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Modern engineering technology involves the micropolar magnetohydrodynamic flow of magnetic
fluids. Here, we consider a colloidal suspension of non-conductive ferromagnetic material, which
consists of small spherical particles that behave as rigid magnetic dipoles, in a carrier liquid
of approximately zero conductivity and low-Reynolds number properties. The interaction of a
3D constant uniform magnetic field with the three-dimensional steady creeping motion (Stokes
flow) of a viscous incompressible micropolar fluid in a circular cylinder is investigated, where
the magnetization of the ferrofluid has been taken into account and the magnetic Stokes partial
differential equations have been presented. Our goal is to apply the proper boundary conditions,
so as to obtain the flow fields in a closed analytical form via the potential representation theory,
and to study several characteristics of the flow. In view of this aim, we make use of an improved
new complete and unique differential representation of magnetic Stokes flow, valid for non-
axisymmetric geometries, which provides the velocity and total pressure fields in terms of easy-
to-find potentials. We use these results to simulate the creeping flow of a magnetic fluid inside a
circular duct and to obtain the flow fields associated with this kind of flow.

1. Introduction

Many chemical, biochemical, and other industrial or biological processes employ solid or
soft matter in the form of small ferromagnetic particles, which are embedded in a Newtonian
fluid and react in the presence of a magnetic field. Several engineering applications with high
technical complexity that cover the large specific area that is offered by such systems have
an inherent interest of physical and mathematical nature [1]. Those systems involve the pure
hydrodynamic motion of the aforementioned aggregates of particles, where the application
of a magnetic field perturbs the flow and the coexistence of liquid and magnetic properties
provides us with useful information on the physical problem that has to be solved in each
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case. It is to this end that magnetic fluids [1], such as water, hydrocarbon, ester, fluorocarbon,
and others, comprise a novel class of engineering materials, where their specific magnetic
and hydrodynamic feature promotes heat and mass transfer, reaction rates, blood or other
biological flows, and so forth, under the action of magnetic fields. More specifically, magnetic
fluids can be considered as colloidal suspensions of spherical particles in a conductive
liquid, where the assumption of complete isotropic shape of the magnetic particles is
valid due to their small size. In this case, the so-called ferromagnetic particles follow the
Brownian motion and behave as rigid magnetic dipoles. Thus, the application of an external
magnetic field, apart from the creation of an induced magnetic field of minor significance,
will prevent the rotation of each particle, increasing the effective viscosity of the fluid
and will cause the appearance of an additional magnetic pressure. The combination of the
hydrodynamic flow [2]with the application of an arbitrarily orientated magnetic field allows
us to consider the fluid as micropolar [1, 3, 4] and provides us with the appropriate tools for
developing and solving such boundary value problems of high mathematical and technical
complexity. The most general consideration secures the consistency of many boundary value
problems with the principles of both ferrohydrodynamics and magnetohydrodynamics, by
including, respectively, both magnetization and electrical conductivity of the fluid within
the partial differential equations, which are under analytical or numerical investigation [1–
4]. Specifically, ferrohydrodynamics is concerned with the mechanics of the motion of the
so-called micropolar fluids that is influenced by strong forces of magnetic polarization,
introducing a magnetic stress tensor [5] into the momentum equation. On the other hand,
magnetohydrodynamics deals with the current distribution of the electrically conductive
carrier liquids. It is worth mentioning that nowadays a very big part of the scientific
research is dedicated to the biomagnetic fluid dynamics, which combines the existence
of the magnetization of the biofluid with its conductivity; see, for instance, blood flow
problems. The system of hydrodynamic equations that governs the magnetic fluids flow [1–
4] is constituted by the equations of continuity, of momentum, of Maxwell, of energy (when
we deal with the thermomechanics of a magnetic fluid [3]), of angular momentum, and of
magnetization, which are all coupled with each other. Those partial differential equations
are expressed in terms of the velocity field, the total pressure field, the variation of the
temperature, the magnetic field, the conduction current density, and the several specific
hydrodynamic or magnetic parameters, which characterize the ferrofluid and the motion
itself. The appropriate boundary conditions, depending on the particular physical problem,
are adequate for the completeness of a well-posed boundary value problem.

