
Research Article
A Multiagent Evolutionary Algorithm for the
Resource-Constrained Project Portfolio Selection and
Scheduling Problem

Yongyi Shou, Wenwen Xiang, Ying Li, and Weijian Yao

School of Management, Zhejiang University, Hangzhou 310058, China

Correspondence should be addressed to Yongyi Shou; yshou@zju.edu.cn

Received 5 November 2013; Revised 6 February 2014; Accepted 10 February 2014; Published 22 April 2014

Academic Editor: Jyh-Hong Chou

Copyright © 2014 Yongyi Shou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A multiagent evolutionary algorithm is proposed to solve the resource-constrained project portfolio selection and scheduling
problem. The proposed algorithm has a dual level structure. In the upper level a set of agents make decisions to select appropriate
project portfolios. Each agent selects its project portfolio independently.The neighborhood competition operator and self-learning
operator are designed to improve the agent’s energy, that is, the portfolio profit. In the lower level the selected projects are scheduled
simultaneously and completion times are computed to estimate the expected portfolio profit. A priority rule-based heuristic is
used by each agent to solve the multiproject scheduling problem. A set of instances were generated systematically from the widely
used Patterson set. Computational experiments confirmed that the proposed evolutionary algorithm is effective for the resource-
constrained project portfolio selection and scheduling problem.

1. Introduction

Theproject portfolio selection problem (PPSP), together with
its various extensions, has been widely studied during the
last decade. Given a set of project proposals and constraints,
the traditional PPSP is to select a subset of project proposals
to optimize the organization’s performance objective [1].
Mathematic models have been proposed in the literature.The
project portfolio profit is regarded as the natural performance
objective and utilized by most models, for example, the
zero-one integer programming model [2]. Since the PPSP is
an NP-hard problem [3], metaheuristic algorithms such as
evolutionary approaches are widely used [4].

Most studies on the PPSP generally dissever the inherent
relationship between portfolio selection and project schedul-
ing. The traditional PPSP is based on some assumptions.
It is assumed that an individual project has a fixed and
unchangeable schedule [5]; hence, only the project selection
decision is considered to impact the final portfolio profit.
However, project scheduling tends to affect the portfolio
feasibility by adjusting the start and completion time of
its activities [6]. Especially when resources are constrained,

scheduling of project activities helps to better utilize the
limited resources, and consequently to increase the portfo-
lio profit [5]. Inclusion of project activity scheduling as a
subproblem of project portfolio selection helps improve the
overall organization performance even though it increases
the complexity of decision making. This combined prob-
lem is termed as the resource-constrained project portfolio
selection and scheduling problem (RCPPSSP).The RCPPSSP
can be described as a problem to select an optimal portfolio
of projects and schedule their activities to maximize an
organization’s stated objectives without exceeding available
resources or violating other constraints [7].

The RCPPSSP has attracted increasing attention in recent
years as a new research problem. Owing to the dual level
structure of the RCPPSSP, most algorithms in the current
literature are also composed of two parts. In the upper level,
decisions are made to select project portfolios. In the lower
level, procedures of multiproject scheduling are adopted to
improve the performance of the selected portfolio. Due to
the NP-hard nature of the project portfolio selection prob-
lem, researchers developed heuristics and metaheuristics to
improve the solution quality and computational efficiency.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 302684, 9 pages
http://dx.doi.org/10.1155/2014/302684

2 Mathematical Problems in Engineering

For example, an implicit enumeration procedure was devel-
oped for all possible project priority sequences with high
profit [7]. An ant colony optimization (ACO) based on the
max-min ant system [8] was proposed, in which solutions
were encoded as walks of agents in a construction graph,
and transition probabilities were computed to determine
the probability of an arc of the graph being chosen by
the agents in the next iteration [8]. An iterative multiunit
combinatorial auction algorithm [5] was also used to select
project portfolios through a distributed bidding mechanism.
In the lower level, heuristics such as greedy heuristic [8]
and priority rule-based heuristics [9] are widely adopted for
multiproject scheduling.

In recent years, agent-based computation has been widely
applied in distributed problem solving. An agent is a self-
contained problem solving entity [10] which exhibits the
properties of autonomy, social ability, responsiveness, and
proactiveness [11]. In a multiagent optimization system
(MAOS) [12], self-organization agents [13] interact to opti-
mize their own problem solving with limited declarative
knowledge and simple procedural knowledge under ecolog-
ical rationality [12]. Specifically, agents explore in parallel
through three types of interactions, namely, cooperation,
coordination, and negotiation [14]. Since interactions among
the agents contribute to solution diversity and rapid conver-
gence in some cases [15], it is recommended to embed the
MAOS in evolutionary algorithms to improve the solution
quality [12, 15–18]. Recently, multiagent evolutionary algo-
rithms have been used for single project scheduling [19].

The objective of this paper is to develop a multiagent
evolutionary algorithm for the RCPPSSP. The master proce-
dure in the upper decision level is designed by combining
the neighborhood competition operator and self-learning
operator in the multiagent system. A priority rule-based
heuristic is adopted for the subprocedure in the lower deci-
sion level. In Section 2, we present the resource-constrained
project portfolio selection and scheduling problem and its
mathematical model. Section 3 explains the multiagent evo-
lutionary algorithm that we have developed for the RCPPSP.
Computational experiments and results are discussed in
Section 4. Finally, we conclude this paper in Section 5.

