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We analyze a previous paper by S. T. Mohyud-Din and M. A. Noor (2007) and show the mistakes
in it. Then, we demonstrate a more efficient method for solving fourth-order boundary value
problems.

1. Problem

Let us consider the fifth-order boundary problem of the type

u(4)(x) = f
(
u, u′, u′′, u′′′) + g(x) (1.1)

with the boundary conditions

u(0) = α1, u′(0) = α2, u(1) = β1, u′(1) = β2, (1.2)

where f and g are continuous functions and α1, α2, β1, and β2 are real constants.
The homotopy perturbation method (HPM) is employed in [1] for solving such

problems. The purpose of this paper is to point out the mistakes in paper [1] and demonstrate
more efficient method for solving the problems of type (1.1)-(1.2).

First of all, we show the mistakes.
(1) In Example 3.2 the approximate solution

uapprox(x) = 512 + 480x + 224.00000000226055x2 + . . . (1.3)
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of the problem

u(4)(x) = u(x) + u′′(x) + ex(x − 3),

u(0) = 1, u′(0) = 0, u(1) = 0, u′(1) = −e
(1.4)

(see formula (3.19) in [1]) has no relationship with the exact solution uexact(x) = (1 − x)ex.
And “error” is at least uapprox(0) − uexact(0) = 512 − e = 509.28.

It is strange that the authors demonstrated the reliability of the errors in the table (see
Table 3.2 in [1]).

(2) In Example 3.3 the approximate solution

uapprox(x) = 11.3472 − 262.827x − 3.40768x3 + . . . (1.5)

of the problem

u(4) = sin x + sin2x − (
u′′(x)

)2
,

u(0) = 0, u′(0) = 1, u(1) = sin 1, u′(1) = cos 1
(1.6)

(see formula (3.28) in [1]) has no relationship with the exact solution u = sinx, since
uapprox(0) = 11.3472, u′

approx(0) = −262.827.

2. Homotopy Perturbation Method

The basic ideas of the standard HPM were given by He [2, 3], and a new interpretation of
HPM was given by He [4]. We introduce a new reliable procedure for choosing the initial
approximation in HPM. To do so, we consider the following general nonlinear differential
equation

Lu +Nu = f(u, x) (2.1)

with some initial boundary conditions, where L and N are, respectively, the linear and
nonlinear operators.

According to HPM, we construct a homotopy which satisfies the following relations:

H
(
u, p

)
= Lu − Lv0 + pLv0 + p

[
Nu − f(u, x)

]
= 0, (2.2)

where p ∈ [0, 1] is an embedding parameter and v0 is an initial approximation. When we put
p = 0 and p = 1 in (2.2), we obtain

H(u, 0) = Lu − Lv0, H(u, 1) = Lu +Nu − f(u, x), (2.3)

respectively. In topology, this is called deformation and Lu − Lv0 and Lu +Nu − f(u, x) are
called homotopics.
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The solution of (2.2) is expressed as

u(x) = u0(x) + pu1(x) + p2u2(x) + . . . . (2.4)

Hence, the approximate solution of (1.5) can be expressed as

u(x, t) = u0(x) + u1(x) + u2(x) + . . . . (2.5)

Mohyud-Din and Noor [1] tried to rewrite the problem as a system of integral equations and
then HPM applied for each equation. In the use of HPM,what we aremainly concerned about
are the auxiliary operator L and the initial guess v0. We take L = (d/dx4)(·), and

v0 = α1 + α2x +Ax3 + Bx4 + L−1(g(x)
)
, (2.6)

where A and B are yet to be determined. Then using the boundary conditions u(1) = β1,
u′(1) = β2 we determine A and B.

3. Applications

Here we apply the HPM to solve correctly the problems in [1].

Example 3.1 (see [1, Example 3.2]). We have

u(4)(x) = u(x) + u′′(x) + ex(x − 3) (3.1)

with boundary conditions

u(0) = 1, u′(0) = 0, u(1) = 0, u′(1) = −e. (3.2)

We construct a homotopy which satisfies the relation

u(4)(x) − v
(4)
0 (x) + p

[
v
(4)
0 (x) − u(x) − u′′(x) − ex(x − 3)

]
= 0, (3.3)

where

v0 = 1 +Ax2 + Bx3 + L−1(ex(x − 3)). (3.4)

Now substituting (3.4) into (3.3), we obtain

u
(4)
0 + pu

(4)
1 + p2u

(4)
2 + · · · − v

(4)
0 (x)

