Existence of Positive Periodic Solutions for n-Dimensional Nonautonomous System

Youjun Liu, ${ }^{1}$ Huanhuan Zhao, ${ }^{1}$ and Jurang Yan ${ }^{2}$
${ }^{1}$ College of Mathematics and Computer Sciences, Shanxi Datong University, Datong, Shanxi 037009, China
${ }^{2}$ School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China

Correspondence should be addressed to Youjun Liu; lyj9791@126.com
Received 25 February 2014; Revised 8 May 2014; Accepted 13 June 2014; Published 17 August 2014
Academic Editor: Guang Zhang
Copyright © 2014 Youjun Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper we consider the existence, multiplicity, and nonexistence of positive periodic solutions for n-dimensional nonautonomous functional differential system $\mathbf{x}^{\prime}(t)=\mathbf{H}(t, \mathbf{x}(t))-\lambda \mathbf{B}(t) \mathbf{F}(\mathbf{x}(t-\tau(t)))$, where h_{i} are ω-periodic in t and there exist ω-periodic functions $\alpha_{i}, \beta_{i} \in C\left(R, R_{+}\right)$such that $\alpha_{i}(t) \leq\left(h_{i}(t, \mathbf{x}) / x_{i}\right) \leq \beta_{i}(t), \int_{0}^{\omega} \alpha_{i}(t) d t>0$, for $\mathbf{x} \in R_{+}^{n}$ all with $x_{i}>0$, and $t \in R, \lim _{x_{i} \rightarrow 0^{+}}\left(h_{i}(t, \mathbf{x}) / x_{i}\right)$ exist for $t \in R ; b_{i} \in C\left(R, R_{+}\right)$are ω-periodic functions and $\int_{0}^{\omega} b_{i}(t) d t>0 ; f_{i} \in C\left(R_{+}^{n}, R_{+}\right), f_{i}(\mathbf{x})>0$ for $\|\mathbf{x}\|>0 ; \tau \in(R, R)$ is an ω-periodic function. We show that the system has multiple or no positive ω-periodic solutions for sufficiently large or small $\lambda>0$, respectively.

1. Introduction

In this paper, we consider the first-order n-dimensional nonautonomous functional differential system

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{H}(t, \mathbf{x}(t))-\lambda \mathbf{B}(t) \mathbf{F}(\mathbf{x}(t-\tau(t))), \tag{1}
\end{equation*}
$$

where $\lambda>0$ is a parameter;

$$
\begin{gather*}
\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\top}, \\
\mathbf{B}(t)=\operatorname{diag}\left[b_{1}(t), b_{2}(t), \ldots, b_{n}(t)\right] ; \\
\mathbf{H}(t, \mathbf{x})=\left[h_{1}(t, \mathbf{x}), h_{2}(t, \mathbf{x}), \ldots, h_{n}(t, \mathbf{x})\right]^{\top}, \tag{2}\\
\mathbf{F}(\mathbf{x})=\left[f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{n}(\mathbf{x})\right]^{\top} .
\end{gather*}
$$

Let

$$
\begin{equation*}
R=(-\infty,+\infty), \quad R_{+}=[0,+\infty), \quad R_{+}^{n}=\prod_{i=1}^{n} R_{+}, \tag{3}
\end{equation*}
$$

and for any $\mathbf{x}=\left[x_{1}, x_{2} \ldots, x_{n}\right]^{\top} \in R_{+}^{n}$, the norm of \mathbf{x} is defined as $\|\mathbf{x}\|=\max _{1 \leq i \leq n}\left|x_{i}\right|$.

Throughout this paper, we use $i=1,2, \ldots, n$, unless otherwise stated.

For the system (1), we assume that
$\left(H_{1}\right) \tau \in(R, R)$ is an ω-periodic function, $b_{i} \in C\left(R, R_{+}\right)$are ω-periodic functions, and

$$
\begin{equation*}
\int_{0}^{\omega} b_{i}(t) d t>0 \tag{4}
\end{equation*}
$$

$\left(H_{2}\right) f_{i} \in C\left(R_{+}^{n}, R_{+}\right), f_{i}(\mathbf{x})>0$ for $\|\mathbf{x}\|>0 ; h_{i} \in$ $C\left(R \times R_{+}^{n}, R_{+}\right), h_{i}$ are ω-periodic in t and there exist ω-periodic functions $\alpha_{i}, \beta_{i} \in C\left(R, R_{+}\right)$such that
$\alpha_{i}(t) \leq \frac{h_{i}(t, \mathbf{x})}{x_{i}} \leq \beta_{i}(t), \quad \int_{0}^{\omega} \alpha_{i}(t) d t>0$,

$$
\forall \mathbf{x} \in R_{+}^{n} \text { with } x_{i}>0, \quad t \in R .
$$

In addition, $\lim _{x_{i} \rightarrow 0^{+}}\left(h_{i}(t, \mathbf{x}) / x_{i}\right)$ exist for $t \in R$.
We note that in (1) $\mathbf{F}(\mathbf{x})$ may have a singularity near $\mathbf{x}=\mathbf{0}$; that is,

$$
\begin{equation*}
\lim _{\mathbf{x} \rightarrow \mathbf{0}^{+}} f_{i}(\mathbf{x})=\infty . \tag{6}
\end{equation*}
$$

As we well know, the system (1) is sufficiently general to include particular mathematical models which describe multiple population dynamics. Recently, due to the theoretical and practical significance, the existence of positive periodic solution of some particular cases of periodic system (1) has been extensively studied; see, for example, [1-15]. Cheng and Zhang [1], Kang and Cheng [2], Kang et al. [3], Kang and Zhang [4], and Liu et al. [5] studied the existence, multiplicity, and nonexistence of positive periodic solutions. The existence of positive periodic solutions of the scalar functional differential equation

$$
\begin{equation*}
x^{\prime}(t)=a(t) g(x(t)) x(t)-\lambda b(t) f(x(t-\tau(t))) \tag{7}
\end{equation*}
$$

has been studied by Wang [6]. By employing behaviours of the quotient $f(x) / x$ as $x \rightarrow 0^{+}$and $x \rightarrow \infty$, several interesting results on the existence and nonexistence of positive periodic solutions of (7) have been obtained. In [7], Weng and Sun studied more general scalar periodic functional differential equation

$$
\begin{equation*}
x^{\prime}(t)=h(t, x)-\lambda b(t) f(x(t-\tau(t))) \tag{8}
\end{equation*}
$$

where the existence theorems of positive periodic solutions of (8) are obtained by employing the behaviours of $f(x) / x$ at any point $x \in(0,+\infty)$ and $x \rightarrow 0^{+}, x \rightarrow \infty$. The result in [7] generalized and improved those in [6]. O'Regan and Wang [8] investigated the n-dimensional periodic system

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{g}(\mathbf{x}(t))-\lambda \mathbf{B}(t) \mathbf{F}(\mathbf{x}(t-\tau(t))) . \tag{9}
\end{equation*}
$$

By employing behaviours of $f(\mathbf{x}) /\|\mathbf{x}\|$ as $\|\mathbf{x}\| \rightarrow 0^{+}$and $\|\mathbf{x}\| \rightarrow \infty$, under quite general conditions, several existence theorems of positive periodic solutions are proved.

