)

Similarly, in (21), w
𝑥𝑁

, ŵ𝑖
𝑥𝑁

,w
𝑦𝑁

, and ŵ𝑖
𝑦𝑁

can be defined
as

w
𝑧𝑁

=
w
𝑧

w𝑧


,

ŵ𝑖
𝑧𝑁

=
ŵ𝑖
𝑧

ŵ𝑖𝑧


,

(23)

where 𝑧 = 𝑥, 𝑦.

Step 3 (termination criteria). The termination criteria de-
pend on the following conditions if they are achieved:

(a) the objective function value is achieved which is
predefined; that is, 𝜀 ≤ 10

−7, or
(b) total number of iterations has been completed.

Step 4 (reproduction). New population is reproduced by
using the operators of crossover, elitism, and mutation selec-
tion as shown in Table 1.

Step 5 (hybridization). In this important step, for further
improvements, the best chromosome achieved throughGA is
given to PS and IPA as starting point. The parameter settings
for IPA and PS are provided in Table 1.

Step 6 (storage). For better statistical analysis, store the global
best of the current run and repeat Steps 2–5 for sufficient
numbers of independent runs.

5. Results and Discussion

In this section, several simulations are performed to validate
the proposed schemes. Initially, the comparison of proposed
hybrid schemes is carried out with the individual perfor-
mance of GA, IPA, and PS in terms of estimation accuracy,
convergence rate, and proximity effects. At the end of this
section, the comparison of proposed schemes is made with

the traditional existing technique [15] using error as a figure
of merit. We have used aMATLAB built-in optimization tool
box, for which the parameter settings are provided in Table 1.
All the values of frequencies, ranges, and DOA are taken in
terms of Mega-Hertz (MHz), wavelength (𝜆), and radians
(rad), respectively. Every time, we have used same number
of sensors in both subarrays, where the reference sensor is
common for both.The interelement spacing between the two
consecutive sensors in each subarray is taken as 𝜆/4. Each
result is averaged over 100 independent runs.

Case 1. In this case, the estimation accuracy of IPA, PS, GA,
GA-IPA, and GA-PS is discussed for 2 sources. The CSCA
consists of 9 sensors; that is, each subarray is composed
of four sensors, while the reference sensor is common for
them. In this case, no noise is added to the system. The
desired values of amplitudes, frequencies, ranges, elevation,
and azimuth angles are 𝑎

1
= 6, 𝑓

1
= 30MHz, 𝑟

1
= 2𝜆,

𝜃
1
= 0.2618 rad, and 𝜙

1
= 2.0071 rad; 𝑎

2
= 4, 𝑓

2
= 60MHz,

𝑟
2
= 0.6𝜆, 𝜃

2
= 1.1345 rad, and 𝜙

2
= 2.9671 rad.

Although in this case, GA alone has produced fairly
good estimation accuracy as provided in Table 2; however, it
becomes even more accurate when hybridized with IPA and
PS. Among all schemes, the GA-PS approach produced better
results and maintained less error between desired values and
estimated values. The second best scheme is GA-IPA, while
GA alone provides the third best results.

Case 2. In this case, the estimation accuracy is discussed for
3 sources having values 𝑎

1
= 3, 𝑓

1
= 40MHz, 𝑟

1
= 2.5𝜆,

𝜃
1
= 0.4363 rad, and 𝜙

1
= 1.0472 rad; 𝑎

2
= 1, 𝑓

2
= 70MHz,

𝑟
2
= 5𝜆, 𝜃

2
= 0.7330 rad, and 𝜙

2
= 2.1817 rad; 𝑎

3
= 7, 𝑓

3
=

50MHz, 𝑟
3

= 0.2𝜆, 𝜃
3

= 1.3963 rad, and 𝜙
3

= 3.5779 rad.
This time the array is composed of 13 sensors. Due to the
increase of sources, the accuracy of IPA, PS, and GA has
been significantly despoiled. However, as listed in Table 3, the
accuracy of GA has improved when hybridized with IPA and
PS.
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Table 1: Parameter setting for GA, PS, and IPA.

