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Nowadays, multi-agent networks are ubiquitous in the real world. Over the last decade, consensus
has received an increasing attention from various disciplines. This paper investigates cluster
consensus for discrete-time multi-agent networks. By utilizing a special coupling matrix and the
Kronecker product, a criterion based on linear matrix inequality (LMI) is obtained. It is shown
that the addressed discrete-time multi-agent networks achieve cluster consensus if a certain LMI
is feasible. Finally, an example is given to demonstrate the effectiveness of the proposed criterion.

1. Introduction

In recent years, the consensus problem of coordinating the motion of multi-agent networks
has attracted great attention. Research on multi-agent consensus not only helps in better
understanding the general mechanisms and interconnection rules of natural collective
phenomena, but also benefits broad applications of multi-agent systems in many areas
including cooperative control of unmanned air vehicles [1], formation control [2], flocking
[3], and attitude alignment of clusters of satellites [4].

Consensus, along with stability [5] and bifurcation [6], is fundamental phenomenon in
nature [7]. Consensus problem can refer to how to make the states of multi-agent networks
reach an agreement on a common value regarding a certain quantity of interest, especially
by negotiating with their neighbors. To realize consensus, many effective approaches were
proposed [8-10]. Since the network can be regarded as a graph, the issues can be depicted by
the graph theory. The recent approaches concentrate on matrix analysis [11], convex analysis
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[12], and graph theory [13]. Especially the concept of spanning tree is widely used to describe
the communicability between agents in networks that can guarantee the consensus [14, 15].
For more consensus problem, the reader may refer to [16] and the references therein.

Cluster synchronization, as a particular synchronization, is firstly explored by In
Belykh and his colleagues for the coupled chaotic oscillators [17], in which the synchro-
nization occurs in each group but there is no synchronization among the different groups.
Now, cluster synchronization has become one of the hottest topics of discussion partly due
to that it is considered to be more momentous than other synchronization types in broad
areas including brain science and engineering, social science, and distributed computation.
Some papers concerning the cluster synchronization have been published [18-21]. In [19],
cluster synchronization of linearly coupled complex networks has been investigated under
an adaptive strategy, whereas the similar topic has been addressed in [20] by employing a
pinning controller. For more studies concerning cluster synchronization, please see [21] and
the references therein.

Of note is that nonlinear oscillators are commonly introduced in complex networks
and their synchronization problems are carefully studied [22]. Motivated by that and utiliz-
ing the cluster synchronization phenomenon in complex networks, this paper aims to further
investigate the cluster consensus of multi-agent networks. Roughly speaking, similar to the
cluster synchronization, the cluster consensus means that a multi-agent network consists of
multiple clusters where the consensus can be achieved in each cluster, but there is no consen-
sus among the different clusters. To the authors” knowledge, cluster consensus is a more gen-
eral concept compared to that traditional consensus and it is also a fundamental phenomenon
in the real world, such as the cluster formation of personal opinions, the pattern formation of
bacteria colonies, and the emergence of subgroups in a flock of birds or a school of fish [23].

For the truth that the discretization process of a continuous-time network cannot
preserve the dynamics of the continuous-time part even for small sampling periods [24], and
moreover, a discrete-time network is in a better position to model digitally transmitted signals
in a dynamical way than its continuous-time analog, so in this paper, we aim to investigate
the cluster consensus problem for discrete-time multi-agent networks using the tools from
algebraic graph theory, matrix theory, and Lyapunov control approach. A cluster consensus
criteria-based linear matrix inequality is obtained. And by expanding the cluster consensus
criteria, we obtain the global consensus criteria of the multi-agent networks.

The remainder of the paper is organized as follows. In Section 2, some necessary
preliminaries and the model formulation are given. Cluster consensus of multi-agent
networks with nonsymmetric coupling matrix is discussed in Section 3. In Section 4,
numerical simulations are also given to validate the proposed cluster consensus criteria.
Finally, some concluding remarks are stated in Section 5.