A solution $\mathbf{x}=\left[x_{1}, x_{2} \ldots, x_{n}\right]^{\top}, t \in R$ of (1) is said to be positive if its all components $x_{i}(t)$ are positive; \mathbf{x} is said to be ω-periodic $(\omega>0)$ if $x_{i}(t)=x_{i}(t+\omega), t \in R$.

2. Preliminary

Lemma 1 (see [9]). Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}=\{u \in K:\|x\|<r\}$. Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous such that $T x \neq x$ for $x \in \partial K_{r}=\{u \in K:\|x\|=r\}$.
(i) If $\|T x\| \geq\|x\|$ for $x \in \partial K_{r}$, then

$$
\begin{equation*}
i\left(T, K_{r}, K\right)=0 \tag{10}
\end{equation*}
$$

(ii) If $\|T x\| \leq\|x\|$ for $x \in \partial K_{r}$, then

$$
\begin{equation*}
i\left(T, K_{r}, K\right)=1 \tag{11}
\end{equation*}
$$

Lemma 2 (see $[9,10]$). Let X be a Banach space and K a cone in X. Assume Ω_{1}, Ω_{2} are open subsets of X with $0 \in \Omega_{1}, \bar{\Omega}_{1} \subset$ Ω_{2}. Let

$$
\begin{equation*}
T: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \longrightarrow K \tag{12}
\end{equation*}
$$

be a completely continuous operator such that one of the following conditions is satisfied:
(a) $\|T y\| \leq\|y\|$ for $y \in K \cap \partial \Omega_{1}$ and $\|T y\| \geq\|y\|$ for $y \in K \cap \partial \Omega_{2}$;
(b) $\|T y\| \geq\|y\|$ for $y \in K \cap \partial \Omega_{1}$ and $\|T y\| \leq\|y\|$ for $y \in K \cap \partial \Omega_{2}$.
Then T has at least one fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
In order to apply Lemmas 1 and 2 to system (1), we take

$$
\begin{equation*}
X=\left\{\mathbf{x}(t): \mathbf{x}(t) \in C\left(R, R^{n}\right), \mathbf{x}(t+\omega)=\mathbf{x}(t), t \in R\right\} \tag{13}
\end{equation*}
$$

endowed with the norm $\|\mathbf{x}\|=\max _{1 \leq i \leq n}\left|x_{i}\right|_{0}$, where $\left|x_{i}\right|_{0}=$ $\sup _{t \in[0, \omega]}\left|x_{i}(t)\right|$; then X is a Banach space.

Define the operator

$$
\begin{equation*}
T_{\lambda}: X \longrightarrow X \tag{14}
\end{equation*}
$$

by

$$
\begin{equation*}
\left(T_{\lambda} \mathbf{x}\right)(t)=\left(\left(T_{\lambda} \mathbf{x}\right)_{1}(t),\left(T_{\lambda} \mathbf{x}\right)_{2}(t), \ldots,\left(T_{\lambda} \mathbf{x}\right)_{n}(t)\right)^{\top}, \tag{15}
\end{equation*}
$$

where

$$
\begin{array}{r}
\left(T_{\lambda} \mathbf{x}\right)_{i}(t)=\lambda \int_{t}^{t+\omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
G_{i}(t, s)=\frac{\exp \left(-\int_{t}^{s}\left(h_{i}(\theta, \mathbf{x}(\theta)) / x_{i}(\theta)\right) d \theta\right)}{1-\exp \left(-\int_{0}^{\omega}\left(h_{i}(\theta, \mathbf{x}(\theta)) / x_{i}(\theta)\right) d \theta\right)} \tag{17}\\
t \leq s \leq t+\omega
\end{array}
$$

Let $m=\min _{1 \leq i \leq n} \min _{t, s \in[0, \omega]} G_{i}(t, s)$ and $M=$ $\max _{1 \leq i \leq n} \max _{t, s \in[0, \omega]} G_{i}(t, s)$, clearly;

$$
\begin{equation*}
0<m \leq G_{i}(t, s) \leq M, \quad t \leq s \leq t+\omega . \tag{18}
\end{equation*}
$$

Define a set by
K

$$
\begin{align*}
=\left\{\mathbf{x}(t)=\left(x_{1}, x_{2} \ldots, x_{n}\right)^{\top} \in X: x_{i}(t) \geq \sigma\|\mathbf{x}\|, t\right. & \in[0, \omega]\}, \\
& \text { where } \sigma=\frac{m}{M} . \tag{19}
\end{align*}
$$

We use the following notations.
Let $r>0$ be a constant, and $\mathbf{x} \in K$, defining

$$
\begin{array}{cc}
\Omega_{r}=\{\mathbf{x} \in X:\|\mathbf{x}\|<r\}, & \partial \Omega_{r}=\{\mathbf{x} \in X:\|\mathbf{x}\|=r\}, \\
\rho^{\mu}(r):=\max _{1 \leq i \leq n} \sup _{\|\mathbf{x}\|=r} \frac{f_{i}(\mathbf{x})}{\|\mathbf{x}\|}, & \rho^{l}(r):=\min _{1 \leq i \leq n\|\mathbf{x}\|=r} \frac{f_{i}(\mathbf{x})}{\|\mathbf{x}\|}, \\
f_{i}^{0}=\lim _{\|\mathbf{x}\| \rightarrow 0^{+}} \frac{f_{i}(\mathbf{x})}{\|\mathbf{x}\|}, \quad f_{i}^{\infty}=\lim _{\|\mathbf{x}\| \rightarrow \infty} \frac{f_{i}(\mathbf{x})}{\|\mathbf{x}\|}, \\
\mathbf{F}_{0}=\max _{1 \leq i \leq n}\left\{f_{i}^{0}\right\}, \quad \mathbf{F}_{\infty}=\max _{1 \leq i \leq n}\left\{f_{i}^{\infty}\right\}, \\
I_{0}=\text { number of zeros in the set }\left\{\mathbf{F}_{0}, \mathbf{F}_{\infty}\right\}, \\
I_{\infty}=\operatorname{number}^{\prime} \text { of infinities in the set }\left\{\mathbf{F}_{0}, \mathbf{F}_{\infty}\right\}, \\
b^{\mu}:=\max _{1 \leq i \leq n} \int_{0}^{\omega} b_{i}(t) d t, \quad b^{l}:=\min _{1 \leq i \leq n} \int_{0}^{\omega} b_{i}(t) d t . \tag{20}
\end{array}
$$