Recently, a general three-dimensional theoretical model that conforms to physical
reality and at the same time permits the analytical investigation of the aforementioned
partial differential equations has been developed byHatzikonstantinou and Vafeas [6]. In this
novel model the authors focused both on ferrohydrodynamic and on magnetohydrodynamic
problems of technological or biomechanical interest, which can be applied to various
micropolar magnetic fluids, by constructing purely analytical solutions and using the
minimum of the necessary assumptions for their model. This work [6] involves the study
of the incompressible flow of a Newtonian carrier magnetic liquid, which contains a small
concentration of magnetic particles under the effect of an arbitrarily orientated applied
magnetic field. There, it has been presented the development of a new dyadic, as well as
vector, expression for the momentum equation, which incorporates an explicit theoretical
expression for the extra viscosity. The additional magnetic pressure generated by the
effect of the magnetic field and a general three-dimensional analytical expression for the
magnetization and the Lorentz forces are also included. However, many of the industrial
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or biological systems that we have already described consider pipe flow problems, which
can be modeled by the Stokes flow [7] approximation in the presence of a magnetic
field, which involve the creeping motion of magnetic fluids in low Reynolds number
[7]. Therefore, the aforementioned partial differential equations reduce to a simpler shape
that is similar to the well-known Stokes equations [7], the so-called magnetic Stokes
equations, which are presented in every detail in [6]. Within the frame of the already
known potential representation theory developed in early years [8–10], a new complete and
unique differential representation of magnetic Stokes flow has been constructed [6], valid for
nonaxisymmetric geometries, which provides the velocity and total pressure fields in terms
of easy-to-find potentials, via an analytical fashion. This representation considers steady
state, neglecting the current distribution in the fluid and approximating the magnetization
by its equilibrium expression (more specifically by the constant saturation expression for
extremely strong magnetic fields at very low temperatures). These two last assumptions
arise from the small size or the low concentration of the ferromagnetic particles neglecting
magnetorestrictive effects and from the fact that, for creeping flow, very low velocities are
considered. Such an analytical approach of creeping flow (Stokes flow) under the action of
a magnetic field, arbitrarily orientated, in three-dimensional interior and exterior flow fields,
appears for the first time, and, as it will be shown later, it is the key to our work.

