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A new adaptive learning control approach is proposed for a class of nonlinearly parameterized
complex dynamical networks with unknown time-varying parameters. By using the parameter
separation and reparameterization technique, the adaptive learning laws of periodically time-
varying and constant parameters and an adaptive control strategy are designed to ensure the
asymptotic convergence of the synchronization error in the sense of square error norm. Then, a
sufficient condition of the synchronization is given by constructing a composite energy function.
Finally, an example of the complex network is used to verify the effectiveness of proposed
approach.

1. Introduction

Since small world network and scale-free network were discovered in the past decade,
complex dynamical networks have become a focus issue and have been studied intensively in
various disciplines, such as sociology, biology, mathematics, and engineering [1, 2]. As non-
linear dynamics and topological structure of the complex dynamical networks influence its
dynamical behaviors, and synchronization is one of the basic forms of cooperative behavior,
many of the basic mechanisms have a direct relationship with the synchronization. Research
on synchronization of networks has an important significance on understanding of coopera-
tive behavior mechanism and complex phenomena in nature and society. What is more is that
it also has a very broad application prospects on nuclear magnetic resonance, wireless sensor
network, and multirobot coordination. On the other hand, it can also provide the necessary
theoretical basis simultaneously in multiple mobile robot systems, unmanned aircraft sys-
tems and distributed sensor array in the field of intelligent autonomous coordination control
of complex systems. Up to now, synchronization can be roughly divided into complete
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synchronization and generalized synchronization. Generalized synchronization includes
cluster synchronization, partial synchronization, and functional project synchronization.

However, there are many of real-world network systems such as biological networks,
mobile communications networks, and social networks, whose structure will change over
time, coupling parameter, and other system parameters. For example, the feed-forward loops
(FFLs) are typical network motifs in many real world biological networks. The structures,
functions, as well as noise characteristics of FFLs are dependent on the network parameters.
In [3], a global relative parameter sensitivities (GRPSs) were proposed for FFLs in the
genetic networks. The proposed GRPS approach sheds some light on the potential real world
applications, such as the synthetic genetic circuits, predicting the effect of interventions in
medicine and biotechnology, and so on. The existence of time-varying coupling parameter
increases the difficulty of researching the problem of synchronization for complex networks.
In the existing results [4–19], the method of synchronization is divided into two categories
which are adaptive coupling and adaptive control approach. [20] studied a time-varying
complex dynamical network model and its controlled synchronization criteria. It showed
that synchronization of such a time-varying dynamical network was completely determined
by the inner-coupling matrix and by the eigenvalues and the corresponding eigenvectors
of the coupling configuration matrix of the network. [21] investigated pinning adaptive
synchronization of a general complex dynamical network and indeed gave the positive
answers to two questions which were how many nodes and how much coupling strength
should a network with fixed structure and coupling be chosen. However, in [20, 21], they
considered the controlled complex dynamical network with linearly diffusive couplings; [22]
researched adaptive synchronization of an uncertain complex dynamical network. Although
it considered complex dynamical network with uncertain nonlinear diffusive couplings, the
uncertainty of the system with unknown time-varying parameters was not considered. [23]
discussed a global payoff-based strategy updating model for studying cooperative behavior
of a networked population. It characterized the interactions among individuals by time
varying parameter. It is obvious that the coupling of actual complex networks is mostly
complex, and the coupling parameters of the network may be not sure or change with some
varying factors. Among the above results, none of them is concerning with the adaptive syn-
chronization of complex network systems with unknown time-varying nonlinear coupling.

On the other hand, in recent years, adaptive learning control [24], a new adaptive
control scheme, has been proposed to deal with the unknown periodic time-varying
parameters. It used various methods to estimate the unknown constant or time-varying
parameters of the system in order to obtain control input. The convergence of tracking error
was proved by using the composite energy function. It is worth mentioning that learning
control based on the composite energy function plays an important role in dealing with the
estimates of periodically time-varying parameters.

Motivated by the above observations, in this paper, the problem of adaptive syn-
chronization is investigated for nonlinearly parameterized complex dynamical networks
with unknown time-varying parameters via adaptive learning control method. The main
contribution of the paper is that, for the first time, the problem of adaptive synchronization
for nonlinearly parameterized complex dynamical networks with unknown time-varying
parameters is solved. By combining the parameter separation [25, 26] and reparameterization
technique, the adaptive learning laws of periodically time-varying and constant parameters
and the proposed adaptive controllers guarantee the asymptotic convergence of the
synchronization error in the L2

T norm and that all closed-loop signals are bounded in the L2
T

norm. Simulation results are provided to show the effectiveness of the proposed approach.
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2. Problem Formulation and Preliminaries

In this section, we introduce the networkmodel considered in this paper and give some useful
mathematical preliminaries.