2. Project Portfolio Selection and Scheduling

The objective of the resource-constrained project portfolio
selection and scheduling problem is to maximize the project
portfolio profit.The problem can be recognized as a dual level
decision problem [8].

The upper level is to select feasible project portfolios
under resource constraints. There are a set Ω of𝑁 candidate
projects from which we select the optimal portfolio. A pool
of𝐾 types of limited and renewable resources is available for
all projects. It is assumed that there is no other relationship
among the projects besides resource competition.

The lower level is to solve the multiproject scheduling
problem, that is, to determine the start (completion) time
of each activity without violating the precedence relations
or resource constraints [5]. Given the resource constraints,

scheduling project activities within a portfolio helps shorten
the project duration and increase the portfolio profit since
the project profit is a decreasing function of the project
completion time [7].

Two sets of decision variables are designed in this paper:
𝑥
𝑖
is for project selection and 𝑐

𝑖𝑗𝑡
for project activity schedul-

ing, as shown in the following formulae:

𝑥
𝑖
= {
1, if project 𝑖 is included,
0, if project 𝑖 is excluded.

𝑐
𝑖𝑗𝑡
= {
1, if activity 𝑗 of project 𝑖 completes at time 𝑡,
0, otherwise.

(1)

The notations used in this paper are listed in Notations
for the RCPPSSP section.

TheRCPPSSP can be formulated as a 0-1 integer program-
ming model [5, 7]:

max
𝑁

∑

𝑖=1

𝐿𝐹𝑖𝐽𝑖

∑

𝑡=𝐸𝐹𝑖𝐽𝑖

𝑏
𝑖𝑡
𝑐
𝑖𝐽𝑖𝑡

(2)

s.t.
𝐿𝐹𝑖𝐽𝑖

∑

𝑡=𝐸𝐹𝑖𝐽𝑖

𝑐
𝑖𝑗𝑡
= 𝑥
𝑖
, ∀𝑖, 𝑗 (3)

𝐿𝐹𝑖𝐽𝑖

∑

𝑡=𝐸𝐹𝑖𝐽𝑖

𝑡𝑐
𝑖𝐽𝑖𝑡≤𝑇𝑖 ,

∀𝑖 (4)

𝐿𝐹𝑖𝑗

∑

𝑡=𝐸𝐹𝑖𝑗

𝑡𝑐
𝑖𝑗𝑡
≤

𝐿𝐹𝑖ℎ

∑

𝑡=𝐸𝐹𝑖ℎ

(𝑡 − 𝑑
𝑖ℎ
) 𝑐
𝑖ℎ𝑡
, ∀ (𝑖, 𝑗) , ∀ (𝑖, ℎ) ∈ 𝑆𝑖𝑗 (5)

∑

(𝑖,𝑗)∈𝐴𝑡

𝑥
𝑖
𝑟
𝑖𝑗𝑘
≤ 𝑅
𝑘
, ∀𝑘, 𝑡 (6)

𝑥
𝑖
∈ {0, 1} , ∀𝑖 (7)

𝑐
𝑖𝑗𝑡
∈ {0, 1} , ∀ (𝑖, 𝑗) , ∀𝑡. (8)

The objective (2) is to maximize the total profit of the
selected project portfolio. Constraint (3) ensures that all
activities of a selected project are completed. It also enforces
that every activity in unselected projects is not executed.
Constraint (4) is to guarantee the selected project is complete
before its deadline. Constraint (5) describes the precedence
relations among activities which requires an activity to
start only after all its predecessors have been completed.
Constraint (6) ensures that in each time period the demand
on any resource does not exceed its capacity. Formulae (7)
and (8) declare the decision variables.

3. Multiagent Evolutionary Algorithm

To solve the RCPPSSP, a multiagent evolutionary algorithm
(MAEA) is proposed. Corresponding to the dual level struc-
ture of the RCPPSSP, the MAEA has two levels as well.

Mathematical Problems in Engineering 3

The master procedure for the upper level is to select project
portfolios and a priority rule-based heuristic [20] is designed
as the subprocedure for the lower level to do multiproject
scheduling.

3.1. Project Portfolio Selection. The multiagent evolutionary
algorithm is a combination of two theories: multiagent
systems and evolutionary algorithms [17]. Generally, a mul-
tiagent system [15] is composed of an environment, a set of
objects, a set of agents, a set of relations between objects
(agents), and a set of operations. During observation of the
environment and interaction with other agents, the fitness
value of an agent can be estimated and optimized on the basis
of the possessed resources, abilities, and knowledge [17].

In this paper a multiagent evolutionary algorithm was
proposed to solve the project selection problem.We designed
a multiagent system in which each agent selects project
portfolios according to its own preferences and environment.
The evolution of the agents is realized by the neighborhood
competition and self-learning operators. In neighborhood
competition, loser agents will be replaced by new generated
agents. In this way, the information and knowledge of
individual agents will spread to the whole system.Thewinner
agents will conduct self-learning by applying its own knowl-
edge, for which a simple genetic algorithm is developed. Since
mostmultiagent systems adopt the real-valued representation
which is not appropriate for the project selection problem, we
designed an agent system based on a discrete representation
and modified the operators correspondingly.