A very large part of the applications in the technological field and in general
biomagnetic processes involves the micropolar flow of magnetic fluids inside pipes or ducts
and their reaction to the presence of magnetic fields. An approach of one-dimensional
case appears in [1] by Berkovski and Bashtovoy, where it is examined under various
strict conditions the theoretical analysis of a steady laminar flow in a cylinder under the
action of an axial or transverse magnetic field, depending only on the axial direction
of the flow. Similar simplified solutions like the problem of a plane Couette flow have
been also developed by Rosensweig in [4], while an interesting analytical work by Verma
[11] on ferrohydrodynamics deals with a two-dimensional flow in Cartesian coordinates,
introducing the well-known Stokes stream function [2]. Although the study of the reaction
of micropolar fluids when they are disturbed by several types of magnetic fields is of
great interest, it still remains useful to report papers concerning the flow of fluids with
micropolar properties inside pipes or around bodies, where some works retain and others
omit (considering creeping flow) the convection terms in the Navier-Stokes equations.
Recently, a pure analytical solution was obtained by Sastry and Mohan Rao [12], who
discussed the micropolar fluid flow arising due to oscillations of a plane, when the system
is subject to uniform rotation, whilst a hybrid paper of Calmelet-Eluhu and Majumdar
[13] investigates the internal flow of a micropolar fluid inside a circular cylinder, which
is subject to longitudinal and torsional oscillations, where the obtained analytical results
are followed by numerical analysis. Under this aspect, Weng et al. [14] employed the
theory of micropolar fluids in order to study the stability problem of flow between two
concentric rotating cylinders, providing analytical and numerical results as well. On the
other hand, Stokes flow inmicropolar fluids appears frequently in the recent years, providing
interesting information about the creeping flow of magnetic fluids. Indeed, Faltas and Saad
[15] examined the axisymmetric Stokes flow of a sphere bisected by a free surface bounding
a semi-infinite micropolar fluid, and three years later Sherif et al. [16] presented the Stokes
axisymmetrical flow caused by a sphere translating in a micropolar fluid perpendicular to
a plane wall at an arbitrary position from the wall. In addition, the same year, Moosaie
and Atefi [17] provided an analytical solution for the creeping flow of a micropolar fluid
past a rotating circular cylinder of infinite length in spanwise direction. Nevertheless, those
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analytical or semianalytical works introduce several physical or mathematical assumptions
and conditions in order to overcome certain difficulties arisen by the particular analytical
investigation. Those constraints multiply rapidly when someone has to face the problem of
the interaction of micropolar fluids with magnetic fields and then the difficulties increase
exponentially. Hence, the use of purely numerical methods was obligatory. Within this frame,
two important works by Papadopoulos and Tzirtzilakis [18] as well as Khashan and Haik
[19] are involved with the biomagnetic fluid dynamics under the action of a magnetic
field. Moreover, in the aim of investigating the reaction of liquid metals to magnetic fields,
several authors have taken into account the electric conductivity of such liquids. Under this
aspect, two works by Sellers and Walker [20] and Witkowski and Walker [21] have used
the principles of magnetohydrodynamics in order to construct numerical solutions for the
flow of liquid metals, taking into account the electric current density. Recently, Papadopoulos
et al. [22] studied numerically a first approach of the new theoretical model presented
in [6] by examining the magnetohydrodynamic flow of a micropolar magnetic fluid in a
straight square duct. Under this point of view, Vafeas et al. [23] provided analytical and
numerical results about the flow of a micropolar fluid under the effect of a line dipole.
However, all of these methods involve the use of elaborate computer codes for each case
under consideration. But there is always room and need for strong analytical methods, which
incorporate the appropriate geometrical and physical characteristics with the minimum of
the simplifications. It is to this end that Stokes flow serves as the platform of the necessary
assumptions that have to be made in order to keep consistency between the mathematics and
the physics in real flow situations. During the last century, several authors have employed
the creeping flow [7] in order to solve the corresponding physical boundary value problems.
For example, such a large area of applications concerns the well-known particle-in-cell
models for the Stokes flow through relatively homogeneous swarm of particles (inorganic,
organic, biological). Those systems provide a relatively simple platform for the analytical or
semianalytical solution of heat or mass transport problems. Two reference papers by Dassios
et al. [24] and Vafeas and Dassios [25] on this matter involve the solution of such problems in
axisymmetric spheroidal and in 3D ellipsoidal coordinates, respectively. More specific, in [25]
the analytical solution for the flow fields has been obtained with the aim of the Papkovich-
Neuber differential representation [8, 10], which was the motivation for the construction of a
new differential representation for magnetic Stokes flow [6].

Until nowadays, one can rarely retrieve reports of works in the literature that capture
in an analytical fashion the influence of magnetic fields to flows of micropolar or electrically
conductive fluids, where the complete anisotropy of the three-dimensional space must
be seriously taken into account. For example, Martin Witkowski et al. [26] treated the
nonaxisymmetric flow of an electrically conducting liquid in an insulating cylinder with
a spatially uniform, transverse, rotating magnetic field. Here, in this paper, we obtain the
analytical solution to the fully three-dimensional Stokes flow problem of a micropolar fluid
with low Reynolds number properties (neglect of the convection terms in the Navier-Stokes
equations) inside a circular cylinder, where the flow is perturbed by a constant vector uniform
magnetic field that is arbitrarily orientated. In order to obtain the flow fields, we use a
differential representation, which is based on the one developed in [6], and it provides
the velocity and the total pressure of the fluid in terms of easy-to-find potentials that
contain the magnetic field. The representation used here considers the same assumptions
made in [6], namely, steady state flow and no current distribution in the fluid. The main
improvement of the present representation compared to the one in [6] is that it approximates
the magnetization by the more general equilibrium expression which contains the measure
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of the general applied magnetic field and not by the constant saturation expression. Thus,
it has increased accuracy and more general applicability without being more complicated
than the one in [6]. An outline of the differential representation that we employ as well
as the additional steps needed for the present improved representation of the flow fields
is presented in a later section.