Consider a dynamical network consisting of N identical nodes with nonlinear coup-
lings, in which each node is an n-dimensional dynamical system. The state equations of the
network are

ẋi(t) = f(xi(t)) +
N∑

j=1

aijΓg
(
xj(t), ϕi(t)

)
i = 1, 2 . . . ,N, (2.1)

where xi(t) = [xi1(t), xi2(t), . . . , xin(t)]
T ∈ Rn represents the state vector of the ith node. f :

Rn × R → Rn is a smooth nonlinear vector-valued function. ϕi(t) represents the unknown
time-varying function. g : Rn × R × R → Rn is an unknown continuous nonlinear vector-
valued function. aij = aji is the coupling element. If there exists a connection between node
i and node j (i /= j), then aij = aji > 0, else aij = aji = 0. The inner coupling matrix Γ =
diag(γ1, . . . , γn) is nonnegative definite.

Let

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

⎞
⎟⎟⎟⎠, (2.2)

where AT = A is an unknown irreducible real symmetric matrix. In this model, it is only
required that the elements of the coupling matrix A satisfy

aii = −
N∑

j=1,j /= i

aij < 0, i, j = 1, 2, . . . ,N. (2.3)

The system (2.1) is said to be asymptotic synchronization in L2
T norm if

lim
t→∞

∫ t

t−T
‖xi(τ) − s(τ)‖2dτ = 0, i = 1, 2, . . . ,N, (2.4)

where ‖ · ‖ stands for the Euclidean vector norm. Synchronous evolution s(t) is an arbitrary
desired state, which is also an isolated node of the network (2.1) with ṡ(t) = f(s(t)). We
assume that for the system ṡ(t) = f(s(t)) there exists stable equilibrium point, stable periodic
orbit, or even chaotic attractor.

Remark 2.1. It is well known that multiagent system is a special kind of complex networks.
The consensus has similar meaning with synchronization, and consensus is a fundamental
natural phenomenon in nature. [27] researched the cluster consensus of discrete-time
multiagent systems. Based on Markov chains and nonnegative matrix analysis, two novel
cluster consensus criteria were obtained for MAS with fixed and switching topology,
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respectively. However, in this paper, we consider a new synchronization problem for contin-
uous-time complex dynamic network with nonlinearly time-varying coupling parameter.
This problem is quite different from [27], and the challenge problem is due to the time-
varying nonlinearly coupling parameter in (2.1).

Now, the following assumptions are introduced.

Assumption 2.2. In the network (2.1), suppose that there exists li > 0, satisfying

[xi(t) − s(t)]T
[
f(xi(t)) − f(s(t))

] ≤ li[xi(t) − s(t)]T [xi(t) − s(t)], (2.5)

where xi(t) and s(t) are time varying vectors.

Lemma 2.3 (separation principle). For the unknown continuous function g(·, ·), the following
inequality holds

∥∥g
(
xj(t), ϕi(t)

) − g
(
s(t), ϕi(t)

)∥∥2 ≤ ∥∥xj(t) − s(t)
∥∥2
h
(
xj(t), s(t)

)
λ
(
ϕi(t)

)
, (2.6)

where h(·, ·) is known nonnegative continuous function and λ(·) is unknown nonnegative continuous
function.

Assumption 2.4. In the network (2.1), ϕi(t) is unknown time-varying function with a known
period T , in that way λ(ϕi(t)) is also a periodic function. Suppose λ(ϕi(t)) = φi(t) + θi, where
φi(t) is unknown continuous function and θi is unknown constant parameter.

Assumption 2.5. In the network (2.1), the inner coupling matrix Γ, coupling matrix A, and
h(·, ·) satisfy

‖Γ‖ = γ, h
(
xj(t), s(t)

)
< H,

∣∣aij

∣∣ ≤ a, ∀i, j = 1, 2, . . . ,N, (2.7)

where γ,H, a are positive constants.