3.1.1. Multiagent System. The objective function (2) of the
RCPPSSP can be simplified as the following formula:

max𝑓 (x) , x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) ∈ Θ, (9)

where 𝑓(x) denotes the portfolio profit which is equal to
∑
𝑁

𝑖=1
∑
𝐿𝐹𝑖𝐽𝑖

𝑡=𝐸𝐹𝑖𝐽𝑖

𝑏
𝑖𝑡
𝑐
𝑖𝐽𝑖𝑡

andΘ is an𝑁-dimensional search space of
the project selection problem.The “x” in boldface represents a
vector which is a candidate solution in the search space. The
component “𝑥

𝑖
” is a 0-1 variable which takes the value of 1

when project 𝑖 is selected or the value of 0 otherwise.
An agent for the RCPPSSP can be defined as follows.

Definition 1. An agent denoted as a represents a candidate
solution x to the RCPPSSP. The value of its energy is equal
to its value of the objective function in (2):

a = x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) ∈ Θ,

Energy (a) = 𝑓 (x) .
(10)

The agent a living in an environment makes decisions
autonomously to increase its energy as much as possible. To
realize the local perceptivity of agents, the environment is
organized as a lattice-like structure which can be defined as
follows [16].

Definition 2. All agents live in a lattice-like environment
denoted as 𝐿. The size of 𝐿 is 𝐿 size × 𝐿 size. 𝐿 size is determined
as 𝐿 size = 𝜌 × 𝑁 + 1, where 0 < 𝜌 < 1.

(1, 1) (1, 2)

(2, 1) (2, 2)

(1, Lsize)

(2, Lsize)

· · · · · · · · · · · ·

· · ·

· · ·

· · ·

(L size , 1) (L size , 2) (L size , Lsize)

Figure 1: Illustration of an agent lattice.

Figure 1 illustrates an agent lattice. In the agent lattice, an
agent denoted as a

𝑢V = (𝑎1, 𝑎2, . . . , 𝑎𝑁) is fixed on a lattice
point (𝑢, V), where 1 ≤ 𝑢, V ≤ 𝐿 size.

3.1.2. Neighborhood Competition Operator. In the agent lat-
tice, agents compete with their neighbors to gain more
resources so that their purposes, that is, objectives of the
RCPPSSP, can be achieved. Reference [16] noted that the
neighborhood competition operator facilitates information
diffusion to the whole lattice. To describe the neighborhood
competition operator, we define the neighborhood as follows.

Definition 3. All agents with a line or diagonal line con-
necting to agent a constitute the neighborhood of agent
a. The competing neighborhood of a

𝑢V is denoted as 𝑁𝐶
𝑢V.

The perceptive range of an agent’s competing neighbor-
hood 𝑅

𝐶
determines the number of competing neighbors as

(2𝑅
𝐶
+ 1)
2
− 1, where 0 ≤ 𝑅

𝐶
≤ (1/2)𝐿 size.

For example, when 𝑅
𝐶
is equal to 1, the number of agents

in the neighborhood𝑁𝐶
𝑢V is 8.

The basic rule for neighborhood competition operator is
defined as follows [16].

Rule 1. If the agent a
𝑢V satisfies (11), it is a loser; otherwise, it

is a winner:

Energy (a
𝑢V) < Energy (a∗

𝑢V) . (11)

The winner survives in the agent lattice, but the loser
perishes and is replaced by a new agent a

𝑢V generated from
the local-best agent a∗

𝑢V which is defined as

a∗
𝑢V = (𝑎

∗

1
, 𝑎
∗

2
, . . . , 𝑎

∗

𝑁
) ∈ 𝑁

𝐶

𝑢V,

Energy (a∗
𝑢V) ≥ Energy (a) , ∀a ∈ 𝑁𝐶

𝑢V.

(12)

Two alternative strategies [16] are adopted to generate the
new agent a

𝑢V.

Strategy 1. A set 𝐷 is composed of sequence numbers of
the positions where the agent a

𝑢V takes different values from

4 Mathematical Problems in Engineering

0 1 1 0 0 0 1 0
1 1 0 0 1 0 1 1
0 0 1 1 0 1 0 0

1 1 1 0 1 0 1 1· · ·

· · ·

· · ·

· · ·

Random

𝐚u�

𝐚
∗

u�

𝐚

u�

Figure 2: Strategy 1 to generate a new agent.

agent a∗
𝑢V; that is, 𝐷 = {𝑖 | 1 ≤ 𝑖 ≤ 𝑁, 𝑎𝑖 ̸= 𝑎

∗

𝑖
}. The new agent

a
𝑢V = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
) is determined by formula (13), in which

1 ≤ 𝑖 ≤ 𝑁 and Random takes the values of 0 or 1 randomly

𝑎

i = {
𝑎
∗

𝑖
, 𝑖 ∉ 𝐷 or (𝑖 ∈ 𝐷 and Random = 0) ,

1 − 𝑎
∗

𝑖
, otherwise.

(13)

One example of Strategy 1 is presented in Figure 2.

Strategy 2. Mutation in the evolutionary algorithm is adopted
to transform agent a∗

𝑢V to a

𝑢V, which is represented in formula
(14). In formula (14), 1 ≤ 𝑖 ≤ 𝑁 and Random is generated
randomly in the interval of (0,1)

𝑎

i =
{

{

{

𝑎
∗

𝑖
, Random >

1

𝑁
,

1 − 𝑎
∗

𝑖
, otherwise.