+ p
[
v
(4)
0 (x) − u0 − pu1 − p2u2 − · · · − u′′

0 − pu′′
1 − p2u′′

2 − · · · − ex(x − 3)
]
= 0,

(3.5)
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and, equating the coefficients of a like powers of p, we get a system of equations:

u
(4)
0 (x) − v

(4)
0 (x) = 0, u0(0) = 1, u′

0(0) = 0, u′′
0(0) = A, u′′′

0 (0) = B,

u
(4)
1 + v

(4)
0 (x) − u0 − u′′

0 − ex(x − 3) = 0, u1(0) = 0,

u′
1(0) = 0, u′′

1(0) = 0, u′′′
1 (0) = 0,

u
(4)
2 − u1 − u′′

1 = 0, u2(0) = 0, u′
2(0) = 0, u′′

2(0) = 0, u′′′
2 (0) = 0,

u
(4)
3 − u2 − u′′

2 = 0, u3(0) = 0, u′
3(0) = 0, u′′

3(0) = 0, u′′′
3 (0) = 0, . . . .

(3.6)

Solving (3.6), we get

u0 = 1 +Ax2 + Bx3 + L−1(ex(x − 3))

= 1 +Ax2 + Bx3 + 6x − 7ex + xex +
5
2
x2 +

2
3
x3 + 7

= 6x − 7ex +Ax2 + Bx3 + xex +
5
2
x2 +

2
3
x3 + 8,

u1 = 20 + x5
(

1
20

B +
1
10

)
+ x4

(
1
12

A +
13
24

)
+ x6

(
1
360

A +
1

144

)

+ x7
(

1
840

B +
1

1260

)
+
1
6
14x3 +

1
2
16x2 + ex(2x − 20) + 18x,

u2 = L−1(u1 + u′′
1

)

= L−1
(
32x − 36ex +Ax2 +

A

6
x4 + Bx3 +

A

360
x6 +

B

10
x5 +

B

840
x7

+4xex +
29
2
x2 +

13
3
x3 +

3
4
x4 +

2
15

x5 +
1

144
x6 +

1
1260

x7 + 36
)

= 52 + x6
(

1
360

A +
29
720

)
+ x7

(
1

840
B +

13
2520

)
+ x8

(
1

10 080
A +

1
2240

)

+ x9
(

B

30 240
+

1
22 680

)
+ x10

(
A

1814 400
+

1
725 760

)
+ x11

(
B

6652 800
+

1
9979 200

)

+
1
6
40x3 +

1
2
44x2 + ex(4x − 52) + 48x +

3
2
x4 +

4
15

x5, . . . .

(3.7)

Using only three-term approximation, we have

u = u0 + u1 + u2 = 6x − 7ex +Ax2 + Bx3 + xex +
5
2
x2 +

2
3
x3 + 8

+ 20 + x5
(

1
20

B +
1
10

)
+ x4

(
1
12

A +
13
24

)
+ x6

(
1
360

A +
1

144

)
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+ x7
(

1
840

B +
1

1260

)
+
1
6
14x3 +

1
2
16x2 + ex(2x − 20) + 18x

+ 52 + x6
(

A

360
+

29
720

)
+ x7

(
B

840
+

13
2520

)
+ x8

(
A

10 080
+

1
2240

)

+ x9
(

B

30 240
+

1
22 680

)
+ x10

(
A

1814 400
+

1
725 760

)
+ x11

(
B

6652 800
+

1
9979 200

)

+
1
6
40x3 +

1
2
44x2 + ex(4x − 52) + 48x +

3
2
x4 +

4
15

x5.

(3.8)

Now it follows from conditions u(1) = 0, u′(1) = −e that A = −0.467 17 and B = −0.383 54
and, therefore,

u = u0 + u1 + u2 = 80 + 72x − 79ex + 7xex + 32.033x2 + 9.283 2x3 + 2.002 7x4

+ 0.347 49x5 + 4.462 7 × 10−2x6 + 5.039 2 × 10−3x7 + 4.000 8 × 10−4x8

+ 3.140 9 × 10−5x9 + 1.120 4 × 10−6x10 + 4.255 8 × 10−8x11,

(3.9)

or, in power series form,

u = 1 − 0.467 x2 − 0.383 47x3 − 0.122 3x4 − 0.019 18x5 − 6.762 × 10−3x6

− 9.132 × 10−4x7 + 4.000 8 × 10−4x8 + 3.140 9 × 10−5x9.
(3.10)

Higher accuracy level can be attained by evaluating some more terms of u(x).

