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We demonstrate that ultrashort optical pulses propagating in a nonlinear dispersive medium are naturally described through
incorporation of analytic signal for the electric field. To this end a second-order nonlinear wave equation is first simplified using a
unidirectional approximation. Then the analytic signal is introduced, and all nonresonant nonlinear terms are eliminated. The
derived propagation equation accounts for arbitrary dispersion, resonant four-wave mixing processes, weak absorption, and
arbitrary pulse duration. The model applies to the complex electric field and is independent of the slowly varying envelope
approximation. Still the derived propagation equation posses universal structure of the generalized nonlinear Schrodinger equation
(NSE). In particular, it can be solved numerically with only small changes of the standard split-step solver or more complicated
spectral algorithms for NSE. We present exemplary numerical solutions describing supercontinuum generation with an ultrashort

optical pulse.

1. Introduction

Complex envelope adequately describes linear and nonlinear
propagation of a wave packet with many field cycles [1]. A
slowly varying envelope approximation (SVEA) reduces the
full set of Maxwell equations for the pulse field to a much
more simple first-order nonlinear Schrodinger equation
(NSE) for the complex envelope [2—4]. On the other hand,
SVEA lacks precision when the relevant time scales are
comparable to a single cycle period. Nonenvelope pulse
propagation regimes include self-focusing [5, 6], optical
shocks [7, 8], supercontinuum (SC) generation [9], and
dynamics of ultrashort pulses [10-15]. In such situations
NSE should be replaced by a more general propagation
model.

Several simplified unidirectional propagation equations
have been derived for special dispersion profiles. Such
models do not use the pulse envelope and apply directly to
the pulse field (see [16-20] and a review paper [21]). For
a general dispersion profile, pulse propagation is commonly
described by a generalized NSE [2, 4] in which a polynomial
approximation of dispersion in the frequency domain is
used. An arbitrary dispersion is then accounted for by

a local dispersion operator in the time domain. To resolve
convergence problems [22] also rational approximations and
nonlocal dispersion operators may be considered [18, 23].
The nonlinear term in the generalized NSE is also modified
to capture an arbitrary pulse duration [8, 24], Raman
scattering [25, 26], and diffraction effect [24, 27, 28].

Being an envelope model, the generalized NSE was
successfully applied to many propagation problems where
the pulse envelope evolves as fast as the pulse field and SVEA
cannot be used. This is a paradoxical situation especially
because the SVEA is implicitly used in a common definition
of the envelope. Indeed, an envelope ¥ of the field E with a
central angular frequency wy is usually introduced through
the ansatz (see, e.g., [8, 27, 29-33])

1 .
E= E‘I’e"’”"t +c.c., (1)

where for the sake of simplicity we (for the moment)
consider only time dependence. Now, the imaginary part of
We~ i@t remains unspecified but evidently affects, for exam-
ple, the [¥|*¥ term in the either standard or generalized



NSE. Relation (1) is meaningful if SVEA applies. One can
then define ¥ as a sliding time average

W 4 WH el = 2Eel! — ¥ = 2<Eeiw°t>’ @

where (P* ety ~ 0 because ¥ is slow on a time scale 271/wy.
Evidently, the sliding time average cannot be used for a few-
cycle pulse for which we recall that W is as fast as E itself (see
[34] for a critical review of several possible definitions of the
envelope).

This contradiction is addressed in the present paper.
Specifically we demonstrate that propagation of an ultrashort
pulse can naturally be described in terms of analytic signal
instead of the envelope. In other words, the real-valued elec-
tric field E(z, ) is replaced with a complex-valued one &(z, t)
containing only positive harmonics [1]. The propagation
equation for the analytic signal is structurally similar to NSE
and can be solved with a small adaptation of the existing NSE
solvers. Still the proposed propagation model applies directly
to the electric field and avoids questionable use of definition
(1). Useful applications of the analytic signal concept to the
theory of nonlinear oscillations can be found in [34].