2. Preliminaries and Model Formulation

Suppose that the multi-agent networks under consideration consist of N agents, which
update their states based on local information exchange. To study the consensus problem
for directed coupled nonlinear networks, we consider the following consensus protocol for
discrete-time multi-agent network, which was also proposed in [25]:

N
xi(k+1) = f(xi(k)) + Z Giilg(xj(k)), i=1,2,...,N, (2.1)
j=1
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where x;(k) = (xi(k), xi(k), ..., xin(k))T denotes the state of agenti. f(-) and g(-) are vector-
valued functions, which represent the dynamics of the agents. I' = diag{yi,y2,..., ¥} 2 0
is the connection weight matrix, where y;#0. G;j € R™*N denotes the inner coupling
configuration matrix satisfying

N
Gi= > Gij, ij=12..,N. (2.2)

J=Lj#i

In the following, we present the following assumptions and definitions.

Assumption 2.1. For the nonlinear vector-valued functions f(-) and g(-), the following condi-
tions hold:

(1) f(-) and g(-) are continuous,

@) [f(@) - fB)~Ui@=PI'[f(@) ~ f(B) - Ua@ = P)] < 0, Ya, p € R,
[g(@) - g(B) -~ Vila - P)]"[g(a) - g(p) = Va(a~P)] <O, Va, BER,

where U4, U,, V1, and V, are constant matrices.

Assumption 2.2. The coupling matrix satisfying

N1 Nip --- Ny
N> N -+ Ny

p (2.3)
Nn Np -+ Ny

where N;; € R™>™, N;; € R™*™,i,j =1,2,...,t, have the same row vectors. For example,

Nij = (U, p, .. .,‘u)T, where p = (p1, o, - - . ,ym].)T is a vector.

Definition 2.3. The set S* = {x = (x1(s),x2(8),...,xn(5)) : xi(s) € C(N[-p,0],RN),
xj(s)(Vi,j=1,2,...,N)}, is called a global consensus manifold.

Definition 2.4. The set S = {x = (x1(8), x2(5), ..., xn(8)) : xi(s) € C(N[-dm,0], RN), [x1(s) =

x2(5) = o+ = X (9], [Xmy+1(8) = Xmys2(8) = -+ = Xaemy, (], + -+ [Xomamptimi+1(8) =
Xy tmmy -ty 142(S) =+ = Xomywmysermy 1 +my (S)], Mi+mo+- - +my = N} is called cluster consensus
manifold.

Definition 2.5. A multi-agent network consisting of N agents is said to achieve cluster
consensus if, for the N, nodes are divided into several different clusters, such as
{(1,2,...,m1),(m1+1,m1+2,...,m1+m2),...,(m1+m2+--~+mt,1 +1,m1 +my+ - +Mmp1 +
2,...,mi+my+---+m;), mi+my+- - -+m; = N}, each node synchronizes with one another in the
same cluster, which means any two different agents x;(k) and x;(k) satisfying the condition
limy 1o [|xi (k) — xj(k)|| = 0.

Definition 2.6 (see [7]). Let R denote a ring, and T(R,K) = {the set of matrices with entries R
such that the sum of the entries in each row is equal to K for some K € R}.
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Lemma 2.7 (see [7]). Let G be an N x N matrix in the set f(ﬁ, 12). When the (N - 1) x (N - 1)

matrix H satisfies MG = HM, where H = MG]J, and

1 11---1
1 -1 011---1
1 -1 : o
M= } 7=\ : : )
0---0 11
1 -1 (N_1)xN 0---0 01
[0 --- 0 0 0] Nx(N-1)

(2.4)

in which 1 is the multiplicative identity of R. Fori,j €1,2,...,N =1, the matrix H can be rewritten

explicitly as follows:

j
Hgjy = D" Gk — Gisi -
k=1

(2.5)

Lemma 2.8 (see [18]). Under Assumption 2.2, the matrix Hn_px(N-t) Satisfies MG = H M,

where H = M N ] and

N2 M,

Z|
I
2|
I

NxN M; (N—-t)xN
- ) ,

Ji Nx(N-t)

N;; € R™"™i M, € R(mi_l)xmi, Ji € Rmix(mi=1)

Lemma 2.9 (see [18]). x € S ifand only if || Mx]| = 0.