(14)

One example of Strategy 2 is presented in Figure 3.
In this paper a uniform random parameter 𝐷

𝑆
∈ (0, 1) is

used to determine which strategy is to be applied to generate
the new agent. Firstly, we calculate the similarity between the
loser agent a

𝑢V and the local-best agent a∗
𝑢V with maximum

energy in the neighborhood by the following formula:

|𝐷| =

𝑁

∑

𝑖=1

𝜂
𝑖
, (15)

where 𝜂
𝑖
= {
1, 𝑎𝑖=𝑎

∗

𝑖

0, 𝑎𝑖 ̸= 𝑎
∗

𝑖

. The higher the value of |𝐷| is, the more
similar a

𝑢V to a∗
𝑢V is and the much lower the chance to get a

better solution through Strategy 1 is indicated.
Therefore, the rule to select an appropriate strategy is

designed as follows.

Rule 2. When the value of |𝐷| satisfies (16), Strategy 1 is
adopted to generate new agents. Otherwise, Strategy 2 is
adopted:

|𝐷|

𝑁
< 𝐷
𝑆
. (16)

3.1.3. Self-Learning Operator. In order to survive in com-
petition, agents in the lattice may take actions to increase
their energy by using their own knowledge [21]. The self-
learning operator [16, 21] is designed to help agents achieve
this purpose. It is assumed that only winner agents have the
chance to conduct self-learning.

Definition 4. All agents with a line or diagonal line connect-
ing to agent a constitute the neighborhood of agent a.
The self-learning neighborhood of a

𝑢V is denoted as 𝑁𝐿
𝑢V.

1 1 0 0 1 0 1 1
0.10 0.02 0.20 0.80 0.08 0.70 0.65 0.45

1 0 0 0 1 0 1 1

· · ·

· · ·

· · ·

Random
𝐚

∗

u�

𝐚

u�

Figure 3: Strategy 2 to generate a new agent.

The perceptive range of an agent’s self-learning neighborhood
𝑅
𝐿
determines the number of self-learning neighbors as

(2𝑅
𝐿
+ 1)
2
− 1, where 0 ≤ 𝑅

𝐿
≤ (1/2)𝐿 size.

The basic rule for the self-learning operator is defined as
follows [16, 21].

Rule 3. If agent a
𝑢V satisfies (17), it has the chance to execute

the self-learning operator:

Energy (a
𝑢V) ≥ Energy (a) , ∀a ∈ 𝑁𝐿

𝑢V. (17)

A simple genetic algorithm (SGA) [22] is adopted to
realize the self-learning of agent a

𝑢V, in which the chromo-
some takes the same representation as an agent. The ℎth
chromosome in the 𝑔th generation is denoted as follows:

chromosome𝑔
ℎ
= x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
) ∈ Θ, (18)

where 0 ≤ 𝑔 ≤ MaxGA and 1 ≤ ℎ ≤ PopSize. MaxGA
denotes the maximum number of iterations and PopSize
represents the population size. The fitness function of a
chromosome is equal to the energy of its corresponding
agent.

In the self-learning process, the initial population is
generated as follows. The first chromosome in the initial
population is equal to agent a

𝑢V and all other chromosomes
are generated by the following formula:

chromosome0
ℎ
= {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
} , 2 ≤ ℎ ≤ PopSize,

(19)

where 𝑦
𝑖
is determined by

𝑦
𝑖
= {
1 − 𝑥
𝑖
, Random ≤ 𝐷

𝑆
,

𝑥
𝑖
, Random > 𝐷

𝑆
.

(20)

Three types of operators are applied to generate the new
population in each generation, including selection, crossover,
and mutation. Binary tournament [23] is used for selection.
The elitist strategy [24] is employed to guarantee convergence
of the genetic algorithm. One-point crossover is adopted. A
crossover point is randomly selected and then the genes in
the two parent chromosomes after the crossover point are
exchanged to generate two offspring chromosomes [25]. The
mutation locus is also selected randomly.The selected gene is
then mutated by negation. The probabilities of crossover and
mutation are denoted as 𝑝

𝑐
and 𝑝

𝑚
respectively.

3.1.4. Repair Mechanism. In the case of resource constraints
and multiproject scheduling, it is possible that some agents
(solutions) are infeasible. Especially the neighborhood com-
petition operator and self-learning operator may lead to

Mathematical Problems in Engineering 5

infeasible agents.Therefore, repair mechanisms are necessary
and have been proposed in the relevant literature [8].

In this paper, the infeasible agents are repaired by remov-
ing projects in sequence under a certain rule. In an RCPPSSP,
the profit of a candidate project depends on its completion
time which is unknown in advance, so it is inconvenient
to apply other rules except the random rule [8]. Given an
infeasible portfolio, a randomproject is selected and removed
from the portfolio. This process continues until feasibility
is achieved. Once the repaired portfolio is feasible, the new
agent representing the repaired feasible portfolio is used to
replace the incumbent infeasible agent.