The present paper is organized as follows. Following
[31, 35-37] we first derive a set of simplified equations for
the field harmonics E,(z). Then we introduce an analytic
signal and demonstrate how to remove all nonresonant
nonlinear terms. The remaining resonant nonlinear terms
have a simple “envelope” structure without use of the SVEA
or the envelope as such. Finally the analytic signal approach
is illustrated by exemplary numerical solutions.

2. Basic Equations

We consider a periodic sequence of linearly polarized
electromagnetic pulses propagating along the z-axis in a one-
dimensional dispersive nonlinear medium. The pulse field
E(z,t) is governed by the following nonlinear wave equation:

92E — C%a%(E+;?<1>E+XE3) -0 (3)

in which 3 is a nonlocal linear susceptibility operator
and a constant factor y represents an instant nonlinear
susceptibility of the third order. An inverse symmetry is
assumed such that the quadratic nonlinear term is neglected.
To quantify y'") we write E(z, t) in the frequency domain:

2

with w € —7, (4)

E(z,t) = %Ew(z)e""‘” T

where T is the period of the pulse sequence and E,(z) =
f;//f E(z,t)e(dt/T). In what follows we assume that
E,—o = 0, that is, the time-averaged electric field vanishes.

Now, y'VE is given by a convolution
(¥VE), = ¥V (@Ea. (5)

The linear susceptibility y!)(w) yields the dielectric constant
€(w) = 1+ y'Y(w) and the propagation parameter

k(w) = %/e(w) = B(w) + ia(w), (6)
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where S(w) and a(w) are odd and even functions, respec-
tively. In the following we consider a small absorption limit
such that |f(w)| > a(w) = 0 in a transparency window to
which an essential part of the pulse spectrum must belong.

To proceed we write the nonlinear wave equation (3) in
the frequency domain:

2
) w
[02 + B? + 2iaB]E, + —ZX >
w1 twrtws=w

Eleszag =0, (7)

where the term &’E, is neglected. The summation on
the right hand side is performed only over the suitable
triads {w1, w2, w3 }. In what follows such summations will be
abbreviated as 21,31, Ew, Ew, Eo,-

Equation (7) is the starting point of our considerations.
It will be simplified in a weakly nonlinear limit. Specifically
we introduce a smallness parameter € < 1 and assume the
following scaling:

XEZ = O(E)) Q= O(€)> (8)

for all fields and frequencies of interest. In particular, both
o’E and yPE° terms neglected in (7) are estimated as
O(€’E), the latter quantity defines which terms should
further be neglected when reducing (7). In the next sections
(7) is simplified using an unidirectional approximation,
introducing a proper complex electric field and eliminating
the nonresonant terms.

3. Unidirectional Approximation

As explained above, both the nonlinear and the absorption
terms in (7) are taken small. In a first step, neglecting the
small terms, we write (7) as

[02 + B*(w)] Ew = O(€E). (9)

The unidirectional approximation deals with two classes
of special solutions of (7), namely, the forward and the
backward solutions, where

[iaz +/3(w)]Ew = O(€E), [iaz - ﬁ(w)]Ew = O(€E),

(10)

respectively. We further consider the forward wave solution
for which the term O(€E) describes small contributions of
the backward waves permanently generated by the nonlinear
term in (7). To calculate this contribution we apply an exact
identity:

[92 + B2]E, = 2B[i0. + B]Ew — [id. + B] Ee
= 2p[id, + B]E, + O(€’E),

(11)

where the last term should be neglected because such
terms were neglected when deriving (7). The latter is then
transformed to the unidirectional form

2

i9,Eq + P(w)Ey = —ia(w0)Eqy — —X

123]0
(12)
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where both the left- and the right-hand sides are scaled as
O(€E) cf. (8).

The propagation model (12) was first suggested in [35]
and then generalized in [31, 38] for an arbitrary polarization.
As we will see below, it can be significantly simplified by
elimination of the non-resonant nonlinear terms.