Lemma 3. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold; then $T_{\lambda}(K) \subset K$ and $T_{\lambda}: K \rightarrow K$ is continuous and completely continuous.

Proof. In view of the definition of K, for $\mathbf{x} \in K$, we have

$$
\begin{aligned}
\left(T_{\lambda} \mathbf{x}\right)_{i}(t+\omega)= & \lambda \int_{t+\omega}^{t+2 \omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
= & \lambda \int_{t}^{t+\omega} G_{i}(t+\omega, s+\omega) b_{i}(s+\omega) \\
& \times f_{i}(\mathbf{x}(s+\omega-\tau(s+\omega))) d s \\
= & \lambda \int_{t}^{t+\omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
= & \left(T_{\lambda} \mathbf{x}\right)_{i}(t) .
\end{aligned}
$$

It is easy to see that $\int_{t}^{t+\omega} b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s$ is a constant because of the periodicity of $b_{i}(t) f_{i}(\mathbf{x}(t-\tau(t)))$.

Notice that, for $\mathbf{x} \in K$ and $t \in[0, \omega]$,

$$
\begin{align*}
\left(T_{\lambda} \mathbf{x}\right)_{i}(t) & =\lambda \int_{t}^{t+\omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
& \geq \lambda m \int_{t}^{t+\omega} b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
& =\lambda m \int_{0}^{\omega} b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \tag{22}\\
& =\frac{m}{M} \lambda M \int_{0}^{\omega} b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
& \geq \frac{m}{M} \max _{t \in[0, \omega]}\left|\left(T_{\lambda} \mathbf{x}\right)_{i}(t)\right| .
\end{align*}
$$

Thus $T_{\lambda}(K) \subset K$ and it is easy to show that $T_{\lambda}: K \rightarrow K$ is continuous and completely continuous.

Lemma 4. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold; then a function $\mathbf{x}(t) \in$ K is a positive ω-periodic solution of (1) if and only if $T_{\lambda} \mathbf{x}=\mathbf{x}$, $\mathbf{x} \in K$.

Proof. If $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K$ and $T_{\lambda} \mathbf{x}=\mathbf{x}$, then

$$
\begin{align*}
x_{i}^{\prime}(t)= & \frac{d}{d t}\left(\lambda \int_{t}^{t+\omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s\right) \\
\geq & \lambda G_{i}(t, t+\omega) b_{i}(t+\omega) f_{i}(\mathbf{x}(t+\omega-\tau(t+\omega))) \\
& -\lambda G_{i}(t, t) b_{i}(t) f_{i}(\mathbf{x}(t-\tau(t)))+\frac{h_{i}(t, \mathbf{x})}{x_{i}(t)}\left(T_{\lambda} \mathbf{x}\right)_{i}(t) \\
= & \lambda\left[G_{i}(t, t+\omega)-G_{i}(t, t)\right] b_{i}(t) f_{i}(\mathbf{x}(t-\tau(t))) \\
& +h_{i}(t, \mathbf{x}) \\
= & h_{i}(t, \mathbf{x})-\lambda b_{i}(t) f_{i}(\mathbf{x}(t-\tau(t))) . \tag{23}
\end{align*}
$$

Thus \mathbf{x} is a positive ω-periodic solution of (1). On the other hand, if $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a positive ω-periodic solution of (1), then $x_{i}^{\prime}(t)=h_{i}(t, \mathbf{x})-\lambda b_{i}(t) f_{i}(\mathbf{x}(t-\tau(t)))$ and

$$
\begin{align*}
\left(T_{\lambda} \mathbf{x}\right)_{i}(t)= & \lambda \int_{t}^{t+\omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
= & \int_{t}^{t+\omega} G_{i}(t, s)\left(h_{i}(s, \mathbf{x})-x_{i}^{\prime}(s)\right) d s \\
= & \int_{t}^{t+\omega} G_{i}(t, s) h_{i}(s, \mathbf{x}) d s-\int_{t}^{t+\omega} G_{i}(t, s) x_{i}^{\prime}(s) d s \\
= & \int_{t}^{t+\omega} G_{i}(t, s) h_{i}(s, \mathbf{x}) d s-\left.G_{i}(t, s) x_{i}(s)\right|_{t} ^{t+\omega} \\
& -\int_{t}^{t+\omega} G_{i}(t, s) h_{i}(s, \mathbf{x}) d s=x_{i}(t) \tag{24}
\end{align*}
$$

Thus, $T_{\lambda} \mathbf{x}=\mathbf{x}$; furthermore, in view of the proof of Lemma 3, we also have $x_{i}(t) \geq(m / M) \max _{t \in[0, \omega]}\left|\left(T_{\lambda} \mathbf{x}\right)_{i}(t)\right|$ for $t \in[0, \omega]$. That is, \mathbf{x} is a fixed point of T_{λ} in K.