3.2. Multiproject Scheduling. A priority rule-based heuristic
is applied to schedule the selected projects in the lower
decision level. Using the minimal slack (MINSLK) priority
rule [26] and the serial schedule generation scheme (SSGS)
[27], a multiproject schedule is generated for the selected
portfolio. In a multiproject environment, the slack (SLK) of
an activity is computed as follows:

SLK
𝑖𝑗
= LF
𝑖𝑗
− EF
𝑖𝑗
, (21)

where LF and EF are the latest and earliest finish times,
respectively, which are estimated by the critical path method
(CPM).

Suppose a subsetΦ is selected in themaster procedure. In
project 𝑖 ∈ Φ, there are 𝐽

𝑖
activities which are denoted as (𝑖, 𝑗).

The SSGS heuristic consists of ∑
𝑖∈Φ
𝐽
𝑖
stages. In each stage 𝑔,

two disjoint activity sets are identified [27]. The scheduled
set 𝑆
𝑔
includes the activities which are already scheduled;

and the decision set 𝐷
𝑔
contains the unscheduled activities

whose predecessors are all in the scheduled set 𝑆
𝑔
. According

to the MINSLK priority rule, the activity with the minimum
slack is selected from the decision set and scheduled as early
as possible without violating the resource constraints. The
activity is then moved from the decision set to the scheduled
set. Algorithm 1 shows the pseudocode of the priority rule-
based heuristic.

To determine the feasibility of the multiproject schedule,
we set a upper bound for each project’s completion time,
denoted as 𝑇

𝑖
. Specifically, for project 𝑖 in the selected

portfolio Φ, if its completion time goes beyond its upper
bound 𝑇

𝑖
, the portfolioΦ is recognized as infeasible and shall

be repaired.

4. Computational Experiments and Results

This section presents the experiment design and computa-
tional analyses for investigating the performances of the pro-
posed multiagent evolutionary algorithm for the RCPPSSP.
Based on the design of experiment (DOE) approach, a set
of instances was generated systematically. Then parameter
configurations of the algorithm were set up through testing
of examples. The proposed MAEA was then compared with
other algorithms in the literature.

4.1. Experiment Design. An RCPPSSP instance consists of
a pool of candidate projects, a set of profit profiles of all

Table 1: Experiment design.

Profit decreasing rate (%) Resource tightness (%)
Cell 1 2 30
Cell 2 2 60
Cell 3 8 30
Cell 4 8 60

projects, and the resources available for all projects. Three
project pools with 10 projects in each pool and three other
pools with 20 projects in each pool were generated randomly
by 72 instances with three types of resources and different
networks selected from the widely used Patterson set [28].
The above six project pools are denoted as PAT10 1, PAT10 2,
PAT10 3, PAT20 1, PAT20 2, and PAT20 3, respectively.

It is assumed that a project achieves its base profit if it
is complete at its critical path length (CPL) and the profit
decreases with a profit decreasing rate 𝜆

1
as its completion

time increases. Referring to [7], the base profit 𝐵
𝑖
and actual

profit 𝑏
𝑖𝑡
of project 𝑖 are calculated by formulae (22) and (23),

where 𝜎
𝑖
denotes the resource utilization coefficient which is

subject to a uniform distribution in the interval of [0.5, 1.5].
The upper bound of project completion time 𝑇

𝑖
is based on

the critical path length by formula (24), and the relaxation
rate 𝜆

2
has the value of 0.4 in this paper. Resource tightness

𝜔
𝑘
is introduced to estimate the capacity of resource 𝑘 from its

maximum resource demand𝑅max
𝑘

in the critical pathmethod:

𝐵
𝑖
= 𝜎
𝑖

𝐾

∑

𝑘=1

𝐽𝑖

∑

𝑗=1

𝑟
𝑖𝑗𝑘
𝑑
𝑖𝑗
, (22)

𝑏
𝑖𝑡
= 𝐵
𝑖
(1 − 𝜆

1
(𝑡 − CPL

𝑖
)) , (23)

𝑇
𝑖
= CPL

𝑖
+min {10, 𝜆

2
CPL
𝑖
} , (24)

𝑅
𝑘
= 𝜔
𝑘
𝑅
max
𝑘
. (25)

Two levels of profit decreasing rate 𝜆
1
(2% or 8%) and

resource tightness (30% or 60%) were designed, which forms
four experiment cells as shown in Table 1. This 22 experi-
mental design crossed with our six project pools yielded 24
instances to test the proposed algorithm.

4.2. Parameter Configurations. Parameters of the proposed
MAEA were determined through experiments, including the
maximum generations of agents MaxMA, the lattice size
𝐿 size, the coefficient 𝐷

𝑆
, and the perceptive ranges 𝑅

𝐶
and

𝑅
𝐿
. The parameters of the SGA for self-learning were also

assigned, including the maximum generations MaxGA, the
populationsize PopSize, the crossover probability 𝑝

𝑐
, and the

mutation probability 𝑝
𝑚
.

The number of generations and the lattice size were
determined firstly. With the increasing size of the agent
lattice 𝐿 and more generations of evolution, the multiagent
algorithm is more likely to find the optimal solution in
a longer computation time. Through testing on examples,
MaxMA was set at 100 in this paper. The suitable lattice
size is proportional to the number of candidate projects. We

6 Mathematical Problems in Engineering

Procedure of the priority rule-based heuristic
BEGIN

INIT: 𝑆
0
:= {}

FOR𝑔 := 1TO ∑
𝑖∈Φ

𝐽
𝑖

COMPUTE𝐷
𝑔

SELECT (𝑖∗, 𝑗∗) from𝐷
𝑔
/∗ according to the MINSLK rule ∗/

ASSIGN 𝑆𝑇
𝑖
∗
𝑗
∗ /∗ as early as possible ∗/

𝑆
𝑔
:= 𝑆
𝑔−1
∪ {(𝑖
∗
, 𝑗
∗
)}

ENDFOR
END

Algorithm 1: Pseudo-code of the priority rule-based heuristic.