Example 3.2 (see [1, Example 3.3]). We have

u(4)(x) = sinx + sin2x − (
u′′(x)

)2 (3.11)

with boundary conditions

u(0) = 0, u′(0) = 1, u(1) = sin 1, u′(1) = cos 1 (3.12)

(the exact solution of the problem is u = sin x).
We construct a homotopy which satisfies the relation

u(4)(x) − v
(4)
0 (x) + p

[
v
(4)
0 (x) +

(
u′′(x)

)2 − sinx − sin2x
]
= 0, (3.13)

where

v0 = x +Ax2 + Bx3 + L−1
(
sinx + sin2x

)
. (3.14)
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Substituting (3.14) into (3.13), we obtain

u
(4)
0 + pu

(4)
1 + p2u

(4)
2 + · · · − v

(4)
0 (x) + p

[
v
(4)
0 (x) +

(
u′′
0 + pu′′

1 + p2u′′
2 + · · ·

)2 − sinx − sin2x

]
= 0,

(3.15)

and, equating the coefficients of a like powers of p, we get a system of equations:

u
(4)
0 (x) − v

(4)
0 (x) = 0, u0(0) = 1, u0(0) = 0,

u′
0(0) = 1, u′′

0(0) = A, u′′′
0 (0) = B,

u
(4)
1 + v

(4)
0 (x) +

(
u′′
0
)2 − sinx − sin2x = 0, u1(0) = 0,

u′
1(0) = 0, u′′

1(0) = 0, u′′′
1 (0) = 0,

u
(4)
2 + 2u′′

0u
′′
1 = 0, u2(0) = 0, u′

2(0) = 0, u′′
2(0) = 0, u′′′

2 (0) = 0,

u
(4)
3 +

(
u′′
1

)2 + 2u′′
0u

′′
2 = 0, u3(0) = 0, u′

3(0) = 0, u′′
3(0) = 0, u′′′

3 (0) = 0, . . . .
(3.16)

Solving (3.16) we get

u0 = x +Ax2 + Bx3 + L−1
(
sinx + sin2x

)

= x +Ax2 + Bx3 +
1
32

+ sinx − 1
32

cos 2x +
1
6
x3 − 1

16
x2 − x +

1
48

x4,

u1 = − 1
1260

Ax7 − x8
(

1
5040

A +
1

1680
B

)
− x9

(
1

6048
B − 1

90 720
A

)

+ x10
(

A

113 400
+

B

100 800
− 1
181 440

)
− 1
6
A2x4 − 1

40
B2x6 − 1

10
ABx5 +O

(
x11

)
,

u2 = x14
(

1
7567 560

A2 +
1

30 270 240
AB +

1
23 284 800

A − 1
1441 440

B2 +
1

2522 520
B

)

+ x13
(

1
21 621 600

A2 − 17
5405 400

AB +
1

1853 280
A − 1

739 200
B2 +

43
43 243 200

B

)

+ x11
(
− 23
4989 600

A2 +
1

15 400
AB +

13
158 400

B2
)
+ x10

(
17

226 800
A2 +

1
4200

BA

)

+ x12
(
− 1
249 480

A2 − 13
3326 400

AB +
1

907 200
A +

1
44 352

B2
)

+ x9
(

1
3780

A2 +
1

336
B3

)
+

1
45

A3x6 +
4
105

A2Bx7 +
9

560
AB2x8.

(3.17)
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Using only three-term approximation we have

u = x +Ax2 + Bx3 +
1
32

+ sinx − 1
32

cos 2x +
1
6
x3 − 1

16
x2 − x +

1
48

x4

− 1
1260

Ax7 − x8
(

1
5040

A +
1

1680
B

)
− x9

(
1

6048
B − 1

90 720
A

)

+ x10
(

1
113 400

A +
1

100 800
B − 1

181 440

)
− 1
6
A2x4 − 1

40
B2x6 − 1

10
ABx5

+ x9
(

1
3780

A2 +
1

336
B3

)
+

1
45

A3x6 +
4

105
A2Bx7 +

9
560

AB2x8.

(3.18)

Now by using the conditions u(1) = sin 1, u′(1) = cos 1, we have a system of equations of
degree three. Solving this system numerically (applying some standard computer programs)
we have thatA = 5.861 1 × 10−3, B = −0.174 55 and the series solution

u = x + 5.861 × 10−3x2 − 0.174 55x3 − 6.333 3 × 10−6x4 + 8.435 6 × 10−3x5

+ 2.016 1 × 10−3x6 − 2.032 9 × 10−4x7 − 9.280 3 × 10−5x8 +O
(
x9
)
.

(3.19)

4. Conclusion

In this paper we have used the homotopy perturbation method for finding the solution of
fourth-order linear and nonlinear boundary value problems. We presented a simple way to
choose L and v0 when we use the homotopy perturbation method. In most cases, our simple
choice yields very good approximation of exact solution.
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