Lemma 5. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold; for any $\eta>0$ and $\mathbf{x} \in K$, if there exists a component f_{i} of \mathbf{F} such that $f_{i}(\mathbf{x}(t)) \geq$ $x_{i}(t) \eta$, then

$$
\begin{equation*}
\left\|T_{\lambda} \mathbf{x}\right\| \geq \frac{\lambda \eta m^{2} b^{l}}{M}\|\mathbf{x}\| \tag{25}
\end{equation*}
$$

Proof. Since $\mathbf{x} \in K$ and $f_{i}(\mathbf{x}(t)) \geq x_{i}(t) \eta$, we have

$$
\begin{align*}
\left(T_{\lambda} \mathbf{x}\right)_{i}(t) & =\lambda \int_{0}^{\omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
& \geq \lambda m \int_{0}^{\omega} b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \tag{26}\\
& \geq \lambda \eta m \int_{0}^{\omega} b_{i}(s) x_{i}(s-\tau(s)) d s \\
& \geq \frac{\lambda \eta m^{2} b^{l}}{M}\|\mathbf{x}\|
\end{align*}
$$

Thus $\left\|T_{\lambda} \mathbf{x}\right\| \geq\left(\lambda \eta m^{2} b^{l} / M\right)\|\mathbf{x}\|$. The proof is complete.
For each $i=1,2, \ldots, n$, let $\widehat{f}(r): R_{+} \rightarrow R_{+}$be the function given by

$$
\begin{equation*}
\widehat{f}_{i}(r)=\max \left\{f_{i}(\mathbf{x}): \mathbf{x} \in R_{+}^{n},\|\mathbf{x}\| \leq r, t \in[0, \omega]\right\} \tag{27}
\end{equation*}
$$

Let $\widehat{f}_{i}^{0}=\lim _{r \rightarrow 0}\left(\widehat{f}_{i}(r) / r\right)$ and $\widehat{f}_{i}^{\infty}=\lim _{r \rightarrow \infty}\left(\widehat{f}_{i}(r) / r\right)$.
Lemma 6 (see [11]). Assume $\left(H_{2}\right)$ holds. Then $\hat{f}_{i}^{0}=f_{i}^{0}$ and $\widehat{f}_{i}^{\infty}=f_{i}^{\infty}$.

Lemma 7. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold and let $r>0$. If $\mathbf{x} \in$ $\partial \Omega_{r}$ and there exists an $\epsilon>0$, such that $\widehat{f}_{i}(r) \leq \epsilon r$ for $t \in$ $[0, \omega]$, then

$$
\begin{equation*}
\left\|T_{\lambda} \mathbf{x}\right\| \leq \lambda \epsilon M b^{\mu}\|\mathbf{x}\| . \tag{28}
\end{equation*}
$$

Proof. From the definition of T_{λ}, for $\mathbf{x} \in \partial \Omega_{r}$, we have

$$
\begin{aligned}
\left(T_{\lambda} \mathbf{x}\right)_{i}(t) & =\int_{0}^{\omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
& \leq \lambda M \int_{0}^{\omega} b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
& \leq \lambda M \int_{0}^{\omega} b_{i}(s) \widehat{f}_{i}(r) d s \\
& \leq \lambda \epsilon M b^{\mu}\|\mathbf{x}\|
\end{aligned}
$$

That is, $\left\|T_{\lambda} \mathbf{x}\right\| \leq \lambda \epsilon M b^{\mu}\|\mathbf{x}\|$. The proof is complete.
The following two lemmas are weak forms of Lemmas 5 and 7.

Lemma 8. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold. If $\mathbf{x} \in \partial \Omega_{r}, r>0$, then

$$
\begin{equation*}
\left\|T_{\lambda} \mathbf{x}\right\| \geq \lambda m b \widehat{m}_{r}, \tag{30}
\end{equation*}
$$

where $\widehat{m}_{r}=\min \left\{f_{i}(\mathbf{x}): \mathbf{x} \in R_{+}^{n}, m r / M \leq\|\mathbf{x}\| \leq r\right\}$.
Lemma 9. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold. If $\mathbf{x} \in \partial \Omega_{r}, r>0$, then

$$
\begin{equation*}
\left\|T_{\lambda} \mathbf{x}\right\| \leq \lambda M b^{\mu} \widehat{M}(r) \tag{31}
\end{equation*}
$$

where $\widehat{M}_{r}=\max \left\{f_{i}(\mathbf{x}): \mathbf{x} \in R_{+}^{n},\|\mathbf{x}\| \leq r\right\}$.

3. The Main Results

Theorem 10. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold and there exist positive constants r_{1} and r_{2} with $r_{1}<r_{2}$ such that

$$
\begin{equation*}
m b^{l} \rho^{l}\left(r_{2}\right)>M b^{\mu} \rho^{\mu}\left(r_{1}\right) \tag{32}
\end{equation*}
$$

then for

$$
\begin{equation*}
\frac{1}{m b^{l} \rho^{l}\left(r_{2}\right)} \leq \lambda \leq \frac{1}{M b^{\mu} \rho^{\mu}\left(r_{1}\right)}, \tag{33}
\end{equation*}
$$

the system (1) has at least a positive ω-periodic solution $\mathbf{x}(t)$ satisfying $r_{1} \leq\|\mathbf{x}\| \leq r_{2}$.

Proof. From (32) for λ satisfying (33) we have that

$$
\begin{equation*}
\lambda m b^{l} \rho^{l}\left(r_{2}\right) \geq 1, \quad \lambda M b^{\mu} \rho^{\mu}\left(r_{1}\right)<1, \tag{34}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda m b^{l} \rho^{l}\left(r_{2}\right)>1, \quad \lambda M b^{u} \rho^{\mu}\left(r_{1}\right) \leq 1 . \tag{35}
\end{equation*}
$$

Let $\mathbf{x} \in K$ and $\|\mathbf{x}\|=r_{1}$; by (16) and (34), we have

$$
\begin{aligned}
\left(T_{\lambda} \mathbf{x}\right)_{i}(t) & =\lambda \int_{t}^{t+\omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
& \leq \lambda M \int_{t}^{t+\omega} b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
& \leq \lambda M \int_{t}^{t+\omega} b_{i}(s) \frac{f_{i}(\mathbf{x}(s-\tau(s)))}{\|\mathbf{x}\|}\|\mathbf{x}\| d s \\
& \leq \lambda M b^{\mu} \rho^{\mu}\left(r_{1}\right)\|\mathbf{x}\| \leq\|\mathbf{x}\|
\end{aligned}
$$

That is, $\left\|T_{\lambda} \mathbf{x}_{i}\right\| \leq\|\mathbf{x}\|$. This implies that $\left\|T_{\lambda} \mathbf{x}\right\| \leq\|\mathbf{x}\|$ for $\mathbf{x} \in$ $K \cap \partial \Omega_{r_{1}}$.

