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When the permeability field of a given porous medium domain is heterogeneous by the existence
of randomly distributed fractures such that numerical investigation becomes cumbersome, another
level of upscaling may be required. That is such complex permeability field could be relaxed (i.e.,
smoothed) by constructing an effective permeability field. The effective permeability field is an ap-
proximation to the real permeability field that preserves certain quantities and provides an overall
acceptable description of the flow field. In this work, the effective permeability for a fractured rock
system is obtained for different coarsening scenarios starting from very coarse mesh all the way
towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the
pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases,
and very good agreement is obtained.

1. Introduction

The first level of upscaling encountered when studying phenomena occurring in porous
media is related to adopting the continuum hypothesis to such complex formations. That
is moving from pore scale simulations in which variables are only defined within the fluid
region to the continuum description in which macroscopic variables are defined everywhere
in the simulation domain. In doing so, certain conditions and length scale constraints need to
be fulfilled in order to generate macroscopic quantities that are scale independent [1]. While
these length scale constraints may be easily adopted in statistically homogeneous porous
media, it may be difficult to satisfy particularly closer to the interface boundaries between
media with very different textures [2]. Unfortunately, these sharp interface boundaries are
ubiquitous in rock systems which apparently contain several fractures and fissures. These
fractures have significant effects on both flow and transport in porous media. They provide
fluids and solutes with significantly less resistance paths compared with the surrounding
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matrix and therefore can lead solutes to reach further distances than what simulations ignor-
ing them would normally predict. There are two approaches to dealing with these fractures
depending on their density and distributions in rock systems. For rock systems with few
penetrating fractures, it is customary to consider the discrete fracture model (e.g., [3, 4]).
In this model, fractures are assumed as two-dimensional surfaces impeded within the given
rock matrix domain. These fracture surfaces have their own properties and equations which
include interaction terms between the rock matrix and the fractures. When the numbers of
the fractures are large and their geometrical distributions are complex such that it becomes
exceedingly difficult to consider them in simulation, another alternative is to construct an
equivalent porous medium domain by further increasing the averaging representative vol-
ume. In this approach, one abandons the fractures and considers another continuum, coarser
in nature, but may be acceptable for our engineering application and design.

In terms of simulation, although the discrete fracture model provides an elegant way
to deal with fractures when their density is manageable, the drawback of this approach,
however, is the fact that the interaction term between the fracture and the surrounding rock
matrix is, in most cases, not known and ends up as a fitting parameter. The other approach is
to refine the mesh all the way to the fractures level, which apparently poses enormous diffi-
culties in large systems particularly when modeling complex transport problems like multi-
phase compositional flows. It has been, therefore, proposed that an even higher level of up-
scaling may be required to generate field properties to reduce the required computing re-
sources and provide certain requirements satisfaction. These requirements are related to the
fact that the solution of the upscaled system should produce approximately close results to
those obtained from simulating the real system. That is if the permeability field may be re-
laxed such that the sharp interface boundaries may be smoothed, in a sense, the require-
ments for denser mesh closer to the sharp interface boundaries may be abandoned, and it may
be possible to significantly decrease the number of degrees of freedom of the system. Differ-
ent approaches have been considered in the literatures based on either deterministic ap-
proaches (e.g., [5–13], etc.) or stochastic approaches (e.g., [14–18], etc.). In the next section we
introduce a quick review of the previous work emphasizing on two methods which are re-
lated to this work closely.

2. Investigation of the Upscaling Techniques

A review on the upscaling of hydraulic conductivities in heterogeneous media may be found
in the work of Farmer [11] and in the work of Wen and Gomez-Hernandez [8]. In both
reviews the authors pointed out that the need for upscaling stems from the fact that the scales
at which measurements are taken and the scale at which reservoirs are discretized are usually
different. Therefore, it is suggested that a transformation of hydraulic conductivities from the
scale of the measurements into a coarser grid of block conductivity tensors amenable for
input to a numerical flow simulator may be needed. Holden and Nielsen [19] pointed out
that the scale at which permeability in a reservoir may change is much finer than what is
possible to use in a reservoir simulator. They proposed a methodology in which permeability
is formulated as a minimization problem. In the method, the upscaled permeability is defined
as that which minimizes the difference between the pressure and the velocity fields generated
by the fine and coarse scale pressure equations. In this work, however, we apply an averaging
over a coarser grid of the porous media domain such that certain quantities are conserved.
The problem may be casted as follows: consider a three-dimensional rectangular domain,
Ω with boundary ∂Ω, if v represents Darcy’s velocity and p the pressure field of the fluid
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saturating the porous medium domain, the governing equations describing this system may
be written as