4. Resonances

A natural approach to (12) is to simplify it by a suitable
change of variables. In the spirit of the perturbation theory,
we use a power expansion and formally define
~ wy Eo,Ew,Eo
E,=E,+ e s .
2c?B(w) 12%wﬁ(w) = Blw1) — B(w2) — Blw3)
(13)

We apply id, + 3 to both sides of (13). Equations (8) and (12)
yield

[i0; + B(w) | Ew, Ew Ea, = [B(@) = Blwr) — flw2) — Blws)]

X Ey,Ew,Ew, + O(€%E).
(14)

We see that

2

w'x

id, + B|E, = [id, + B]E, + —2
[i0. + B] [i0: + B] 238 2

Ey Eu,Ey, + O(€?E).
(15)

Using the last equation together with definition (13), (12)
can be transformed to the form

[id: + Bl Ey = —iak, + O(€2E). (16)

Comparing the latter equation with (12) we see that the cubic
nonlinear term is formally eliminated. Strictly speaking, the
contribution of the cubic term is “shifted” to the higher
O(€?E) order in the spirit of the canonical perturbation
theory [39, 40].

It is a good point to stress that such an elimination
is possible only for non-resonant triads {w;,w;,ws3}. The
resonant frequencies are defined by the conditions

w+w; +ws =w,

Blwr) + f(w2) + f(ws) = flw).

(17)

Exemplary solutions of the above resonance conditions in
the three-dimensional frequency space are shown by thick
solid lines in Figure 1 for fluoride glass. In the vicinity
of the resonant lines the transformation (13) is singular
and contributions of the nonlinear terms in (12) cannot
be eliminated. Far from the resonant curves, the nonlinear
terms in (12) lead only to small forced oscillations of E,(z)
and can be neglected.

In what follows we assume that for w > 0 all solutions
of (17) contain one negative and two positive frequencies. In
other words, only 2 & 2 four-wave mixing (FWM) processes

w3 = w
w;+wy; =0

w3
w] =w
wy+w3 =0
V.V
V
1
1
1
A

w2

w2 = w
w) +w3 =0

w)twtws =w

Bwr) + B (w2) + B (w3) = p(w)

FiGure 1: Three-dimensional frequency space (w;,w,,ws). The
thick curves show solutions of the resonance conditions (17) for
a bulk fluoride glass (w corresponds to 0.8 um, €(w) is taken from
[22]). The dashed regions correspond to 3 = 1 four-wave mixing
processes which are neglected in this paper. The nondashed part of
the resonance curves corresponds to 2 = 2 processes and is taken
into account.

are taken into account. The contribution of 3 = 1 FWM
processes, for example, when all frequencies in the resonance
conditions (17) are positive, is neglected. In such a situation
(12) cannot be linearized completely, but can be considerably
simplified as explained in the next section.

5. Analytic Signal

To simplify (12) we first write it in such a way that
contributions of the positive and negative frequencies are
explicitly distinguished. To this end we introduce a complex-
valued analytic signal &(z,t) for the electric field [1, 34]. In
contrast to the real-valued E(z, t), the analytic signal contains
only positive harmonics

E(z,t) + &*(z,1)

E(z,t) = ZZEw(z)ei‘”t, E(z,t) =
w>0 2
(18)
such that
1 * 1 *

Eyso = ng; Ey<o = E—w = 58—(»' (19)

In other words,

&, +E*

E, = %’ (20)

because &,<9 = 0 by construction. Inserting (20) into the
product E, Ey,E,, in (12) and performing multiplication,
we see that all FWM processes are now separated. The reason
for such a simplification is that the analytic signal is related
to classical creation and annihilation operators as explained
in [41] for a more general bidirectional nonlinear wave



equation. After neglecting all but 2 = 2 FWM processes, the
unidirectional (12) finally takes the form

3wy

[i0; + f(w) + ia(w)] &y + 525(w)

(Bliere]) =o
(21)

where (- --), denotes a spectral component, @ > 0, and
Bl1& &3 | denotes a positive frequency part of |& €.