(2.6)
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3. Main Results

This section focused on the cluster consensus analysis of network (2.1). Before deducing our
main results, we first denote the following notations for convenience:

xi(k) = (xa(k), x(k), ..., xin(k))" €R", i=1,2,...,N,
T

x(k) = (x{(k),xg(k),...,xTN(k))

o) = (F7 o), f1 ), .., T en (k)

- T
g(x(k)) = (gT(xl(k)),gT(xz(k)),...,gT(xN(k))) , 3.1)
s - uru, + utu, _uj+ug
1 7 ’ 2 2 7
VIV, + VIV, VT4 vI
s R e
G=Gel, H=MN]J, H=HoTl, S=Ev4®%, [1=1,234.

With the Kronecker product, the multi-agent network (2.1) can be rewritten in the
compact form as

x(k+1) = f(x(k)) + G§(x(k)). (3.2)

For the model (3.2), we have the following conclusions.

Theorem 3.1. Suppose Assumptions 2.1 and 2.2 hold, the cluster consensus manifold S of the multi-
agent network (3.2) is globally attractive if there exit a positive definite matrix P € RIN-Dm<(N=n g
two positive scalars &1 and 6, such that the following LMI holds:

P =631 -6, 63 65 O
¥ -8E, O P
¥ x+ -6E, H'P

* * * -P

<0. (3.3)

Proof. By Assumption 2.1, We can get that

[jg’x(k) ]T[% —iz][~M~x(k) ]<0 (3.4)
Mf(x(k)| |22 En |[[Mf(x(k)| ™"~

M S -] Mo ], (3.4b)
Mg(x(k))| |-2a En [|MZ(x(k)) |~
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Now, we construct the following Lyapunov function candidate for the multi-agent
networks (3.2):

— T r—
V(k) = [Mx(k)] P[Mx(k)]. (3.5)
Calculating the difference of V (k) along the solution of (3.2), we have

—_—~ —_— T —_~ —_— — T —
AV (K) = [M Flx(k)) +MG§(x(k))] P[M Flx(k)) +MG§(x(k))] - [Mx(k)] P[Mx(k)].

(3.6)
By the structure of M and Lemma 2.8, the following equalities are easy to versify:
MG = <M® E,,)(G®r) -MGeT=HMa&T = (ﬁ@l‘) (M@) En> = HM. (3.7)
Based on the above, one obtains
AV(K) = [MF(x(k)) + HMZ(x(k))] P[MF(x(k) + HMZ(x(K))] s

- [Mx(k)]TP[Mx(k)].

Consequently, for the two positive scalars 6; and 6,, combining (3.4a), (3.4b) and (3.6)-(3.8)
give

AV (k) < &7 ()TIg(k), (3.9)

where §(k) = ([Mx(K)]", [Mf (x(k))I", [Mg (x (k))]")".

Noticing (3.3) and (3.9), one has AV (k) < 0. And, if {(k) = 0, then AV (k) = 0.
Consequently, we have V (k) < V(0), which implies that V (k) is a bounded function. Thus,
|[Mx(k)|| — 0. The proof is completed. O

Theorem 3.1 shows a condition based on the certain linear matrix inequality for the
multi-agent networks cluster consensus. From the above analysis, for = 1, one can deduce
multi-agent networks global consensus criterion-based LMI as follows.

Theorem 3.2. Suppose Assumptions 2.1 and 2.2 hold, the global consensus manifold S* of the multi-
agent network (3.2) is globally attractive if there exit a positive definite matrix P € RIN-Dm(N=n gy
a positive scalar 61 so that the following LMI holds:

“P-631-6,5; 6.3 6% O
* —51En O r
% x+ -6, H'P

* * * -P

<0. (3.10)
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Proof. The proof is similar to that of Theorem 3.1 and thus omitted here. Thus, the proof is
completed. 0O

4. Numerical Example

In this section, we present an example to validate the theoretical results on the cluster
consensus problems for discrete-time multi-agent networks in Section 3.