Hence, under the assumption of low Reynolds number and small size or low con-
centration of ferromagnetic particles in the micropolar fluid, the general differential solution
provides the velocity and the total pressure fields via potentials that satisfy easy-handled
equations, which contain the appliedmagnetic field. For a constant magnetic field in the three
dimensions as in our case, those equations reduce to Laplace equations for each potential
function. Consequently, the unknown potentials are given via infinite series expansions of
internal harmonic eigenfunctions in circular cylindrical coordinates [27–29], since we face an
interior flow problem inside a circular cylinder, and, then, the 3D flow fields are provided
via closed forms of full series expansions through the differential representation. That way,
the generality of the potentials is inherited to the magnetic flow fields, via a complete set
of unknown constant coefficients that have to be calculated explicitly. In order to achieve
that, we consider a circular cylinder of a finite length for our problem, and we supplement
the general solution with the appropriate boundary conditions as a fair approximation for
the creeping flow of a micropolar fluid inside a finite circular cylinder in the presence of a
constant magnetic field. These conditions are nonslip condition on the wall of the cylinder,
an imposed axial velocity of a known general form with no transversal components at the
entrance of the cylinder, and cancellation of the axial derivatives of the transversal compo-
nents of the velocity as well as zero axial stresses at the exit of the cylinder. We point out that
the last condition has been introduced by Gresho [30] and Ganesh [31]. In order to secure
consistency with the physical requirements, those conditions are supplemented with the
demand of conservation of mass at the edge of the finite cylinder (Bruneau and Fabrie [32]).
All the boundary conditions reported here are extensively used in many papers, where their
basic characteristics are concentrated within the references [30–32]. Applying the conditions
to the general differential solutions for the flow fields, we perform many tedious and long
calculations in order to evaluate the unknown constant coefficients and obtain the velocity
and the total pressure in a closed analytical form of expansions of infinite series, in terms of
the applied 3D constant magnetic field, of the interior circular cylindrical eigensolutions, and
of the certain hydrodynamic ormagnetic parameters. In addition, we accomplish to reveal the
effect of the applied magnetic field on the magnetic Stokes flow fields and on the viscosity of
the fluid, where its increase is clearly shown by a factor, which is the ratio of the apparent vis-
cosity of the flow over the hydrodynamic viscosity of the fluid. The aforementioned closed-
type solution is general and valid for the nonaxisymmetric circular cylindrical geometry, and
all the details as well as the difficulties arisen during the calculation process are discussed
extensively in the corresponding section of the paper. Here, we add that our calculations
were made within the classical mathematical analysis framework using reliable bibliography
[27–29, 33], while a mathematical technique based on a theory for the completeness of the
differential representations by Eubanks and Sternberg [34] (also used in [25])was imposed.

The analytical section of the present paper is followed by the application of the
obtained solution to the computation of the velocity and total pressure fields of creeping
flow in a circular duct. The results include plots that depict the development of the flow as
the magnetic fluid moves downstream of the duct, under the effect of the imposed magnetic
field. We also prove that the additional friction losses depend upon the effective viscosity of
the flow [35]; hence, we present plots that depict the variation of the additional viscosity due
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to themagnetic field versus several characteristic parameters of the flow, such as themagnetic
field magnitude and the concentration of particles inside the ferrofluid.

Finally, the necessary mathematical material from the theory of harmonic functions
in circular cylindrical coordinates and the Bessel functions as well as some useful formulae
associated with trigonometric and hyperbolic functions is collected in the appendix, along
with the presentation of various vector identities.