Lemma 2.6 (Young’s inequality). For any vectors x, y ∈ Rn, and any c > 0, the following matrix
inequality holds:

xTy ≤ cxTx +
1
4c

yTy. (2.8)

3. Adaptive Controller Design

To achieve the control objective (2.4), we need an adaptive control strategy to nodes in the
network (2.1). Then the controlled network is given by

ẋi(t) = f(xi(t)) +
N∑

j=1

aijΓg
(
xj(t), ϕi(t)

)
+ ui(t), i = 1, 2, . . . ,N, (3.1)
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where ui(t) = [ui1(t), ui2(t), . . . , uin(t)]
T ∈ Rn, i = 1, 2, . . . ,N are the adaptive controllers to

be designed. Let synchronization error be ei(t) = xi(t) − s(t), i = 1, 2, . . . ,N and we have the
following dynamical error equations:

ėi(t) = f(xi(t)) − f(s(t)) +
N∑

j=1

aijΓ
(
g
(
xj(t), ϕi(t)

) − g
(
s(t), ϕi(t)

))
+ ui(t). (3.2)

Then we design controllers by

ui(t) = −NaγH
(
φ̂i(t) + θ̂i(t)

)
(xi(t) − s(t)), (3.3)

where γ, a,H satisfy condition (2.7), N is the node number of the network (2.1), and
φ̂i(t), θ̂i(t) are estimations to φi(t), θi, respectively. For convenience, we denote

φ̃i(t) = φi(t) − φ̂i(t), θ̃i(t) = θi − θ̂i(t). (3.4)

The constant parameter update law and the time-varying periodic adaptive learning
law are designed as follows:

˙̂θi(t) = rie
T
i (t)ei(t), (3.5)

φ̂i(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ̂i(t − T) + qie
T
i (t)ei(t), t ∈ [T,+∞),

qi0(t)eTi (t)ei(t), t ∈ [0, T),

0, t ∈ [−T, 0),
(3.6)

where ri, qi > 0 are constants and qi0(t) is a continuous and strictly increasing nonnegative
function satisfying qi0(0) = 0, qi0(T) = qi, which ensure φ̂i(t) is continuous in t = iT , i =
1, 2, . . . ,N.

4. Convergence Analysis

In the section, we will give the convergence of the proposed algorithm in the following
theorem.

Theorem 4.1. Under Assumptions 2.2–2.5, the control law (3.3) with update law (3.5) and the
periodic adaptive law (3.6), guarantees the L2

T asymptotic synchronization of the controlled network
(3.1), while keeping all closed-loop signals are L2

T bounded.
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Proof. To facilitate the convergence analysis, we choose a Lyapunov-Krasovskii function as
follows:

V (t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
2

N∑

i=1

eTi ei +
NaγH

2

N∑

i=1

∫ t

0
q−1i φ̃2

i (τ)dτ +
NaγH

2

N∑

i=1

r−1i
(
θ̃i(t) + Li

)2
, t ∈ [0, T),

1
2

N∑

i=1

eTi ei +
NaγH

2

N∑

i=1

∫ t

t−T
q−1i φ̃2

i (τ)dτ +
NaγH

2

N∑

i=1

r−1i
(
θ̃i(t) + Li

)2
, t ∈ [T,+∞),

(4.1)

where Li is sufficiently large positive constant which will be determined.
Firstly, we will prove the finiteness of V (t) in [0, T). Secondly, we will prove the

asymptotical convergence of ei(t). Finally, we will prove all closed-loop signals are L2
T

bounded.
First step, let us confirm the finiteness property of V (t) for the first period [0, T). From

the system dynamics (3.1) and the proposed control laws (3.3), (3.5), and (3.6), it can be seen
that the right-hand side of (3.1) is continuous with respect to all arguments. In light of the
existence theorem of differential equation, (3.2) has unique solution in an interval [0, T1) ⊂
[0, T), with 0 < T1 ≤ T . Therefore, the boundedness of V (t) over [0, T1) can be guaranteed and
we need only focus on the interval [T1, T).

For any t ∈ [T1, T), the time derivative of V (t) for t ∈ [T1, T) is given by

V̇ (t) =
N∑

i=1

eTi (t)ėi(t) +
NaγH

2

N∑

i=1

q−1i φ̃2
i (t) +NaγH

N∑

i=1

r−1i
(
θ̃i(t) + Li

) ˙̃θi(t), t ∈ [T1, T).

(4.2)

Taking the first term on the right-hand side of (4.2), one obtains

N∑

i=1

eTi (t)ėi(t) =
N∑

i=1

eTi (t)

⎡

⎣f(xi(t)) − f(s(t)) +
N∑

j=1

aijΓ
(
g
(
xj(t), ϕi(t)

) − g
(
s(t), ϕi(t)

))
+ ui(t)

⎤

⎦.