GA PS IPA
Parameters Settings Parameters Setting Parameters Setting

Population size 240 Starting point

Best
chromosome
achieved by

GA

Starting point

Best
chromosome
achieved by

GA
Number of
generations 1000 Polling order Consecutive Subproblem

algorithm
Idl

factorization
Migration
direction Both ways Maximum

iteration 1000 Maximum
perturbation 0.1

Crossover fraction 0.2 Function
evaluation 17000 Minimum

perturbation 1𝑒
−8

Crossover Heuristic Mesh size 01 Scaling Objective and
constraint

Function tolerance 10–12 Expansion factor 2.0 Hessian BFGS

Initial range (0-1) Contraction factor 0.5 Derivative type Central
difference

Scaling function Rank Penalty factor 100 Penalty factor 100

Selection Stochastic uniform Bind tolerance 10-04 Maximum function
evaluation 50000

Elite count 2 Mesh tolerance 10-07 Maximum iteration 1000
Mutation function Adaptive feasible X tolerance 10-06 X tolerance 10–12

Table 2: Estimation accuracy of 2 sources using 9 sensors.

Scheme 𝑎
1

𝑓
1
(MHz) 𝑟

1
(𝜆) 𝜃

1
(rad) 𝜙

1
(rad) 𝑎

2
𝑓
2
(MHz) 𝑟

2
(𝜆) 𝜃

2
(rad) 𝜙

2
(rad)

Desired values 6.0000 30.0000 2.0000 0.2618 2.0071 4.0000 60.0000 0.6000 1.1345 2.9671
IPA 6.0096 33.5342 2.0095 0.2714 2.0168 4.0095 63.5376 0.6095 1.1442 2.9767
PS 6.0050 32.7908 2.0051 0.2668 2.0123 4.0049 62.7546. 0.6050 1.1396 2.9722
GA 6.0031 30.9765 2.0032 0.2649 2.0103 4.0032 60.9782 0.6030 1.1376 2.9703
GA-IPA 6.0020 30.2289 2.0019 0.2638 2.0091 4.0020 60.2415 0.6018 1.1367 2.9692
GA-PS 6.0007 30.1089 2.0008 0.2625 2.0078 4.0008 60.1063 0.6007 1.1352 2.9678

Table 3: Estimation accuracy of 3 sources using 13 sensors.

Scheme 𝑎
1

𝑓
1

(MHz)
𝑟
1

(𝜆)

𝜃
1

(rad)
𝜙
1

(rad)
𝑎
2

𝑓
2

(MHz)
𝑟
2

(𝜆)

𝜃
2

(rad)
𝜙
2

(rad)
𝑎
3

𝑓
3

(MHz)
𝑟
3

(𝜆)

𝜃
3

(rad)
𝜙
3

(rad)
Desired
values

3.0000 40.0000 2.5000 0.4363 1.0472 1.0000 70.0000 5.0000 0.7330 2.1817 7.0000 50.0000 0.2000 1.3963 3.5779

IPA 3.0557 46.9871 2.5558 0.4920 1.1030 1.0557 64.3425 5.0558 0.7888 2.2376 7.0558 57.0123 0.2557 1.4522 3.6337
PS 3.0338 45.1204 2.5338 0.4702 1.0810 1.0338 75.8734 5.0339 0.7668 2.2154 7.0339 55.8693 0.2339 1.4301 3.6117
GA 3.0092 43.7894 2.5093 0.4456 1.0565 1.0092 66.5682 5.0093 0.7423 2.1908 7.0092 54.1298 0.2093 1.4057 3.5871
GA-IPA 3.0065 41.2187 2.5066 0.4428 1.0538 1.0065 71.2654 5.0067 0.7396 2.1883 7.0066 51.2879 0.2067 1.4029 3.5847
GA-PS 3.0024 40.8903 2.5022 0.4388 1.0497 1.0024 70.8931 5.0025 0.7356 2.1841 7.0021 50.7969 0.2022 1.3986 3.5802

The hybrid GA-PS technique proved to be the most
accurate approach for three sources, while the second best
approach is the other hybrid GA-IPA approach.