∇ · v = q, (2.1)

v = −K∇p. (2.2)

From which one obtains an equation only in the pressure given as

−∇ ·K∇p = q. (2.3)

The upscaling problem, as described in [11], is to find a corresponding coarse hydraulic
conductivity field, ˜K such that the new velocity and pressure fields, ṽ, p̃ obtained from solv-
ing the equivalent system of equations, are close, in some sense, to the fine scale velocity and
pressure fields, v, p. The system of equations that need to be solved in this case takes the
form

∇ · ṽ = q̃,

ṽ = − ˜K∇p̃.
(2.4)

The general methodology is to seek an equivalent (effective) hydraulic conductivity field ˜K,
calculated from a set of boundary conditions, and it may be used afterwards to yield accurate
results with different boundary conditions. To do so, the rectangular domain is divided into
a number of segments in each direction, that is, Nx, Ny, and Nz to form boxes of sizes,
Hx, Hy, and Hz. These cells are called the coarse cells. Furthermore, each of the boxes is
divided into nx, ny, and nz finer boxes with sizes hx, hy, and hz. The hydraulic conductivity
tensor field K, generally, takes a different value in each of the fine cells. There have been
two approaches highlighted by Farmer [11], which may be used to construct the coarser
hydraulic conductivity field, namely, the global (overall) strategy and the local methods. The
first technique is performed in two stages. In the first stage one needs to perform one or more
fine grid experiment which may cover the whole domain or at least most of it. Three test cases
for each scenario are performed, one in each coordinate direction on the fine grid within each
of the coarse cells. In the second stage, the fine grid simulations are used to extract the coarse
scale permeability, ˜K. In the second method, which is sometimes called the local-local or the
subdomain method, each coarse cell is considered separately, as shown in Figure 1, and the
three independent flow experiments in the three directions are performed. In each of these
experiments, no flow conditions are assigned to the four surfaces parallel to the flow direction
and constant pressure conditions on the two surfaces normal to the flow direction. If the
total flux may be computed through one of the faces that were assigned pressure boundary
condition, an equivalent permeability for this cell may be computed [20, 21].

There are, however, certain requirements for the correct upscaling as defined in [1, 2].
For the case of single phase incompressible fluids, it suffices to require that the flux across any
area in the domain should be the same for all levels of upscaled description. This requirement
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Coarse cell
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Figure 1: Representative coarse and fine mesh.

ensures a divergence-free flow field in case there is no source/sink term. This condition can
be defined as

∫

A

ṽ(r) · ndA =
∫

A

v(r) · ndA, (2.5)

where ṽ and v are the velocity vectors at different level of upscaling, and r is the position
vector which scans the area A. Applying this requirement on the local-local method mention-
ed earlier in which each coarse cell is considered separately, the above equation reduces to

ṽ(x) · nA =
∫

A

v(r) · ndA, (2.6)

where ṽ(x) represents the velocity vector at the center of the coarse cell face, and x is the
position vector which defines the center of the cell face. Likewise for volumetric quantities
(e.g., the source/sink term, q), Salama and Van Geel [1] pointed out that

∫

v

q̃(r)dv =
∫

v

q(r)dv = q̃(x)v. (2.7)

3. The Subdomain Technique

We apply the local-local method to obtain the effective permeability field for a given complex
permeability field in fractured rock system. The simulation domain represents a rectangular
two-dimensional area with a set of randomly generated fractures. We use the cell-centered
finite difference scheme (CCFD) to approximate the governing equations because it satisfies
mass conservation law locally. Furthermore, we consider the fractures oriented horizontally
and vertically, as shown schematically in Figure 2. The local-local method deals with each
macroscopic cell separately. For this purpose, we define two different meshes; the first mesh
is the coarse mesh and it is defined globally over the whole simulation domain, and the
second mesh is fine according the complexity of the permeability field within each coarse
cell. That is we construct the coarse rectangular mesh over the whole simulation domain,
{X0, X1, X2, . . . , Xi, . . . , Xm}×{Y0, Y1, Y2, . . . , Yj , . . . , Yn}, and for each coarse mesh we construct
a finer mesh given as {x0, x1, x2, . . . , xi, . . . , xp} × {y0, y1, y2, . . . , yj , . . . , yq}.
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Figure 2: The fine and the coarse mesh used with the fractures.
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Figure 3: A generic cell for finite difference approximation.