Table 2: Profit data for problem instances.

Number Cell Project pool Problem size Algorithm
Ranking MKP ranking MAEA

1 1 PAT10 1 10 7076.77 7076.77 7754.63
2 1 PAT10 2 10 6343.67 6343.67 7128.61
3 1 PAT10 3 10 7700.29 7700.29 8109.66
4 1 PAT20 1 20 13512.07 13512.07 14987.3
5 1 PAT20 2 20 10510.92 10510.92 11556.38
6 1 PAT20 3 20 11672.9 11672.9 12520.37
7 2 PAT10 1 10 6988.4 6988.4 7289.51
8 2 PAT10 2 10 6199.9 6199.9 6391.59
9 2 PAT10 3 10 7700.29 7700.29 7920.52
10 2 PAT20 1 20 12829.7 12829.7 13703.7
11 2 PAT20 2 20 10033.22 10033.22 10715.38
12 2 PAT20 3 20 11580.28 11580.28 11922.46
13 3 PAT10 1 10 4316.8 4316.8 4871.05
14 3 PAT10 2 10 3850.56 3850.56 4300.49
15 3 PAT10 3 10 4320.24 4320.24 5381.88
16 3 PAT20 1 20 7522.15 7558.27 9288.56
17 3 PAT20 2 20 6323.93 6323.93 7086.58
18 3 PAT20 3 20 7902.9 7902.9 8383.34
19 4 PAT10 1 10 3942.85 3942.85 4441.45
20 4 PAT10 2 10 3850.56 3850.56 3850.56
21 4 PAT10 3 10 4320.24 4320.24 4601.84
22 4 PAT20 1 20 7464.19 7485.53 8472.36
23 4 PAT20 2 20 6176.77 6176.77 6273.44
24 4 PAT20 3 20 7544.8 7544.8 7945.27

Average 7486.85 7489.24 8120.70

estimated 𝐿 size = 𝜌 × 𝑁 + 1 by a coefficient 𝜌 = 0.4 in this
paper. Since the designed 24 instances have 10 or 20 projects,
the lattice size 𝐿 size takes the values of 5 or 9, respectively.

According to Definitions 3 and 4, when 𝑁 = 10, both
perceptive ranges𝑅

𝐶
and𝑅

𝐿
belong to the set {1, 2}. Similarly,

when 𝑁 = 20, both 𝑅
𝐶
and 𝑅

𝐿
belong to the set {1, 2, 3, 4}.

Our testing showed that the proposed MAEA has a good
performance when 𝑅

𝐶
= 𝑅
𝐿
= 1.

The coefficient 𝐷
𝑆
is used to select the strategy of

generating new agents to replace loser agents. When 𝐷
𝑆
is

larger, Strategy 1 is more likely to be applied, which means
the new agent will be more similar to the best agent
in its neighborhood. Consequently, the multiagent algo-
rithm may be easily trapped in a local optimum. How-
ever, the stability of the algorithm will be affected when
𝐷
𝑆

is much smaller. To tradeoff between the conver-
gence and stability, we set 𝐷

𝑆
to 0.25 according to our

experiments.
In summary, the parameters for the proposed multi-

agent evolutionary algorithm were determined as follows:

Mathematical Problems in Engineering 7

Table 3: Average computation times (in seconds).

Ranking MKP-Ranking MAEA
Cell 1 0.018 0.061 18.155
Cell 2 0.019 0.064 19.060
Cell 3 0.025 0.082 262.155
Cell 4 0.026 0.085 250.638
Average 0.022 0.073 137.502

Table 4: Test statistics.

Algorithm Ranking—MKP Ranking Ranking—MAEA MKP Ranking—MAEA
𝑍 −1.342a −4.197a −4.197a

Asymp. Sig. (2-tailed) 0.180 0.000 0.000
a
Based on negative ranks.

MaxMA = 100, 𝜌 = 0.4, 𝑅
𝐶
= 𝑅
𝐿
= 1, 𝐷

𝑆
= 0.25, MaxGA =

10, PopSize = 10, 𝑝
𝑐
= 0.6, and 𝑝

𝑚
= 0.2.

4.3. Computational Results and Comparison. For the above
24 instances, the profits achieved by the proposed MAEA
are shown in Table 2, as well as the results of two other
benchmarking algorithms in [29], namely, Ranking and
MKP ranking methods.

In the Ranking method, all candidate projects are ranked
by a certain priority rule. Projects are then scheduled one by
one according to their priorities until the next project makes
the portfolio infeasible. It was reported that the greedy “max
profit” rule performs best [29] and hence was used in this
paper.