2. Mathematical Formulation and the New Differential Representation
for Magnetic Stokes Flow

In order to formulate our boundary value problem, we consider a finite circular cylinder of
radius α and of length L, and, under steady state conditions with no time dependence, we
examine the interior creeping flow (very small Reynolds number [7]) of an incompressible
(constant mass density ρ) and viscous (constant dynamic viscosity η)micropolar fluid inside
the smooth bounded three-dimensional cylindrical domain V (R3) that is confined by the
cylinder’s prescribed dimensions. In what follows, every field will be written in terms of
the position vector r = x1x̂1 + x2x̂2 + x3x̂3 expressed via the Cartesian basis x̂i, i = 1, 2, 3, in
Cartesian coordinates (x1, x2, x3), where this dependence will be omitted for convenience in
writing. This coordinate system is placed in such a way so as the x1-axis follows the direction
of the axis of symmetry of the finite circular cylinder, while the other two axes lie on the
perpendicular plane. On the other hand, its connection with the appropriate (r, ϕ, z) circular
cylinder coordinate system is provided in the appendix via relation (A.12). Micropolar fluids
[1] are characterized by colloidal suspension of very small solid ferromagnetic particles,
which are considered as spherical of radius rp and of density ρp due to their minor size and
are finely divided in a continuous liquid medium that is considered nonconductive (without
any Lorentz force density [1, 6]) in our case. This last hypothesis conforms to physical reality,
since the volumetric concentration of the ferromagnetic particles remains in low levels, and,
then, the current distribution is negligible. The ferrofluid consists of the carrier fluid and the
suspension of magnetic particles, which behave as rigid magnetic dipoles. The particles do
not interact to form agglomerations due to the Brownian motion, which is responsible for the
stability of the ferrofluid. Hence, the application of an external magnetic field will prevent
the rotation of each particle, increasing the effective viscosity of the fluid, and will change
the total pressure.

Under the aforementioned assumptions, the governing micropolar hydrodynamic
equations of our physical problem relate the velocity field v and the total pressure field
P = p + ρgx3 with the applied magnetic field H of measure H = |H|. It is noted that
p is the thermodynamic pressure, g = −gx̂3 defines the acceleration of the gravity of
measure g, and ρgx3 refers to a hydrostatic pressure force, which corresponds to a height
of reference in the x3-direction. Moreover, the induced magnetic field is taken approximately
equal to zero, which is true in many applications. The governing equations are the Stokes
magnetohydrodynamic equation for the creeping motion of magnetic fluids [1, 4, 6]

[

η +
τBμ0M0H

4
(

1 + (τS/I)τBμ0M0H
)

]

Δv = ∇P − μ0M0∇H, (2.1)

and the continuity equation

∇ · v = 0, (2.2)
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which secures the incompressibility of the ferrofluid. They are both expressed in terms of
the well-known differential operators ∇ and Δ (see also (A.15)). Here, τS = r2pρp/15η0
is the relaxation time of particle rotation (η0 corresponding to the rotational viscosity),
I = 8πr5pρpn/15 is the sum of moments of inertia of the spherical particles per unit volume
(n being the number of particles per unit volume), τB = 4πηr3p/KT is the relaxation time
of Brownian rotation (K being the Boltzmann’s constant and T denoting the temperature,
which we consider as constant for the present isothermal problem), and μ0 is the magnetic
permeability of the free space. Furthermore, as it is clearly explained in [6], for creeping
flow, as in our case, small velocities are obtained, and then the magnetization M (of measure
M = |M|) becomes approximately colinear with H. Their connection is provided via the
equilibrium magnetization M0 and in terms of the Langevin function L(ξ) by the equation

M ∼= M0

H
H =⇒ M ∼= M0 = nmL(ξ) for L(ξ) = coth ξ − 1

ξ
with ξ =

μ0mH

KT
, (2.3)

where m specifies the magnetic moment of a particle, while M0 = M0(H). It is obvious that,
in some cases, we have to take into consideration the magnetization of the particle itself Mp,
which is connected with the saturation magnetization Ms by the relation

Ms = φMp = nm with φ =
4
3
πr3pn, (2.4)

where φ is the volumetric concentration of particles. On the other hand, as ξ → 0, then
L(ξ) → 0, whilst as ξ → +∞, it is easily verified that L(ξ) → 1. Hence, M0 can sometimes
be approached by the constant saturation expression for extremely strong magnetic fields at
very low temperatures. The vorticity of the fluid Ω (of measure Ω = |Ω|) is expressed as

Ω = ∇ × v. (2.5)

The quantity ΩτB stands for the crucial characteristic that controls the nature of the
micropolar flow. For instance, Stokes micropolar flow is confirmed by the condition ΩτB � 1
that reflects small velocities. For convenience to our calculations, we define the dimensionless
parameter χ(H) as

χ(H) ≡ 1
η

[

η +
τBμ0M0H

4
(

1 + (τS/I)τBμ0M0H
)

]

=
[

1 +
τBh(H)

4η(1 + (τS/I)τBh(H))

]

for h(H) = μ0M0H,

(2.6)

which is the ratio of the total viscosity of the micropolar fluid in the presence of magnetic
particles that can respond to a magnetic field over the viscosity of the fluid in the absence of
magnetic particles. The term