(4.3)

Let g(xj(t), ϕi(t)) − g(s(t), ϕi(t)) = Λ, and

‖Λ‖2 ≤ ∥∥ej(t)
∥∥2
h
(
xj(t), s(t)

)
λ
(
ϕi(t)

)
. (4.4)
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Then according to Assumption 2.2 and Lemma 2.6, we get

N∑

i=1

eTi (t)ėi(t) ≤
N∑

i=1

⎡

⎣lieTi ei +
N∑

j=1

aije
T
i ΓΛ −NaγH

(
φ̂i(t) + θ̂i(t)

)
eTi ei

⎤

⎦

≤
N∑

i=1

⎡

⎣lieTi ei +
N∑

j=1

(
a2
ijce

T
i ei +

1
4c

ΛTΓTΓΛ
)
−NaγH

(
φ̂i(t) + θ̂i(t)

)
eTi ei

⎤

⎦

≤
N∑

i=1

[
lie

T
i ei +Na2ceTi ei +

NHγ2

4c
eTi ei

(
φi(t) + θi

) −NaγH
(
φ̂i(t) + θ̂i(t)

)
eTi ei

]
,

(4.5)

where c is a positive constant. If choosing c = γ/4a, we have

N∑

i=1

eTi (t)ėi(t) ≤
N∑

i=1

[
li +

Naγ

4
+NaγH

(
φ̃i(t) + θ̃i(t)

)]
eTi ei. (4.6)

Taking the third term on the right-hand side of (4.2), we have

NaγH
N∑

i=1

r−1i
(
θ̃i(t) + Li

) ˙̃θi(t) = −NaγH
N∑

i=1

(
θ̃i(t) + Li

)
eTi ei. (4.7)

Let us focus on the second term on the right-hand side of (4.2). Since qi0(t) is a
continuous function and strictly increasing in [0, T), q−1i ≤ q−1i0 (t) < ∞ is ensured in the interval
[T1, T), and

NaγH

2

N∑

i=1

q−1i φ̃2
i (t) ≤

NaγH

2

N∑

i=1

q−1i0 φ̃
2
i (t)

=
NaγH

2

N∑

i=1

q−1i0
[
φ2
i (t) + 2φ̂2

i (t) − 2φi(t)φ̂i(t) − φ̂2
i (t)

]

≤ NaγH

2

N∑

i=1

q−1i0
[
φ2
i (t) + 2φ̂2

i (t) − 2φi(t)φ̂i(t)
]

=
NaγH

2

N∑

i=1

q−1i0 φ
2
i (t) −NaγH

N∑

i=1

φ̃i(t)eTi ei.

(4.8)

Substituting (4.6)–(4.8) into (4.2) yields

V̇ (t) ≤
N∑

i=1

(
li +

Naγ

4
−NaγHLi

)
eTi ei +

NaγH

2

N∑

i=1

q−1i0 (t)φ
2
i (t). (4.9)



8 Mathematical Problems in Engineering

It is obviously that there exists sufficiently large positive constants Li such that li +
(Naγ/4) −NaγHLi < 0. According to (4.9), we have

V̇ (t) ≤ NaγH

2

N∑

i=1

q−1i0 (t)φ
2
i (t). (4.10)

Since φi(t) is continuous and periodic, its boundedness can be obtained. The
boundedness of φi(t) leads to the boundedness of V̇ (t). For V (T1) is bounded, the finiteness
of V (t) is obvious, for all t ∈ [T1, T).

Next step, we prove the asymptotical convergence of e(t).
According to (4.1), we can get

ΔV (t) = V (t) − V (t − T)

=
1
2

N∑

i=1

eTi (t)ei(t) −
1
2

N∑

i=1

eTi (t − T)ei(t − T) +
NaγH

2

N∑

i=1

∫ t

t−T

[
q−1i φ̃2

i (τ) − q−1i φ̃2
i (τ − T)

]
dτ

+
NaγH

2

N∑

i=1

r−1i
(
θ̃i(t) + Li

)2 − NaγH

2

N∑

i=1

r−1i
(
θ̃i(t − T) + Li

)2
.