Case 3. In this case, the estimation accuracy of four near-field
sources is discussed in the absence of noisewhere theCSCA is
composed of 17 sensors. The desired values are 𝑎

1
= 3.5, 𝑓

1
=

65MHz, 𝑟
1
= 1𝜆, 𝜃

1
= 0.4712 rad, and 𝜙

1
= 0.1745 rad; 𝑎

2
=

5, 𝑓
2
= 30MHz, 𝑟

2
= 6𝜆, 𝜃

2
= 0.8727 rad, and 𝜙

2
= 2.0420

rad; 𝑎
3

= 2, 𝑓
3

= 85MHz, 𝑟
3

= 10𝜆,𝜃
3

= 1.2741 rad, and
𝜙
3
= 2.7925 rad; 𝑎

4
= 8, 𝑓

4
= 25MHz, 𝑟

4
= 4𝜆, 𝜃

4
= 1.5184

rad, and 𝜙
4

= 4.4506 rad. One can see from Table 4 that the
estimation accuracy of all schemes degraded as we have faced
more localminima in this case.However, even in this case, the
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Table 5: Estimation accuracy for 3 sources at SNR = 5 dB.

Scheme 𝑎
1

𝑓
1

(MHz)
𝑟
1

(𝜆)

𝜃
1

(rad)
𝜙
1

(rad) 𝑎
2

𝑓
2

(MHz)
𝑟
2

(𝜆)

𝜃
2

(rad)
𝜙
2

(rad) 𝑎
3

𝑓
3

(MHz)
𝑟
3

(𝜆)

𝜃
3

(rad)
𝜙
3

(rad)
Desired 3.0000 70.0000 6.0000 0.2618 0.6109 1.0000 45.0000 2.4000 0.7854 2.4435 7.0000 30.0000 4.3000 1.4835 3.7525
IPA 3.3711 78.8790 6.1712 0.4329 0.7820 1.4711 54.9876 2.5712 0.9567 2.6145 7.1710 39.8791 4.4711 1.6547 3.9235
PS 3.2047 77.2137 6.1047 0.3665 0.7156 1.3047 53.1124 2.1047 0.8901 2.5483 7.1045 38.1236 4.4048 1.5884 3.8572
GA 3.1824 75.8711 6.0423 0.3142 0.6534 1.2422 49.8879 2.4425 0.8279 2.4860 7.0426 35.4398 4.3424 1.5259 3.7950
GA-IPA 3.0584 72.3298 6.0385 0.3002 0.6494 1.1385 47.6675 2.4384 0.8239 2.4820 7.0382 32.9983 4.3384 1.5220 3.7910
GA-PS 3.0357 71.1903 6.0156 0.2775 0.6266 1.0958 46.1290 2.4158 0.8013 2.4592 7.0158 31.6722 4.3158 1.4993 3.7684

Table 6: Proximity effect of DOA of three sources and 17 sensors at SNR = 10 dB.

Scheme 𝜃
1
(rad) 𝜙

1
(rad) 𝜃

2
(rad) 𝜙

2
(rad) 𝜃

3
(rad) 𝜙

3
(rad) % convergence

Desired values 0.6981 1.9199 0.7679 1.9897 0.8378 2.0595 —
IPA 0.8203 2.0402 0.8901 2.1118 0.9599 2.1817 1
PS 0.7941 2.0351 0.8849 2.1049 0.9512 2.1712 4
GA 0.7400 1.9600 0.8116 2.0298 0.8796 2.1031 64
GA-IPA 0.7208 1.9408 0.7906 2.0141 0.8587 2.0857 70
GA-PS 0.7103 1.9303 0.7821 2.0019 0.8482 2.0717 80
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Figure 3: Convergence rate versus number of sources.

hybrid approaches especially the GA-PS performed well and
made a close estimate of desired response. The second best
scheme is again the other hybrid GA-IPA approach.

Case 4. In Figure 3, convergence rate is shown for each
scheme against different number of sources. From conver-
gence, we mean, the total number of times a particular
technique achieved its goal. In this case, we have taken
the same two sources as given in Case 1, but this time the
CSCA consists of 17 sensors for each number of sources. The
bar graph shows that the hybrid GA-PS technique has con-
verged many number of times as compared to the remaining
approaches for all sources. The second best convergence rate
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Figure 4: Convergence rate versus SNR.

is maintained by GA-IPA, while the third best scheme is GA
alone.