4. Discretization of the Governing Equations

For the generic cell shown in Figure 3, the governing equations for this problem may be
approximated using the cell-centered finite difference scheme with the various velocity
components at the mid edges of the cell obtained as follows:

ux

(

i, j +
1
2

)

= −Kxx

(

i, j +
1
2

)

P
(
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(
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)
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, (4.1)
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Equation (2.2) is discretized, likewise, in the following form:
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(
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(4.5)

Now substituting (2.7)–(4.3) into (4.4), one obtains an equation in the pressure only, as
explained earlier, which may be solved to obtain the pressure field from which the velocity
field may be determined. The permeability at cell edges is obtained based on the harmonic
mean relationship which is given as
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(4.6)

5. Application of the Local Upscaling Technique to
Fractured Rock System

In this work we consider the local-local upscaling technique to generate an effective per-
meability field which would require less computational load and in the same time would re-
sult in reasonable match with the fine scale modeling. As explained earlier the scheme follows
the following steps.

(i) Discretize the whole domain with the appropriate fine mesh based on the com-
plexity of the permeability field and fractures structure.

(ii) Discretize the whole domain with the required coarse mesh that conforms with the
fine mesh (i.e., the mesh coincides with the fine mesh).

(iii) For each coarse cell, solve the boundary value problem given by (2.3) over the
finer cells subject to predefined boundary conditions. That is to get the effective
permeability in the x and y-directions, Kxx and Kyy, we consider two cases as
shown in Figure 4. For example, in Figure 4(a), we consider a no-flow boundary
condition at the top and bottom boundaries and prescribed pressure boundary con-
dition (say p1 = 1 and p2 = 0) at the other two sides. Similar boundary conditions
are suggested in Figure 4(b). The velocity at the finer scale could then be calculated.

(iv) Using (2.6), one may calculate the x and y-velocity at the center of the faces of the
coarse cell which encompass the finer mesh.

(v) These velocities can then be used to calculate the effective permeability components
in x and y directions with the Darcy’s equation (2.2).
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Figure 4: The boundary condition for each coarse cell.
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Figure 5: Fractures orientations (2 fractures) and pressure contours based on the fine mesh.

6. Numerical Examples

Several scenarios with different fractures numbers and distributions have been considered.
The simulation domain in all these scenarios is [0, 0.6] × [0, 0.6]. For the sake of simplicity, the
width and the length of the fractures in all the simulation scenarios are considered identical
as 0.00015 and 0.12, respectively (i.e., 0.2 times the length of the domain). In the 2-fracture
scenario, the length of the fractures is chosen 0.3, 0.5 times of the size of the domain. The
locations of the fractures are random. The flow rate in the fracture is usually described with
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Figure 6: Continued.
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Figure 6: Effective permeability and pressure contours for the 2 fractures scenarios for different degrees of
resolutions.
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Figure 7: Fractures orientations (10 fractures) and pressure contours based on the fine mesh.

the cubic law [22] in which the flux through the fracture is given as a cubic function of the
fracture aperture, therefore

Q = −ρgb
3

12μ
Δh

ΔL
, (6.1)

where Q is the flux across the fracture section, ρ is the density, μ is the viscosity, g is the
gravity, and b is the fracture aperture. Generally, the hydraulic conductivity in the fracture
region will be much higher than that in the matrix and plays a dominant role in the flow
in the fracture-matrix system. In the paper, the hydraulic conductivity of the fracture region
is specified as 3 × 105 times that of the matrix. The mesh size of the fine mesh is 0.0006 for
the matrix and 0.00015 for the fractures. Four scenarios with different number of fractures
are considered. In the first scenario, only one fracture in the horizontal direction and one
fracture in the vertical direction, respectively, are assumed. The other three scenarios consider,
respectively, 5, 20 and 400 fractures in both the horizontal and vertical directions. At first, fine
meshes are generated with the number of the mesh cells in horizontal and vertical directions
are respectively as follows: 1002 × 1002 for the 2-fracture scenario, 1008 × 1008 for the 10-
fracture scenario, 1032× 1035 for the 40-fracture scenario, and 1480× 1500 for the 800-fracture
scenario. The flow equations are solved with the fine mesh, and the pressure distribution is
obtained for each scenario. As will be seen later, the flow in the whole domain is very much
affected by the fractures. To consider different levels of upscaling, the domain is discretized
with a coarse mesh of different resolutions. In this work we consider very coarse resolutions
and moderately fine resolutions. In all these levels of resolutions, effective permeability is
obtained based on (2.2).
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Figure 8: Continued.
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(e1) Kxx (60 × 60 mesh) (e2) Kyy (60 × 60 mesh) (e3) Pressure contours (60 × 60 mesh)
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Figure 8: Effective permeability and pressure contours for the 10 fractures scenarios for different degrees
of resolutions.
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Figure 9: Fractures orientations (40 fractures) and pressure contours based on the fine mesh.