(4.11)

Looking into the first two terms on the right-hand side of (4.11), with Newton-Leibniz
formula, we obtain

1
2

N∑

i=1

eTi (t)ei(t) −
1
2

N∑

i=1

eTi (t − T)ei(t − T) =
N∑

i=1

∫ t

t−T
eTi (τ)ėi(τ)dτ

≤
N∑

i=1

∫ t

t−T

[
li +

Naγ

4
+NaγH

(
φ̃i + θ̃i

)]
eTi (τ)ei(τ)dτ.

(4.12)

Using the algebraic relation

(a − b)TH(a − b) − (a − c)TH(a − c) = (c − b)TH[2(a − b) + (b − c)], (4.13)

where a, b, c ∈ Rp, H ∈ Rp×p, and taking the third term on the right-hand side of (4.11), one
obtains

NaγH

2

N∑

i=1

∫ t

t−T

[
q−1i φ̃2

i (τ) − q−1i φ̃2
i (τ − T)

]
dτ = −NaγH

N∑

i=1

∫ t

t−T

[
φ̃i(τ) +

1
2
qie

T
i ei

]
eTi eidτ.

(4.14)
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The last two terms of right-hand side of (4.11) can be simplified as follows:

NaγH

2

N∑

i=1

r−1i
(
θ̃i(t) + Li

)2 − NaγH

2

N∑

i=1

r−1i
(
θ̃i(t − T) + Li

)2

= NaγH
N∑

i=1

∫ t

t−T
r−1i

(
θ̃i(τ) + Li

) ˙̃θi(τ)dτ

= −NaγH
N∑

i=1

∫ t

t−T

(
θ̃i(τ) + Li

)
eTi (τ)ei(τ)dτ.

(4.15)

Substituting (4.12)–(4.15) into (4.11), we can attain

ΔV (t) ≤ −
N∑

i=1

∫ t

t−T

(
NaγHLi − li −

Naγ

4

)
eTi (τ)ei(τ)dτ. (4.16)

Choosing Li > (li/NaγH) + (1/4H), we can obtain

ΔV (t) < 0. (4.17)

Applying (4.16) repeatedly for any t ∈ [lT, (l + 1)T], l = 1, 2, . . ., and denoting t0 = t − lT , we
have

V (t) = V (t0) +
l−1∑

j=0

ΔV
(
t − jT

)
. (4.18)

Considering t0 ∈ [0, T) and the positive of V (t), according to (4.18), we obtain

lim
t→∞

V (t) < max
t0∈[0,T)

V (t0) − lim
l→∞

l−1∑

j=0

N∑

i=1

∫ t−jT

t−(j+1)T

(
NaγHLi − li −

Naγ

4

)
eTi (τ)ei(τ)dτ. (4.19)

Since V (t0) is bounded in the interval [0, T), according to the convergence theorem of
the sum of series and (4.19), the error e(t) converges to zero asymptotically in L2

T norm. That
is to say, we have

lim
t→∞

∫ t

t−T
eTi (τ)ei(τ)dτ = 0. (4.20)
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Finally, we prove that all the closed-loop signals are bounded in L2
T norm sense. For all

t ∈ [T,∞), the derivative of V (t) is

V̇ (t) =
N∑

i=1

eTi (t)ėi(t) +
NaγH

2

N∑

i=1

q−1i φ̃2
i (t) −

NaγH

2

N∑

i=1

q−1i φ̃2
i (t − T)

+NaγH
N∑

i=1

r−1i
(
θ̃i(t) + Li

) ˙̃θi(t)

≤ −NaγH

2

N∑

i=1

qi
(
eTi ei

)2 −
N∑

i=1

(
NaγHLi − li −

Naγ

4

)
eTi ei.

(4.21)

By (4.21), one can obtain

V (t) ≤ V (T) − NaγH

2

N∑

i=1

∫ t

T

qi
(
eTi (τ)ei(τ)

)2
dτ −

N∑

i=1

∫ t

T

(
NaγHLi − li −

Naγ

4

)
eTi eidτ.

(4.22)

Choosing Li > (li/NaγH) + (1/4H), we have

V (t) < V (T). (4.23)

From the boundedness of V (t) and (4.1), we can conclude that ei,
∫ t
t−T φ̃

2
i (τ)dτ , θ̃i(t)

are all bounded. Since φi(t) is continuous periodic function, it implies the L2
T boundedness of

φ̂i(t) and θ̂i(t). According to (3.3), the L2
T boundedness of the control input ui(t) is obtained.

Since ei(t) is bounded, the boundedness of xi(t) is received. So the proof is completed.

5. Simulation Examples

To demonstrate the theoretical result obtained in Section 3, the Chuas chaotic circuit is used
as a dynamical node of the network.