If $\mathbf{x} \in K$ and $\|\mathbf{x}\|=r_{2}$, by (16) and (35), we have

$$
\begin{align*}
\left(T_{\lambda} \mathbf{x}\right)_{i}(t) & =\lambda \int_{t}^{t+\omega} G_{i}(t, s) b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \\
& \geq \lambda m \int_{t}^{t+\omega} b_{i}(s) f_{i}(\mathbf{x}(s-\tau(s))) d s \tag{37}\\
& \geq \lambda m \int_{t}^{t+\omega} b_{i}(s) \frac{f_{i}(\mathbf{x}(s-\tau(s)))}{\|\mathbf{x}\|}\|\mathbf{x}\| d s \\
& \geq \lambda m b^{l} \rho^{l}\left(r_{2}\right)\|\mathbf{x}\| \geq\|\mathbf{x}\|
\end{align*}
$$

This implies that $\left\|T_{\lambda} \mathbf{x}\right\| \geq\|\mathbf{x}\|$ for $\mathbf{x} \in K \cap \partial \Omega_{r_{2}}$. By Lemma 2(a), T_{λ} has a fixed point in $K \cap\left(\bar{\Omega}_{r_{2}} \backslash \Omega_{r_{1}}\right)$. It follows from Lemma 2 that (1) has an ω-periodic solution \mathbf{x} with $r_{1} \leq\|\mathbf{x}\| \leq r_{2}$. The proof is complete.

Theorem 11. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold and there exist positive constants r_{1} and r_{2} with $r_{1}<r_{2}$ such that

$$
\begin{equation*}
m b^{l} \rho^{l}\left(r_{1}\right)>M b^{\mu} \rho^{\mu}\left(r_{2}\right) \tag{38}
\end{equation*}
$$

then for

$$
\begin{equation*}
\frac{1}{m b^{l} \rho^{l}\left(r_{1}\right)} \leq \lambda \leq \frac{1}{M b^{\mu} \rho^{\mu}\left(r_{2}\right)} \tag{39}
\end{equation*}
$$

the system (1) has at least a positive ω-periodic solution $\mathbf{x}(t)$ satisfying $r_{1} \leq\|\mathbf{x}\| \leq r_{2}$.

Proof. The proof of Theorem 11 is similar to that of Theorem 10, so we omit it. The proof is complete.

Theorem 12. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold.
(a) If $I_{0}=1$ or $I_{0}=2$, then (1) has I_{0} positive ω-periodic solution(s) for $\lambda>1 / m b^{l} \widehat{m}_{1}>0$.
(b) If $I_{\infty}=1$ or $I_{\infty}=2$, then (1) has I_{∞} positive ω-periodic solution(s) for $0<\lambda<1 / M b^{\mu} \widehat{M}_{1}$.
(c) If $I_{0}=0$ or $I_{\infty}=0$, then (1) has no positive ω periodic solution for sufficiently large or small $\lambda>0$, respectively.

Proof. (a) Choose a number $r_{1}=1$. By Lemma 8 we infer that there exists $\lambda_{0}=1 / m b^{l} \widehat{m}_{1}>0$ such that

$$
\begin{equation*}
\left\|T_{\lambda}(\mathbf{x})\right\| \geq\|\mathbf{x}\| \quad \text { for } \mathbf{x} \in \partial \Omega_{r_{1}}, \lambda>\lambda_{0} \tag{40}
\end{equation*}
$$

If $\mathbf{F}_{0}=0$, this implies that $f_{i}^{0}=0$. It follows from Lemma 6 that $\widehat{f}_{i}^{0}=0$; therefore, we choose $0<r_{2}<r_{1}$ so that $\widehat{f}_{i}\left(r_{2}\right) \leq \epsilon r_{2}$, where the constant $\epsilon>0$ satisfies $\lambda \epsilon M b^{\mu}<1$. By Lemma 7, it follows that

$$
\begin{equation*}
\left\|T_{\lambda} \mathbf{x}\right\| \leq \lambda \epsilon M b^{\mu}\|\mathbf{x}\|<\|\mathbf{x}\|, \quad \text { for } \mathbf{x} \in \partial \Omega_{r_{2}}, t \in[0, \omega] \tag{41}
\end{equation*}
$$

it follows from Lemma 1 that

$$
\begin{equation*}
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=0, \quad i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=1 \tag{42}
\end{equation*}
$$

Thus $i\left(T_{\lambda}, \Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}, K\right)=-1$, which implies T_{λ} has a fixed point in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$, which is positive ω-periodic solution of (1) for $\lambda>\lambda_{0}$.

If $\mathbf{F}_{\infty}=0$, then $f_{i}^{\infty}=0$. It follows from Lemma 6 that $\widehat{f}_{i}^{\infty}=0$. Therefore, we choose $r_{3}>2 r_{1}$ such that $\widehat{f}_{i}\left(t, r_{3}\right) \leq \epsilon r_{3}$, where the constant $\epsilon>0$ satisfies $\lambda \epsilon M b^{\mu}<1$. By Lemma 7, it follows that

$$
\begin{equation*}
\left\|T_{\lambda} \mathbf{x}\right\| \leq \lambda \epsilon M b^{\mu}\|\mathbf{x}\|<\|\mathbf{x}\|, \quad \text { for } \mathbf{x} \in \partial \Omega_{r_{3}}, t \in[0, \omega] ; \tag{43}
\end{equation*}
$$

it follows from Lemma 1 that

$$
\begin{equation*}
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=0, \quad i\left(T_{\lambda}, \Omega_{r_{3}}, K\right)=1 \tag{44}
\end{equation*}
$$

thus $i\left(T_{\lambda}, \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}, K\right)=1$, which implies T_{λ} has a fixed point in $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$, which is positive ω-periodic solution of (1) for $\lambda>\lambda_{0}$.