For simplicity, consider the network (3.2) of six nodes. Let n = 2,

[-0.3 0298 0 0 0.001 0.001]
0298 -03 O 0 0.001 0.001
05 0 0.001 0.001 -0.35 0.348 O 0
= [0 0.5]’ G= 0.001 0.001 0.348 -0.35 O 0 (1)
0.002 0.002 0 0 -05 0496
[0.002 0.002 0 0 049 -0.5]

Denote the nonlinear vector-valued function

f(xi(k))
= g(x;(k)) = (=0.1x;1 (k) + tanh(0.2x;1 (k)) + 0.2x1(k), 1.05x; (k) — tanh(0.75x1(k)))" -

(4.2)
Then, by simple calculations, we obtain
S~ -0.1 0.2 N~ 0.1 0.2
21 =2 = [ 0 1.05]’ 2= 2= [0 0.3]‘ (4.3)

By using the MATLAB LMI Tool Box, (3.2) can be solved with the following feasible
solutions:

6, =305215, 6, =22.4917,
[19.6071 -0.6333 0 0 0 0 ]
~0.6333 12.9057 0 0 0 0
| 0 0 19.5325 -0.6250 0 0 (4.4)
0 0 -0.6250 128583 0 0
0 0 0 0 19.2432 —0.5994
0 0 0 0 -05994 12.6664]

Therefore, according to Theorem 3.1 and Definition 2.5, multi-agent networks (3.2)
with given parameters reach the cluster consensus, and the agents in different clusters achieve
different consensus states. In Figure 1, the time responses of the state variables x;; (k) and
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Figure 1: Cluster consensus of the state variables x;; (k) and xj> (k) (1 < i < 6) in the discrete-time multi-
agent network (2.1).

xio(k) (1 £ i < 6) can be easily in the network. For further validation, we denote the error
functions as follows:

2 2
e1a(k) = JZ (x1i(k) = x2:(k))?,  esa(k) = \ > (xaik) = xai(K))?,
i1 i1

(4.5)

2 2 [
es—(k) = \JZ (xsi(k) = x6i(k))?,  e(k) = D, \ S (xuilk) - xji(k))*.
p P

j=2

From the above error functions, we can easily obtain the consensus error of each cluster
and the consensus error of the whole multi-agent network, where the consensus error of the
whole multi-agent network is illustrated in Figure 2. Moreover, from Figure 1, the discrete-
time multi-agent network (2.1) is divided into three cluster consensus manifolds, which can
further verify the effectiveness of Theorem 3.1 and expand the useful range. Note that Figures
1 and 2 shows that the whole network does not reach global consensus, but each of the three
clusters reaches consensus in its own group.

If we take the coupling matrix as

(05 0.1 01 01 0.1 01]
01 -05 01 01 01 01
01 01 -05 01 01 01
G= 01 01 01 -05 01 011 (4.6)
01 01 01 01 -05 01

| 01 01 01 01 01 -05]
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Figure 2: Consensus error of the state variables in the discrete-time multi-agent network (2.1).
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Figure 3: Global consensus of the state variables x; (k) and x;(k) (1 < i < 6) in the discrete-time multi-
agent network (2.1).

the other functions and parameters are unaltered. According to Theorem 3.2, multi-agent
networks (3.2) with given parameters can reach the global consensus, which has been shown
in Figure 3, and the consensus error of the whole multi-agent network is illustrated in
Figure 4. From there, the global consensus of the state variables x;; (k) and xjp(k) (1 <i < 6)
can be easily seen in the network. By using the MATLAB LMI Tool Box, (3.2) can be solved;
however, they are omitted due to the space limitation.
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Figure 4: Consensus error of the state variables in the discrete-time multi-agent network (2.1).

5. Conclusion

This paper has further investigated the cluster consensus of discrete-time multi-agent
networks with nonsymmetric coupling matrix. A cluster consensus criterion with the certain
LMI form is obtained by using the tools from the Lyapunov control approach, special
coupling matrix, and the Kronecker product. Moreover, by expanding the cluster consensus
criteria, we have the global consensus criteria of the multi-agent networks. Finally, the
numerical simulations are also given to validate the proposed criteria. In our future work, we
will further explore the theoretical analysis of the cluster consensus on discrete-time multi-
agent networks with switched topology. Moreover, the method in this paper can be extended
to aid the consensus problem of multi-agent networks with the intrinsic nonlinear dynamics
of the agents incorporating the effects of time-delay, impulse and so on.
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