6.1. Example 1: One Fracture in Both the Horizontal and Vertical Directions

In this scenario, two fractures are generated randomly as shown in Figure 5(a). The pressure
field for this system obtained by solving the governing equations using the fine mesh is
shown in Figure 5(b), from which we can see the apparent influence of the fractures in distort-
ing the pressure field.

Several coarsening scenarios are considered, namely, 2 × 2, 5 × 5, 20 × 20, 40 × 40,
100 × 100, and 500 × 500. In all these scenarios, the requirement that the flux across any sur-
face calculated using the fine mesh and any other coarse mesh is the same. The generated
effective hydraulic conductivity of each cell, ˜kxx and ˜kyy, for different resolution scenarios is
shown in Figure 6. Apparently, the permeability of the cells containing fractures is larger. Fur-
thermore, as the resolution of the mesh increases, the permeability contrast sharpens around
the fractures. Figure 6 also shows the pressure at the center of each cell for the different
resolution scenarios. It is apparent that the pressure field gets closer to the fine scale simu-
lation as the resolution increases. On comparing the flux at the exit boundary (Table 1), it is
clear that the flux for different coarsening scenario is close to one another.

6.2. Example 2: Five Fracture in Both the Horizontal and Vertical Directions

In this scenario, five fractures are generated randomly in both the horizontal and vertical
directions (i.e., 10 fractures in total), as shown in Figure 7(a). The pressure field for this
system as obtained by solving the governing equations using the very fine mesh is shown in
Figure 7(b). Again, the influence of the fractures in distorting the pressure field is significant.

Effective permeability in each cell is shown in Figure 8, which shows that the effective
permeability approaches that of the fine mesh simulation as the number of grid cells increase.
Again the flux at the exit boundary is very close to the different coarsening scenarios as
depicted in Table 1.
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(a1) Kxx (2 × 2 mesh) (a2) Kyy (2 × 2 mesh) (a3) Pressure contours (2 × 2 mesh)
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(b1) Kxx (5 × 5 mesh) (b2) Kyy (5 × 5 mesh) (b3) Pressure contours (5 × 5 mesh)
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(c1) Kxx (10 × 10 mesh) (c2) Kyy (10 × 10 mesh) (c3) Pressure contours (10 × 10 mesh)
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(d1) Kxx (20 × 20 mesh) (d2) Kyy (20 × 20 mesh) (d3) Pressure contours (20 × 20 mesh)
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Figure 10: Continued.
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(e1) Kxx (40 × 40 mesh) (e2) Kyy (40 × 40 mesh) (e3) Pressure contours (40 × 40 mesh)
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(f1) Kxx (60 × 60 mesh) (f2) Kyy (60 × 60 mesh) (f3) Pressure contours (60 × 60 mesh)
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(g1) Kxx (200 × 200 mesh) (g2) Kyy (200 × 200 mesh) (g3) Pressure contours (200 × 200 mesh)
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(h1) Kxx (500 × 500 mesh) (h2) Kyy (500 × 500 mesh) (h3) Pressure contours (500 × 500 mesh)
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Figure 10: Effective permeability and pressure contours for the 40 fractures scenarios for different degrees
of resolutions.
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Figure 11: Fractures orientations (800 fractures) and pressure contours based on the fine mesh.

6.3. Example 3: Twenty Fractures in Both the Horizontal and
Vertical Directions

In this scenario, 20 fractures in x and 20 in the y directions are considered, as shown in
Figure 9(a). The pressure field obtained by solving the governing equations based on the
actual permeability field is shown in Figure 9(b). The effect of the fractures on the pressure
field is apparent.

On the other hand, the effective permeability field obtained from solving the equival-
ent equations as explained earlier is shown in Figure 10. It is clear that as the number of
grid cells increases, the system approach that based on the actual permeability field. Table 1
confirms again that the flux at the exit boundary is almost identical for the different coarsen-
ing scenarios.