Consider the Chuas chaos circuit

ẋ1 = p
(−x1 + x2 − g(x1)

)
,

ẋ2 = x1 − x2 + x3,

ẋ3 = −qx2,

(5.1)

where g(x1) = m0x1 + (1/2)(m1 −m0)(|x1 + 1| − |x1 − 1|)with p = 10, q = 14.7,m0 = −0.68 and
m1 = −1.27.

We take the system (5.1) as identical nodes of the network, which is given by

⎛
⎜⎝

ẋi1

ẋi2

ẋi3

⎞
⎟⎠=

⎛
⎜⎝

p
(−xi1 + xi2 − g(xi1)

)

xi1 − xi2 + xi3

−qxi2

⎞
⎟⎠+

N∑

j=1

aijΓ exp

⎛
⎜⎜⎝−ϕi(t)

⎛
⎜⎜⎝

x2
j1(t)

x2
j2(t)

x2
j3(t)

⎞
⎟⎟⎠

⎞
⎟⎟⎠+ui(t), i=1, 2, . . . ,N,

(5.2)
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where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −3 2 0 0
0 0 2 −4 1 1
0 0 0 1 −5 4
0 0 0 1 4 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Γ =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠. (5.3)

Nonlinearly parameterized function satisfies

∥∥∥∥∥∥∥∥
exp

⎛
⎜⎜⎝−ϕi(t)

⎛
⎜⎜⎝

x2
j1(t)

x2
j2(t)

x2
j3(t)

⎞
⎟⎟⎠

⎞
⎟⎟⎠ − exp

⎛
⎜⎝−ϕi(t)

⎛
⎜⎝

s2(t)

s2(t)

s2(t)

⎞
⎟⎠

⎞
⎟⎠

∥∥∥∥∥∥∥∥

2

≤ ∥∥ej(t)
∥∥22ϕi(t) exp(−1). (5.4)

The parameters are selected as follows:

N = 6, T = 6, a = 5, γ = 1, H = 5,

φ1(t) = 0.2 sin
2πt
3

, φ2(t) = 2 cosπt, φ3(t) = − sin
2πt
3

, φ4(t) = cosπt,

φ5(t) = −2 sin 2πt
3

, φ6(t) = 2 sin
2πt
3

, θ = (2, 10, 8, 3, 2, 5)T.

(5.5)

In the following simulations, we choose

q1 = 0.0001, q2 = 0.0003, q3 = 0.0002, q4 = 0.0005, q5 = 0.0001, q6 = 0.0002,

q10(t) =
t

6
q1, q20(t) =

t

6
q2, q30(t) =

t

6
q3, q40(t) =

t

6
q4, q50(t) =

t

6
q5, q60(t) =

t

6
q6,

(5.6)

r1 = r2 = r3 = r4 = r5 = r6 = 0.0005. The initially estimated value of the unknown parameter
φ(t) is φ̂(0) = (0, 0, 0, 0, 0, 0)T, and the initial states are chosen as

x1(0) = (2, 0,−1)T, x2(0) = (3, 1,−2)T, x3(0) = (−3,−2, 1)T, x4(0) = (−1, 0,−2)T,

x5(0) = (−1, 1, 0)T, x6(0) = (3,−2, 0.8)T, s(0) = (−0.2, 0.2, 0.5)T.
(5.7)

According to Theorem 4.1, the complex dynamical network (5.2) can be synchronized
by applying the adaptive controllers (3.3) and the adaptive learning laws of parameters (3.5)
and (3.6). Figure 1 shows the error evolutions under the designed controllers. We clearly
show that the states of the network (5.2) asymptotically synchronize in L2

T norm with the
states of the desired orbit (5.1) showed in Figure 2. Figure 3 depicts the time evolution of
the controllers, and Figure 4 shows the evolution of the estimated time-varying parameters.
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Figure 5 displays the evolution of the estimated constant parameters. Obviously, Figures 3–5
show that all the control signals and estimated parameters are also bounded.

6. Conclusion

In this paper, a new adaptive learning control method applied in nonlinearly parameterized
complex dynamical networks with unknown time-varying parameters is presented. By
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Figure 3: The curve of control inputs ui.
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using the parameter separation technique and constructing a composite energy function, the
adaptive learning laws of parameters and the adaptive control strategy are designed to ensure
the asymptotic convergence of the synchronization error in the sense of square error norm.
An example of the complex network is finally used to verify the proposed theoretical result.
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