The MKP ranking method also involves two stages [29].
In the first stage, the project selection problem is solved as
a multidimensional 0-1 knapsack problem (MKP) and then
all selected projects are prioritized by the “max profit” rule.
In the second stage, all projects selected in the first stage
are scheduled sequentially. In case a selected project cannot
be scheduled before its deadline due to resource constraints
or it has a negative profit, the project is removed from the
portfolio.

The MAEA and benchmarking algorithms were imple-
mented in C language on a PC with a CPU at 2.0GHz and
2GB physical memory. The average computation times are
shown in Table 3. It is obvious that the profit decreasing rate
has a significant role in determining the computation time of
the multiagent evolutionary algorithm. If the profit decreases
faster after the project’s critical path length as in Cell 3 and
Cell 4, the algorithm takes a much longer time to search for
portfolios with projects complete in time.

The average profits of 24 instances achieved by the three
algorithms are 7486.85, 7489.24, and 8120.70, respectively. It
is observed that the MAEA has a higher average profit than
the other two methods.

To investigate the performance of the proposed MAEA,
the Wilcoxon Signed Ranks Test was applied to analyze
the data in Table 2. Table 4 shows the paired comparison
outcomes of statistical analysis. The profits obtained by the

MAEA are significantly higher than the other two methods
at a significance level of 0.001.

5. Conclusions

In this paper, the resource-constrained project portfolio
selection and scheduling problem is formulated as a 0-
1 integer programming model. The problem has a dual
level structure. Project scheduling in the lower level helps
increase the portfolio profit by improving the resource
allocation among selected projects and rescheduling their
activities. A multiagent evolutionary algorithm is proposed
to solve the RCPPSSP. The algorithm adopts a dual level
structure owing to the nature of the RCPPSSP. In the upper
level, agents in an agent lattice are designed to search for
feasible portfolios automatically. The neighborhood com-
petition operator and self-learning operator are integrated
to accelerate the evolution of agents. In the lower level,
each agent adopts a priority rule-based heuristic to conduct
multiproject scheduling to better utilize the scarce resources.
We conducted an experiment to test the performance of the
proposed algorithm. A set of 24 instances were generated
from the Patterson set systematically. Computational results
show that the proposed multiagent evolutionary algorithm
has an outstanding performance.

Notations

Ω: Set of candidate projects
𝑖: Project index, 𝑖 = 1, 2, . . . , 𝑁, where𝑁 denotes

the number of candidate projects
𝑗: Activity index, 𝑗 = 1, 2, . . . , 𝐽

𝑖
, where 𝐽

𝑖
is the

number of activities in project 𝑖
𝑡: Time index, 𝑡 = 0, 1, . . . , 𝑇, where 𝑇 is the upper

bound of project completion time
𝑘: Resource index, 𝑘 = 1, 2, . . . , 𝐾, where 𝐾 is the

number of resource types
Φ: Set of selected projects, Φ = {𝑖 | 𝑥

𝑖
= 1, 𝑖 ∈ Ω}

(𝑖, 𝑗): Activity 𝑗 in project 𝑖
𝑑
𝑖𝑗
: Duration of activity (𝑖, 𝑗)

8 Mathematical Problems in Engineering

𝑆
𝑖𝑗
: Set of immediate successors of activity (𝑖, 𝑗)

𝑆𝑇
𝑖𝑗
: Start time of activity (𝑖, 𝑗)

𝐶𝑇
𝑖𝑗
: Completion time of activity (𝑖, 𝑗), 𝐶𝑇

𝑖𝑗
= 𝑆𝑇
𝑖𝑗
+ 𝑑
𝑖𝑗

𝐸𝐹
𝑖𝑗
: Earliest finish time of activity (𝑖, 𝑗)

𝐿𝐹
𝑖𝑗
: Latest finish time of activity (𝑖, 𝑗)

𝐴
𝑡
: Set of activities in process at time 𝑡

𝑅
𝑘
: Capacity of renewable resource 𝑘

𝑟
𝑖𝑗𝑘
: Quantity of resource 𝑘 required by activity (𝑖, 𝑗)

for its execution
𝑏
𝑖𝑡
: Profit of project 𝑖 when it is complete at time 𝑡

𝑇
𝑖
: Upper bound of the completion time of project 𝑖.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are grateful to the anonymous reviewers for their
constructive comments. The paper is supported by National
Natural Science Foundation of China (Grant no. 71072119)
andZhejiangProvincialNatural Science Foundation ofChina
(Grant no. R7100297).

References

[1] F. Ghasemzadeh and N. P. Archer, “Project portfolio selection
through decision support,”Decision Support Systems, vol. 29, no.
1, pp. 73–88, 2000.

[2] R. L. Schmidt, “A model for R & D project selection with com-
bined benefit, outcome and resource interactions,” IEEE Trans-
actions on Engineering Management, vol. 40, no. 4, pp. 403–410,
1993.

[3] K. F. Doerner,W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stum-
mer, “Pareto ant colony optimization with ILP preprocessing in
multiobjective project portfolio selection,” European Journal of
Operational Research, vol. 171, no. 3, pp. 830–841, 2006.

[4] A. L.Medaglia, S. B.Graves, and J. L. Ringuest, “Amultiobjective
evolutionary approach for linearly constrained project selection
under uncertainty,” European Journal of Operational Research,
vol. 179, no. 3, pp. 869–894, 2007.