τBμ0M0H

4
(

1 + (τS/I)τBμ0M0H
) = η

(

χ(H) − 1
)

(2.7)
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appearing in (2.1) is the additional effective viscosity caused by the interaction between
the magnetic particles and the applied magnetic field. Inserting definitions (2.6) into the
momentum equation for creeping magnetic flow (2.1), we obtain the equivalent form

ηχ(H)Δv = ∇P − h(H)∇(lnH). (2.8)

The function h(H), which is defined in (2.6), stands for the effect of the Brownian motion of
the particles on the total pressure. If there are no magnetic particles (n = φ = 0) or if there is
no magnetic field (H = 0), then from (2.3) we have M0 = 0, which means that h(H) = 0 and,
consequently, χ(H) = 1 as it is revealed from relation (2.6). Then, the pair of relationships
(2.8) and (2.2) reduces to the already known Stokes equations for the hydrodynamic creeping
flow [7].

Our first purpose is focused on the analytical treatment of the coupled equations of
momentum (2.8) and continuity (2.2). Under this aspect we search for analytical solutions
of these equations in the forms of differential representations [8–10], which provide us with
the velocity field v and the total pressure field P in terms of differential operators that act
on particular potentials and in terms of the applied magnetic field H. Within this frame, in
publication [6], an extended paragraph with a proved theorem was devoted to that matter in
the case where the equilibriummagnetization is taken nearly equal to the constant saturation
magnetization (M0

∼= Ms = nm). Nevertheless, in this paper it is our goal to extend this
theorem in the case where the equilibrium magnetization is provided by its most general
expression (2.3), which contains the measure of the general applied magnetic field. In view
of that, we present the following improved differential representation for magnetic Stokes
flow, which provides the velocity and the total pressure of the fluid in terms of easy-to-find
potentials that contain the magnetic field, in the more general case, where M0 is given by
(2.3); that is,

v = Φ − 1
2
∇(r ·Φ + Ψ), (2.9)

P =
[

h(H) − h(H)
]

− ηχ(H)∇ ·Φ + P0 with ∇h(H) = h(H)∇(lnM0), (2.10)

where P0 is a constant reference pressure and Φ, Ψ are potentials that satisfy

ΔΦ +∇[lnχ(H)
]∇ ·Φ = 0, ΔΨ = −r ·ΔΦ, (2.11)

respectively. The representation (2.9)–(2.11) is the new, more complete, general solution that
we present for the first time in this paper, which provides us with the magnetic flow fields of
(2.8) and (2.2) in an analytical fashion. If there are no magnetic particles (n = φ = 0) or if there is
no magnetic field (H = 0), we obtainM0 = 0, h(H) = h(H) = 0, χ(H) = 1, and our differential
representation (2.9)–(2.11) reduces to the already known general solution for Stokes flow
[10]. The proof of completeness and of uniqueness of the differential solution (2.9)–(2.11)
follows the same steps provided in [6] by making the change h[6](H) → [h(H) − h(H)].
Thus, in order to avoid repetition we choose to omit the proof and refer to [6] for further
analysis and elaboration. However, it is not difficult to show that solution (2.9) and (2.10)
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with (2.11) satisfy (2.8) and (2.2). Indeed, with the aid of identity (A.1) we transform the
momentum equation (2.8) to

ηχ(H)Δv = ∇(P − h(H)) + h(H)∇(lnM0). (2.12)

Utilizing identity (A.11) and substituting the velocity (2.9) and the total pressure (2.10)
into (2.2) and (2.12), then the last two are immediately satisfied, taking into account the
relationships for the potentials (2.11).