Equation (21) is our main result. It compromises proper-
ties of both the spectral propagation models and the envelope
models. For instance, an arbitrary (w) is captured like in the
spectral model (12); on the other hand a familiar invariance
with respect to the phase shifts (§, — &,e’ with 6 = const)
is retained like in the standard NSE.

For the vanishing dissipation term a(w), the analytic
signal equation was derived in [41]. We want to emphasize
that dissipation enters (21) in a nontrivial way: the nonlinear
term is not affected. If one carelessly replaces (w) with
k(w) = B(w) + ia(w) in the cubic term, the resulting model
will show an unphysical nonlinear gain which will finally
spoil pulse propagation.

The nonlinear term in (21) is just a positive frequency
part of the standard NSE-type nonlinearity. Still the analytic
signal &€(z,t) directly represents the electric field E = Re[€]
and is independent of SVEA. The negative frequency part of
1&1%6 corresponds to backscattered light that is generated
in the course of pulse propagation. The feedback effect of
the backscattered light is neglected in the unidirectional
approximation. Finally we note that the analytic signal
equation (21) can be solved numerically with only small
changes of the standard NSE solvers. Exemplary numerical
solutions are given in the next section.

6. Numerical Solutions

The numerical solutions of (21) are described in this
section.We use a dealiased pseudospectral method, which
originates from the computational fluid dynamics [42]. This
method calculates all linear operators and derivatives in the
frequency domain and performs the nonlinear multiplica-
tions in the time domain, with the transformations between
the domains achieved by the fast Fourier transform. The
integration for the linear and nonlinear part is performed in
the frequency domain by a precise Runge-Kutta integration
scheme of order eight with adaptive stepsize control depend-
ing on the accuracy as described in [43].

Considering ultrashort optical pulses with the carrier
frequencies of several hundreds THz, we use the time step
of at least At = 0.6 fs. Depending on the initial pulse width,
we use a resolution of 2! and 2!*> harmonics for a periodic
time window T = 5ps and T = 10 ps, respectively. Several
test calculations were performed for a better resolution, 217,
The increase of the harmonics number does not affect the
results.

In the following we study the nonlinear propagation of
femtosecond pulses in the anomalous dispersion regime of
a microstructured fiber, where complex and comprehensive
behavior can be observed. Depending on the input pulse
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power and width, the interplay of linear and nonlinear effects
such as self-phase modulation (SPM), FWM, and soliton
dynamics can lead to the generation of octave-spanning
spectra. It is well known that the physical mechanism of
the dramatic spectral broadening process is related to the
break-up of higher-order solitons [35]. The soliton fission
is caused by the formation of fundamental soliton pulses
and the generation of a nonsolitonic dispersive wave into the
phase-matched wavelength, leading to a spectrum broadened
over an octave, even if the injected pulse energy is less
than a few nanojoules. Besides soliton propagation, the
modulation instability (MI) is another general feature in the
anomalous dispersion regime, which affects the propagation
of an optical pulse. The MI is a well understood instability
phenomenon of the NSE, which results from the interplay
between SPM and group velocity dispersion. In [44] the
ability of the MI to generate SC and the dominance of the MI
for short pulses have been demonstrated. In [45] it has been
shown that soliton fission dominates for low input power
and short pulses (100 fs) and the modulation instability has
a strong impact for high input powers at arbitrary pulse
widths.

For our simulations the dispersion profile of the highly
nonlinear microstructured fiber is taken from [46]. As an
initial condition we consider an input pulse electric field
having a central angular frequency wo,

JHEGDlcg = S ¥ ™ + cc, (22)

and a hyperbolic-secant shape for the initial envelope ¥ (¢) =
W, cosh ' (/ty) with the dimensionless amplitude ¥, =
0.03 and temporal width fp = 10-100fs. The value of
wy corresponds to a pump wavelength 1y = 810nm;
this wavelength is in the vicinity of the zero dispersion
wavelength in the anomalous dispersion regime.