[5] Y.-Y. Shou and Y.-L. Huang, “Combinatorial auction algorithm
for project portfolio selection and scheduling to maximize the
net present value,” Journal of Zhejiang University C, vol. 11, no.
7, pp. 562–574, 2010.

[6] M.A. Coffin andB.W. Taylor III, “Multiple criteria R&Dproject
selection and scheduling using fuzzy logic,” Computers and
Operations Research, vol. 23, no. 3, pp. 207–220, 1996.

[7] J. Chen and R. G. Askin, “Project selection, scheduling and
resource allocation with time dependent returns,” European
Journal of Operational Research, vol. 193, no. 1, pp. 23–34, 2009.

[8] W. J. Gutjahr, S. Katzensteiner, P. Reiter, C. Stummer, and M.
Denk, “Competence-driven project portfolio selection, sched-
uling and staff assignment,” Central European Journal of Opera-
tions Research, vol. 16, no. 3, pp. 281–306, 2008.

[9] T. R. Browning andA. A. Yassine, “Resource-constrainedmulti-
project scheduling: priority rule performance revisited,” Inter-
national Journal of Production Economics, vol. 126, no. 2, pp.
212–228, 2010.

[10] N.R. Jennings andM.Wooldridge, “Applying agent technology,”
Applied Artificial Intelligence, vol. 9, no. 4, pp. 357–369, 1995.

[11] M. J. Wooldridge and N. R. Jennings, “Intelligent agents: theory
and practice,” Knowledge Engineering Review, vol. 10, no. 2, pp.
115–152, 1995.

[12] X.-F. Xie and J. Liu, “Multiagent optimization system for solving
the traveling salesman problem (TSP),” IEEE Transactions on
Systems, Man, and Cybernetics B, vol. 39, no. 2, pp. 489–502,
2009.

[13] G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos,
“Selforganisation and emergence in MAS: an overview,” Infor-
matica, vol. 30, no. 1, pp. 45–54, 2006.

[14] N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of
agent research and development,” Autonomous Agents and
Multi-Agent Systems, vol. 1, no. 1, pp. 7–38, 1998.

[15] R. Drezewski and L. Siwik, “Co-evolutionary multi-agent sys-
tem for portfolio optimization,” Studies in Computational Intel-
ligence, vol. 100, pp. 271–299, 2008.

[16] W. Zhong, J. Liu,M. Xue, and L. Jiao, “Amultiagent genetic algo-
rithm for global numerical optimization,” IEEE Transactions on
Systems, Man, and Cybernetics B, vol. 34, no. 2, pp. 1128–1141,
2004.

[17] R. Drezewski and L. Siwik, “A review of agent-based co-evolu-
tionary algorithms for multi-objective optimization,” Adapta-
tion, Learning, and Optimization, vol. 7, pp. 177–209, 2010.

[18] J. A. Araúzo, J. Pajares, and A. Lopez-Paredes, “Simulating the
dynamic scheduling of project portfolios,” SimulationModelling
Practice andTheory, vol. 18, no. 10, pp. 1428–1441, 2010.

[19] X. Yuan, C. Xiao, X. Lv, and J. Liu, “A multi-agent genetic algo-
rithm for resource constrained project scheduling problems,”
in Proceeding of Genetic and Evolutionary Computation Confer-
ence, pp. 195–196, 2013.

[20] I. S. Kurtulus and S. C. Narula, “Multi-project scheduling: anal-
ysis of project performance,” IIE Transactions, vol. 17, no. 1, pp.
58–66, 1985.

[21] W.-C. Zhong, J. Liu, F. Liu, and L.-C. Jiao, “Combinatorial opti-
mization using multi-agent evolutionary algorithm,” Chinese
Journal of Computers, vol. 27, no. 10, pp. 1341–1353, 2004.

[22] M. Srinivas and L. M. Patnaik, “Genetic algorithms: a survey,”
Computer, vol. 27, no. 6, pp. 17–26, 1994.

[23] J. Alcaraz and C. Maroto, “A robust genetic algorithm for
resource allocation in project scheduling,” Annals of Operations
Research, vol. 102, no. 1–4, pp. 83–109, 2001.

[24] J. F. Gonçalves, J. J.M.Mendes, andM.G. C. Resende, “A genetic
algorithm for the resource constrained multi-project sched-
uling problem,” European Journal of Operational Research, vol.
189, no. 3, pp. 1171–1190, 2008.

[25] Y. Shou andW.Wang, “Robust optimization-based genetic algo-
rithm for project scheduling with stochastic activity durations,”
Information, vol. 15, no. 10, pp. 4049–4064, 2012.

[26] E.M. Davies, “An experimental investigation of resource alloca-
tion in multiactivity projects,” Operational Research Quarterly,
vol. 24, no. 4, pp. 587–591, 1973.

[27] R. Kolisch, “Serial and parallel resource-constrained project
scheduling methods revisited: theory and computation,” Euro-
pean Journal of Operational Research, vol. 90, no. 2, pp. 320–333,
1996.

[28] J. H. Patterson, “Comparison of exact approaches for solving
themultiple constrained resource, project scheduling problem,”
Management Science, vol. 30, no. 7, pp. 854–867, 1984.

Mathematical Problems in Engineering 9

[29] J. Chen, Project selection, scheduling and resource allocation
for engineering design groups, [PhD dissertation], University of
Arizona, Tucson, Ariz, USA, 2005.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