6.4. Example 4: 400 Fractures in Both the Horizontal and Vertical Directions

As shown in Figures 11 and 12, similar behavior is obtained for this scenario which assumes
400 fractures in both the horizontal and vertical directions for both the effective permeability
and the pressure fields. In this scenario, we consider several degrees of coarsening including,
2 × 2, 10 × 10, 20 × 20, 40 × 40, 300 × 300, and 500 × 500.

Apparently in this scenario, the large number of fractures will increase the overall
effective hydraulic conductivity field which will result in a significantly larger flux compared
with the other scenarios. Indeed this is the case as shown in Table 1.

7. Conclusions

In this work several numerical examples have been considered to calculate effective hydraulic
properties for a given fractured porous medium domain. Several scenarios of fractured
systems have been considered starting with two fractures up to 800 fractures. Cell-centered
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(a1) Kxx (2 × 2 mesh) (a2) Kyy (2 × 2 mesh) (a3) Pressure contours (2 × 2 mesh)
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(b1) Kxx (5 × 5 mesh) (b3) Pressure contours (5 × 5 mesh)
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(b2) Kyy (5 × 5 mesh)
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(c2) Kyy (10 × 10 mesh)
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Figure 12: Continued.
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(e1) Kxx (40 × 40 mesh) (e2) Kyy (40 × 40 mesh) (e3) Pressure contours (40 × 40 mesh)
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(f1) Kxx (100 × 100 mesh) (f3) Pressure contours (100 × 100 mesh)
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(f2) Kyy (100 × 100 mesh)
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Figure 12: Effective permeability and pressure contours for the 800 fractures scenarios for different degrees
of resolutions.
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Table 1: Flux across the exit boundary for the different fractures and mesh scenarios.

2 fractures 10 fractures 40 fractures 800 fractures

Reference (fine mesh) 1.238536e − 03 1.140093e − 03 1.784033e − 03 4.037607e + 00
Upscaled (2 × 2) 1.2060398e − 03 1.1671849e − 03 1.7678765e − 03 4.0482439e + 00
Upscaled (5 × 5) 1.2279665e − 03 1.1480335e − 03 1.6639357e − 03 4.0201914e + 00
Upscaled (10 × 10) 1.2305291e − 03 1.1357165e − 03 1.6719508e − 03 4.0624327e + 00
Upscaled (20 × 20) 1.2377141e − 03 1.1567826e − 03 1.7251369e − 03 4.0636998e + 00
Upscaled (40 × 40) 1.2329549e − 03 1.1414539e − 03 1.7356198e − 03 4.0958317e + 00
Upscaled (60 × 60) 1.2330102e − 03 1.1364853e − 03 1.7344252e − 03 3.9842654e + 00
Upscaled (80 × 80) 1.2312922e − 03 1.1368569e − 03 1.7406374e − 03 4.0324003e + 00
Upscaled (100 × 100) 1.2368716e − 03 1.1353105e − 03 1.7651864e − 03 4.0198896e + 00
Upscaled (160 × 160) 1.2354428e − 03 1.1366243e − 03 1.7682102e − 03 3.9614817e + 00
Upscaled (200 × 200) 1.2376183e − 03 1.1376407e − 03 1.7735081e − 03 4.0495773e + 00
Upscaled (240 × 240) 1.2366092e − 03 1.1380291e − 03 1.7735767e − 03 3.9653353e + 00
Upscaled (300 × 300) 1.2393249e − 03 1.1413561e − 03 1.7762217e − 03 3.9176552e + 00
Upscaled (400 × 400) 1.2368358e − 03 1.1370930e − 03 1.7671836e − 03 3.7225614e + 00
Upscaled (500 × 500) 1.2378015e − 03 1.1405213e − 03 1.7877663e − 03 4.0850977e + 00

finite different method has been used, and therefore the fractures orientations are considered
only in the horizontal and vertical directions. Different coarsening scenarios have been
considered for each fracture scenario starting with very coarse mesh (2 × 2) all the way to
the fine mesh. The fine mesh used in this work is that associated with the actual permeability
field of both the matrix and the rock. Effective permeability for each cell is obtained for each
coarsening scenario based on the requirement that the flux at the face of each cell is the same
as that considered with the actual permeability field. It is found that the spatial distribution
of effective permeability of the medium changes with the change in the degree of coarsening.
That is for coarser mesh the effective permeability spans a larger domain while it reduces to
the actual permeability field as the mesh approaches the fine mesh. The usefulness of this
approach stems from the significantly less computational effort and memory requirement
that would be required when using the upscaled permeability field and in the same time the
satisfaction of conservation laws at the new scale.
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