If $\mathbf{F}_{0}=\mathbf{F}_{\infty}=0$, it is easy to see from the above proof that T_{λ} has fixed points \mathbf{x}_{1} in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$ and \mathbf{x}_{2} in $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$ such that

$$
\begin{equation*}
r_{2}<\left\|\mathbf{x}_{1}\right\|<r_{1}<\left\|\mathbf{x}_{2}\right\|<r_{3} . \tag{45}
\end{equation*}
$$

Consequently, (1) has two positive ω-periodic solutions for $\lambda>\lambda_{0}$.
(b) Choose a number $r_{1}=1$; by Lemma 9 we infer that there exists a $\lambda_{0}=1 / M b^{\mu} \widehat{M}_{1}>0$ such that

$$
\begin{equation*}
\left\|T_{\lambda}(\mathbf{x})\right\|<\|\mathbf{x}\| \quad \text { for } \mathbf{x} \in \partial \Omega_{r_{1}}, 0<\lambda<\lambda_{0} \tag{46}
\end{equation*}
$$

If $\mathbf{F}_{0}=\infty$, there exists a component f_{i} such that $f_{i}^{0}=\infty$. Therefore there is a positive number $r_{2}<r_{1}$ such that

$$
\begin{equation*}
f_{i}(\mathbf{x}) \geq \eta\|\mathbf{x}\|, \quad \text { for }\|\mathbf{x}\| \leq r_{2}, t \in[0, \omega] \tag{47}
\end{equation*}
$$

where the constant $\eta>0$ satisfies $\lambda \eta m^{2} b^{l} M>1$. Lemma 5 implies that

$$
\begin{equation*}
\left\|T_{\lambda} \mathbf{x}\right\| \geq \lambda \eta M b^{\mu}\|\mathbf{x}\|>\|\mathbf{x}\|, \quad \text { for } \mathbf{x} \in \partial \Omega_{r_{2}}, t \in[0, \omega] \tag{48}
\end{equation*}
$$

It follows from Lemma 1 that

$$
\begin{equation*}
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=1, \quad i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=0 \tag{49}
\end{equation*}
$$

Thus $i\left(T_{\lambda}, \Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}, K\right)=1$ which implies T_{λ} has a fixed point in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$, which is positive ω-periodic solution of (1) for $0<\lambda<\lambda_{0}$.

If $\mathbf{F}_{\infty}=\infty$, there exists a component f_{i} such that $f_{i}^{\infty}=$ ∞. Therefore there is a positive number \widehat{H} such that

$$
\begin{equation*}
f_{i}(\mathbf{x}) \geq \eta\|\mathbf{x}\|, \quad \text { for } \quad\|\mathbf{x}\| \geq \widehat{H} \tag{50}
\end{equation*}
$$

where the constant $\eta>0$ satisfies $\lambda \eta m^{2} b^{l} M>1$. Let $r_{3}=$ $\max \left\{2 r_{1}, M \widehat{H} / m\right\}$; if $\mathbf{x} \in \partial \Omega_{r_{3}}$, then

$$
\begin{equation*}
\min _{t \in[0, \omega]} x_{i}(t) \geq \frac{m}{M}\|\mathbf{x}\|=\frac{m}{M} r_{3} \geq \widehat{H} \tag{51}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
f_{i}(\mathbf{x}) \geq \eta x_{i}(t) . \tag{52}
\end{equation*}
$$

Again, it follows from Lemma 5 that

$$
\begin{equation*}
\left\|T_{\lambda} \mathbf{x}\right\| \geq \lambda \eta M b^{\mu}\|\mathbf{x}\|>\|\mathbf{x}\|, \quad \text { for } \mathbf{x} \in \partial \Omega_{r_{3}}, t \in[0, \omega] \tag{53}
\end{equation*}
$$

It follows from Lemma 1 that

$$
\begin{equation*}
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=1, \quad i\left(T_{\lambda}, \Omega_{r_{3}}, K\right)=0 \tag{54}
\end{equation*}
$$

Thus $i\left(T_{\lambda}, \Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}, K\right)=-1$, which implies T_{λ} has a fixed point in $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$, which is positive ω-periodic solution of (1) for $0<\lambda<\lambda_{0}$.

If $\mathbf{F}_{0}=\mathbf{F}_{\infty}=\infty$, it is easy to see from the above proof that T_{λ} has fixed points \mathbf{x}_{1} in $\Omega_{r_{1}} \backslash \bar{\Omega}_{r_{2}}$ and \mathbf{x}_{2} in $\Omega_{r_{3}} \backslash \bar{\Omega}_{r_{1}}$ such that

$$
\begin{equation*}
r_{2}<\left\|\mathbf{x}_{1}\right\|<r_{1}<\left\|\mathbf{x}_{2}\right\|<r_{3} . \tag{55}
\end{equation*}
$$

Consequently, (1) has two positive ω-periodic solutions for $0<\lambda<\lambda_{0}$.
(c) If $I_{0}=0$, then $\mathbf{F}_{0}>0$ and $\mathbf{F}_{\infty}>0$; there exist two components f_{i} and f_{j} such that

$$
\begin{equation*}
f_{i}^{0}>0, \quad f_{i}^{\infty}>0 \tag{56}
\end{equation*}
$$

It is easy to show (see [11]) that positive numbers η, r_{1} exist such that

$$
\begin{gather*}
f_{i}(\mathbf{x}) \geq \eta\|\mathbf{x}\|, \quad\|\mathbf{x}\| \leq r_{1} \tag{57}\\
f_{j}(\mathbf{x}) \geq \eta\|\mathbf{x}\|, \quad\|\mathbf{x}\| \geq \frac{m}{M} r_{1} . \tag{58}
\end{gather*}
$$

Assume $\mathbf{y}(t)=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ is a positive ω-periodic solution of (1), we will show that this leads to a contradiction for $\lambda>\lambda_{0}=M / \eta m^{2} b^{l}$. In fact, if $\|\mathbf{y}\| \leq r_{1}$, (57) implies that

$$
\begin{equation*}
f_{i}(\mathbf{y}) \geq \eta y_{i}(t), \quad \text { for } t \in[0, \omega] . \tag{59}
\end{equation*}
$$

On the other hand, if $\|\mathbf{y}\|>r_{1}$, then

$$
\begin{equation*}
\min _{t \in[0, \omega]} y_{i}(t) \geq \sigma\|\mathbf{y}\| \geq \sigma r_{1} \tag{60}
\end{equation*}
$$

which together with (58), implies that

$$
\begin{equation*}
f_{j}(\mathbf{y}) \geq \eta y_{j}(t), \quad \text { for } t \in[0, \omega] . \tag{61}
\end{equation*}
$$