Figure 2 shows the density plots in the (w,z)-plane of
the spectral evolution for different input pulse widths. The
spectra are shown on a logarithmic scale to illustrate the
fine structure of the spectrum generated. For a 100 fs pulse
spectral broadening in the range z = 1-10mm is mainly
dominated by SPM. However, the significant features of
the MI can be observed. The underlying MI acts in the
initial stage on the pulse and leads to the generation of a
Stokes and an anti-Stokes component. Figure 2(a) shows
the appearance of two sidebands after z = 3.7mm. This
demonstrates that also for short pulses with durations of
100 fs the modulation instability is present and can have an
impact on the propagation dynamics.

The simulations in Figures 2(b) and 2(c) illustrate the
typical scenario of spectral broadening by soliton-related
dynamics, for input pulses with #, = 50fs and t, = 10fs.
Three different stages are clearly observed. The initial stage of
propagation is dominated by symmetrical spectral broaden-
ing induced by SPM. An extreme spectral broadening is then
caused by pulse contraction due to the first step of soliton
propagation (Figures 3(b) and 3(d) at z = 7.9 mm for 50 fs
and z = 2.1 mm for 10fs). In the second stage the spectral
broadening becomes asymmetric and energy is shifted to the
blue side of the spectrum, due to soliton fission accompanied
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FIGURE 2: Density plots of the spectral evolution for (a) £ty = 100 fs pulse with typical signature of the modulation instability, (b) f, = 50 fs,
and (c) tp = 10fs pulses generating SC by soliton fission. The spectra are shown in logarithmic scale (dB).

by the excitation of dispersive waves. This is associated with
the development of distinct temporal peaks that sit upon a
broader low-amplitude background (Figures 3(e) and 3(f)
at z = 9.9 mm). The extension of the spectrum to the blue
side is related to the dispersion profile of the optical fiber and
to the input pulse power. The spectral broadening is limited
by the broadening of the temporal waveform of the pulses.
In the third stage the spectral width is already saturated, but
FWM generates complicated substructures. The appearance
of the fine structure is an essential phenomenon and is
extremely sensitive with respect to the initial pulse energy.
Equation (21) clearly reproduces all essential features of
the SC evolution seen in a number of experiments [9, 47]
and in simulations with the generalized NSE, namely, SPM
and FWM, M, soliton fission, and generation of dispersive
waves by solitons. Moreover, it goes beyond the envelope
approximation and allows for an arbitrary pulse duration.

7. Conclusions

Let us summarize our results. Propagation of spectrally
broad ultrashort optical pulses is considered. We first derived
the so-called forward Maxwell (12) following [35] but
taking into account a small dissipation effect. Then we
simplified the forward Maxwell equation by eliminating all
non-resonant nonlinear terms. To this end we incorporated
an analytic signal representation. The latter is useful as it
is intrinsically related to classical creation and annihilation
operators [41, 48, 49]. The resulting non-envelope model
(21) applies to the analytic signal for the pulse electric
field in the frequency domain. The model (21) combines
advantages of both envelope and non-envelope approaches;
it accounts for arbitrary dispersion, resonant four-wave
mixing processes, weak absorption, and arbitrary pulse
duration. It is of interest that the linear absorption does
not affect the nonlinear term in (21). This is an important
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F1GURE 3: Temporal evolution for selected propagation distances for a 50 fs pulse at (a) z = 0.1 mm, (¢) z = 7.6 mm, and (e) z = 9.9 mm and
fora 10 fs pulse at (b) z = 0.1 mm, (d) z = 2.1 mm, and (f) z = 9.9 mm. The values of |€(z, t)| are shown.

issue because careless use of the complex refractive index,
for example, in (21), leads to an unphysical nonlinear gain.
Finally, the existing numerical approaches to the envelope
propagation equations can be easily adopted to solve the
non-envelope (21).
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