Case 5. In this case, the estimation accuracy is checked in
the presence of low signal to noise ratio (SNR). The value
of SNR is 5 dB, while the array has 13 sensors. The desired
values of amplitude, frequency, ranges, elevation and azimuth
angles of 3 sources are 𝑎

1
= 3, 𝑓

1
= 70MHz, 𝑟

1
= 6𝜆,

𝜃
1
= 0.2618 rad, and 𝜙

1
= 0.6109 rad; 𝑎

2
= 1,𝑓
2
= 45MHz,

𝑟
2
= 2.4𝜆, 𝜃

2
= 0.7854 rad, and 𝜙

2
= 2.4435 rad; 𝑎

3
= 7, 𝑓

3
=

30MHz, 𝑟
3

= 4.3𝜆, 𝜃
3

= 1.4835 rad, and 𝜙
3

= 3.7525 rad.
As provided in Table 5, due to low SNR’ the accuracy of all
schemes is despoiled. However, the hybrid GA-PS scheme is
robust enough to produce better results even in the presence
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Figure 5: Error estimation of the frequencies versus SNR.

0 5 10 15
−60
−50
−40
−30
−20
−10

SNR (dB)

Er
ro

r (
dB

)

1st source [15]
2nd source [15]
1st source GA-IPA

2nd source GA-IPA
1st source GA-PS
2nd source GA-PS

Figure 6: Error estimation of the azimuth angles versus SNR.

of low SNR. The second best result is produced by the other
hybrid GA-IPA scheme.

Case 6. In Figure 4, the convergence rate of each scheme
is evaluated against noise and it has been shown that the
convergence rate of all schemes degraded at low values of
SNR. However, with the increase of SNR, the convergence
rate of each scheme has improved. Again, the hybrid GA-
PS has shown fairly good robustness against all the values of
SNR.

Case 7. In this case, the proximity effect of DOA of three
sources is evaluated in terms of estimation accuracy and
convergence rate in the presence of 10 dB noise. As given
in Table 6, due to proximity and low SNR, we have faced
more local minima. However, once again one can see that
the hybrid GA-PS produced fairly good results in terms of
accuracy and convergence rate even in this case, while the
second best result is given by GA-IPA.

Case 8. In this case, we have compared the proposed two
hybrid schemes with traditional technique given in [15].
Basically, in [15], Liang et al. have proposed a cumulants based
technique to estimate the 4D parameters (Frequency, range,
elevation angle, and azimuth angle) of near-field sources. In
[15], mean square error (MSE) is used, while in the current
work, the error is the combination of MSE and correlation
between the desired and estimated vectors as discussed in
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Figure 7: Error estimation of the elevation angles versus SNR.
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Figure 8: Error estimation of the ranges versus SNR.

Section 3. For these simulations, two sources are considered
in the presence of noise. The values of the two sources
are exactly the same as given above in Case 1. Figures 5,
6, 7, and 8 have shown the error for frequency, azimuth
angle, elevation angle, and range of two near-field sources
by using [15] and the two proposed hybrid schemes. One
can clearly observe that, in each case (especially for range
estimation), the proposed schemes have maintained fairly
minimum error as compared to [15]. Besides, [15] is unable
to estimate the amplitude, while our proposed schemes have
shown satisfactory error for amplitude estimation as shown
in Figure 9.

6. Conclusion and Future Work

In this work, we have mainly developed two hybrid schemes
(GA-IPA and GA-PS) to estimate the 5D parameters (ampli-
tude, frequency, range, elevation angle, and azimuth angle)
of sources located in the near field of the sensors array. A
new multiobjective fitness function was developed, which is
the combination ofMSE and correlation between normalized
desired and normalized estimated vectors. It requires only
single snapshot. The two hybrid schemes have shown good
performance as compared to their individual responses in
terms of estimation accuracy, convergence rate, and so forth.
The proposed schemes have also shown good results as
compared to traditional technique by using an error as a



10 The Scientific World Journal

0 5 10 15
−70
−65
−60
−55
−50
−45
−40
−35

SNR (dB)

Er
ro

r (
dB

)

1st source GA-IPA
2nd source GA-IPA

1st source GA-PS
2nd source GA-PS

Figure 9: Error estimation of the amplitudes versus SNR.

figure of merit. However, the hybrid GA-PS proved to be
the best approach among them for the joint estimation of
amplitude, frequency, range, elevation angle, and azimuth
angle of near-field sources.

In future, one can check the same approach for null steer-
ing and beam steering in the field of adaptive beamforming.
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