Since $T_{\lambda}(\mathbf{y})=\mathbf{y}(t)$, for $t \in[0, \omega]$, it follows from Lemma 5 that, for $\lambda>\lambda_{0}$,

$$
\begin{equation*}
\|\mathbf{y}\|=\left\|T_{\lambda}(\mathbf{y})\right\| \geq \frac{\lambda \eta m^{2} b^{l}}{M}\|\mathbf{y}\|>\|\mathbf{y}\|, \tag{62}
\end{equation*}
$$

which is a contradiction.
If $I_{\infty}=0$, then $\mathbf{F}_{0}<\infty$ and $\mathbf{F}_{\infty}<\infty$; there exist two components f_{i} and f_{j} such that $f_{i}^{0}<\infty$ and $f_{j}^{\infty}<\infty$. It is easy to show (see [11]) that positive numbers ϵ exist such that

$$
\begin{equation*}
f_{i}(\mathbf{x}) \leq \epsilon\|\mathbf{x}\| \tag{63}
\end{equation*}
$$

Assume that $\mathbf{y}(t)=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ is a positive ω-periodic solution of (1); we will show that this leads to a contradiction for $0<\lambda<\lambda_{0}=1 / \epsilon M b^{\mu}$. In fact, for $0<\lambda<\lambda_{0}$, since $T_{\lambda}(\mathbf{y})=\mathbf{y}(t)$, we find

$$
\begin{equation*}
\|\mathbf{y}\|=\left\|T_{\lambda}(\mathbf{y})\right\| \leq \lambda \epsilon M b^{\mu}\|\mathbf{y}\|<\|\mathbf{y}\|, \tag{64}
\end{equation*}
$$

which is a contradiction. The proof is complete.
Theorem 13 is a direct consequence of the proof of Theorem 12(c). Under the conditions of Theorem 13, we are able to give explicit intervals of λ such that (1) has no positive ω-periodic solution.

Theorem 13. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold.
(a) If there is a $c_{1}>0$ such that $f_{i}(\mathbf{x}) \geq c_{1}\|\mathbf{x}\|, \mathbf{x} \in R_{+}^{n}$, then there exists a $\lambda_{0}=M / m^{2} c_{1} b^{l}$ such that, for all $\lambda>\lambda_{0}$, (1) has no positive ω-periodic solution.
(b) If there is a $c_{2}>0$ such that $f_{i}(\mathbf{x}) \leq \mathcal{c}_{2}\|\mathbf{x}\|, \mathbf{x} \in R_{+}^{n}$, then there exists a $\lambda_{0}=1 / M c_{2} b^{\mu}$ such that, for all $0<\lambda<$ λ_{0}, (1) has no positive ω-periodic solution.

Theorem 14. Assume that $\left(H_{1}\right)-\left(H_{2}\right)$ hold and $I_{0}=I_{\infty}=0$. If

$$
\begin{equation*}
\frac{M}{\max \left\{\mathbf{F}_{0}, \mathbf{F}_{\infty}\right\} m^{2} b^{l}}<\lambda<\frac{1}{\min \left\{\mathbf{F}_{0}, \mathbf{F}_{\infty}\right\} M b^{\mu}}, \tag{65}
\end{equation*}
$$

then (1) has a positive ω-periodic solution.
Proof. (a) If $\mathbf{F}_{\infty}>\mathbf{F}_{0}$, then there exist two components f_{i} and f_{j} such that $f_{i}^{0}<f_{j}^{\infty}$. It is easy to see that there exists an $0<\epsilon<f_{j}^{\infty}$ such that

$$
\begin{equation*}
\frac{M}{m^{2} b^{l}\left(f_{j}^{\infty}-\epsilon\right)}<\lambda<\frac{1}{M b^{\mu}\left(f_{i}^{0}+\epsilon\right)} \tag{66}
\end{equation*}
$$

Now, turning to f_{i}^{0} and f_{j}^{∞}, there is an $r_{1}>0$ such that

$$
\begin{equation*}
f_{i}(\mathbf{x}) \leq\left(f_{i}^{0}+\epsilon\right)\|\mathbf{x}\|, \quad \text { for } 0<\|\mathbf{x}\|<r_{1} \tag{67}
\end{equation*}
$$

Thus

$$
\begin{equation*}
f_{i}(\mathbf{x}) \leq\left(f_{i}^{0}+\epsilon\right)\|\mathbf{x}\|, \quad \text { for } \mathbf{x} \in \partial \Omega_{r_{1}}, t \in[0, \omega] \tag{68}
\end{equation*}
$$

We have by Lemma 7 that

$$
\begin{array}{r}
\left\|T_{\lambda} \mathbf{x}\right\| \leq \lambda\left(f_{i}^{0}+\epsilon\right) M b^{\mu}\|\mathbf{x}\|<\|\mathbf{x}\| \\
\quad \text { for } \mathbf{x} \in \partial \Omega_{r_{1}}, \quad t \in[0, \omega] \tag{69}
\end{array}
$$

On the other hand, there is an $\widehat{H}>r_{1}$ such that

$$
\begin{equation*}
f_{j}(\mathbf{x}) \geq\left(f_{j}^{\infty}-\epsilon\right)\|\mathbf{x}\|, \quad \text { for }\|\mathbf{x}\| \geq \widehat{H} \tag{70}
\end{equation*}
$$

Let $r_{2}=\max \left\{2 r_{1}, m \widehat{H} / M\right\}$. It follows that

$$
\begin{equation*}
x_{i}(t) \geq \frac{m}{M}\|\mathbf{x}\| \geq \widehat{H}, \quad \text { for } \mathbf{x} \in \partial \Omega_{r_{2}}, t \in[0, \omega] \tag{71}
\end{equation*}
$$

Thus $f_{i}(\mathbf{x}) \leq\left(f_{j}^{\infty}-\epsilon\right)\|\mathbf{x}\|$, for $\mathbf{x} \in \partial \Omega_{r_{2}}$ and $t \in[0, \omega]$. In view of Lemma 7, we have

$$
\begin{align*}
& \left\|T_{\lambda} \mathbf{x}\right\| \geq \lambda\left(f_{j}^{\infty}-\epsilon\right) \frac{m^{2} b^{l}}{M}\|\mathbf{x}\|>\|\mathbf{x}\|, \tag{72}\\
& \quad \text { for } \mathbf{x} \in \partial \Omega_{r_{2}}, \quad t \in[0, \omega] .
\end{align*}
$$

It follows from Lemma 1 that

$$
\begin{equation*}
i\left(T_{\lambda}, \Omega_{r_{1}}, K\right)=1, \quad i\left(T_{\lambda}, \Omega_{r_{2}}, K\right)=0 \tag{73}
\end{equation*}
$$

Thus $i\left(T_{\lambda}, \Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}, K\right)=-1$. Hence, T_{λ} has a fixed point in $\Omega_{r_{2}} \backslash \bar{\Omega}_{r_{1}}$. Consequently, (1) has a positive ω-periodic solution.
(b) If $\mathbf{F}_{\infty}>\mathbf{F}_{0}$. The remaining part of the proof is similar to that of Theorem 14(a); therefore it is omitted. The proof is complete.

4. Remarks

Remark 15. Based on the condition H2 of [8], we may obtain the inequality sequence of

$$
\begin{equation*}
l a_{i}(t) \leq A(t) G(\mathbf{x}) \leq L a_{i}(t), \quad i=1,2, \ldots, n \tag{74}
\end{equation*}
$$

Comparatively, in terms of condition of H_{1} presented in this paper, we have the inequality sequence of

$$
\begin{equation*}
\alpha_{i}(t) x_{i} \leq h_{i}(t, \mathbf{x}) \leq \beta_{i}(t) x_{i}, \quad i=1,2, \ldots, n ; \tag{75}
\end{equation*}
$$

it is clear that result of this paper can be applied to even more wider domain. Additionally, an extra requirement of

$$
\begin{equation*}
0<l<G(\mathbf{x})<L \tag{76}
\end{equation*}
$$

included in H 2 of [8], is not demanded here.
For example, when letting

$$
H(t, \mathbf{x})=A(t) G(\mathbf{x})=\left[\begin{array}{cc}
a_{1}(t) & 0 \tag{77}\\
0 & a_{2}(t)
\end{array}\right]\left[\begin{array}{l}
\left(2+\sin x_{1}\right) x_{1} \\
\left(2+\cos x_{2}\right) x_{2}
\end{array}\right]
$$

and then

$$
G(\mathbf{x})=\left[\begin{array}{l}
\left(2+\sin x_{1}\right) x_{1} \tag{78}\\
\left(2+\cos x_{2}\right) x_{2}
\end{array}\right]
$$

we can obtain the formula of

$$
\begin{align*}
& h_{1}(t, \mathbf{x})=a_{1}(t)\left(2+\sin x_{1}\right) x_{1} \\
& h_{2}(t, \mathbf{x})=a_{2}(t)\left(2+\cos x_{2}\right) x_{2} \tag{79}
\end{align*}
$$

According to condition H_{1}, the formulas would be further achieved as

$$
\begin{align*}
& a_{1}(t) \leq \frac{h_{1}(t, \mathbf{x})}{x_{1}}=\frac{a_{1}(t)\left(2+\sin x_{1}\right) x_{1}}{x_{1}} \leq 3 a_{1}(t) \\
& a_{2}(t) \leq \frac{h_{2}(t, \mathbf{x})}{x_{2}}=\frac{a_{2}(t)\left(2+\cos x_{2}\right) x_{2}}{x_{2}} \leq 3 a_{2}(t) \tag{80}
\end{align*}
$$

However, there do not exist $l>0$ such that

$$
\begin{equation*}
0<l<g_{1}\left(x_{1}\right)=\left(2+\sin x_{1}\right) x_{1} . \tag{81}
\end{equation*}
$$

Therefore, function of $H(t, \mathbf{x})=A(t) G(\mathbf{x})$ cannot satisfy the conditions proposed in [8].

Remark 16. The technique of proof of theorems in this paper differs from that of theorems in [8]. What is more, the condition of Theorems 10 and 11 is obviously weaker here than proposed in [8].

Remark 17. In this paper the application scope of Theorems $12-14$ is relatively wider than that of Theorems 1.1-1.3 in [6], respectively.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors are very grateful to the referee for their valuable comments and suggestions. They appreciate the generous aid from Professor Jianwen Zhang in the process of revision.

References

[1] S. S. Cheng and G. Zhang, "Existence of positive periodic solutions for non-autonomous functional differential equations," Electronic Journal of Differential Equations, vol. 59, pp. 1-8, 2001.
[2] S. Kang and S. S. Cheng, "Existence and uniqueness of periodic solutions of mixed monotone functional differential equations," Abstract and Applied Analysis, vol. 2009, Article ID 162891, 13 pages, 2009.
[3] S. Kang, B. Shi, and G. Wang, "Existence of maximal and minimal periodic solutions for first-order functional differential equations," Applied Mathematics Letters, vol. 23, no. 1, pp. 2225, 2010.
[4] S. Kang and G. Zhang, "Existence of nontrivial periodic solutions for first order functional differential equations," Applied Mathematics Letters, vol. 18, no. 1, pp. 101-107, 2005.
[5] X. Liu, G. Zhang, and S. S. Cheng, "Existence of triple positive periodic solutions of a functional differential equation depending on a parameter," Abstract and Applied Analysis, no. 10, pp. 897-905, 2004.
[6] H. Y. Wang, "Positive periodic solutions of functional differential equations," Journal of Differential Equations, vol. 202, no. 2, pp. 354-366, 2004.
[7] A. Weng and J. Sun, "Positive periodic solutions of first-order functional differential equations with parameter," Journal of Computational and Applied Mathematics, vol. 229, no. 1, pp. 327332, 2009.
[8] D. O'Regan and H. Wang, "Positive periodic solutions of systems of first order ordinary differential equations," Results in Mathematics, vol. 48, no. 3-4, pp. 310-325, 2005.
[9] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin , Germany, 1985.
[10] M. Krasnoseliskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, The Netherlands, 1964.
[11] H. Wang, "On the number of positive solutions of nonlinear systems," Journal of Mathematical Analysis and Applications, vol. 281, no. 1, pp. 287-306, 2003.
[12] D. Jiang, J. Wei, and B. Zhang, "Positive periodic solutions of functional differential equations and population models,"

Electronic Journal of Differential Equations, vol. 71, pp. 1-13, 2002.
[13] Z. Zeng, L. Bi, and M. Fan, "Existence of multiple positive periodic solutions for functional differential equations," Journal of Mathematical Analysis and Applications, vol. 325, no. 2, pp. 1378-1389, 2007.
[14] D. Ye, M. Fan, and H. Wang, "Periodic solutions for scalar functional differential equations," Nonlinear Analysis: Theory, Methods \& Applications, vol. 62, no. 7, pp. 1157-1181, 2005.
[15] D. Bai and Y. Xu, "Periodic solutions of first order functional differential equations with periodic deviations," Computers \& Mathematics with Applications, vol. 53, no. 9, pp. 1361-1366, 2007.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