Our final task is to find an analytical form for h(H), whose gradient appears in (2.10).
In order to achieve this, we proceed as follows. We make use of (2.3), (2.6), and (2.10) to
calculate

∇h(H) = h(H)∇(lnM0) = μ0H∇M0 = nKT
sinh2ξ − ξ2

ξ sinh2ξ
∇ξ = ∇

[

nKT

(

ln
ξ

sinh ξ
+ ξ coth ξ

)]

(2.13)

or

h(H) = nKT

(

ln
ξ

sinh ξ
+ ξ coth ξ

)

(2.14)

without loss of generality, since the arbitrary constant of the integration can be embodied
inside the arbitrary constant pressure of reference P0 from (2.10). Expression (2.14) provides
us with an analytical expression for h(H). It is also easy to obtain from definition (2.6) with
the aid of (2.3) a corresponding relation for h(H), which is

h(H) = μ0M0H = μ0nm

(

coth ξ − 1
ξ

)

H = nKT(ξ coth ξ − 1). (2.15)

Combining relationships (2.14), (2.15) and after simple analytical manipulations, we take

[

h(H) − h(H)
]

= −nKT

(

1 + ln
ξ

sinh ξ

)

= −nKT ln
eξ

sinh ξ
, (2.16)

where ξ contains the measure of the applied magnetic field via (2.3). Thus, the total pressure
(2.10) is calculated, and, once the potentialsΦ andΨ are obtained from (2.11), the flow fields
(2.9) and (2.10) are known. Of course, the continuity equation (2.2) is immediately satisfied.

The basic difference of the present representation compared to that of [6] is that the
equilibrium magnetization is provided by its most general expression (2.3). This difference
is expressed by the additional term h(H) which appears in the pressure (2.10) and by the
fact that both h(H) and h(H) are calculated for the magnetization M0, which is provided in
relation (2.3). It is noted that, when M0

∼= Ms = nm from the definition of h(H) in (2.10), it
is obtained that h(H) = const. ≡ 0 (without loss of generality) and that h(H) = h[6](H) =
μ0MsH = μ0nmH = nKTξ. Consequently, representation (2.9)–(2.11) reduces to the already
published general solution [6]. It is also useful to note that if the equilibrium magnetization
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M0 is approximated by the constant value of the saturation magnetization Ms, then the last
term of (2.12) becomes h(H)∇(lnM0) = μ0M0H∇(lnM0) = 0, and consequently (2.12)
coincides with the momentum equation for magnetic Stokes flow presented in [6]. Finally,
in order to verify the consistency of result (2.16) with the corresponding one from [6], we
make use of (2.10) to rewrite the momentum equation (2.12) as follows:

ηχ(H)Δv = ∇
(

P −
[

h(H) − h(H)
])

= ∇

⎛

⎜

⎝P − h[6](H)

⎧

⎨

⎩

[

h(H) − h(H)
]

h[6](H)

⎫

⎬

⎭

⎞

⎟

⎠. (2.17)

Then, we follow an easy limiting process, where with the aid of the novel result (2.16) and
relation h[6](H) = nKTξ (for high values of ξ), we obtain

lim
ξ→+∞

[

h(H) − h(H)
]

h[6](H)
= 1, (2.18)

which leads us to the corresponding momentum equation for magnetic Stokes flow of [6] for
very high values of ξ, that is,

ηχ(H)Δv = ∇(P − h[6](H)
)

= ∇(P − μ0MsH
)

= ∇(P − nKTξ) for M0
∼= Ms = nm (ξ −→ +∞).

(2.19)

In this paper we investigate the special case, where the main three-dimensional flow
is perturbed by a known constant vector uniform magnetic field, arbitrarily orientated in the
3D space, of the form

Hc =
3
∑

i=1

Hc,ix̂i with measure Hc =

√

√

√

√

3
∑

i=1

H2
c,i, (2.20)

where this situation provides us with the constant equilibrium magnetization

M0,c ≡ M0(Hc) = nmL(ξc) for L(ξc) = coth ξc − 1
ξc

with ξc =
μ0mHc

KT
, (2.21)

and the constant dimensionless parameter

χc ≡ χ(Hc) =
[

1 +
τBhc

4η(1 + (τS/I)τBhc)

]

for hc ≡ h(Hc) = μ0M0,cHc. (2.22)

Therefore, applying (2.21) and (2.22) into the magnetic Stokes equations (2.12) and (2.2), we
recover the corresponding differential equations

ηχcΔv = ∇(P − hc) = ∇P, (2.23)
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since hc∇(lnM0,c) = ∇hc = 0 and

∇ · v = 0. (2.24)

The particular case of the application of a constant three-dimensional magnetic field leads
via relation (2.22) to ∇[lnχc] = 0 and ∇h(Hc) = 0 ⇒ h(Hc) ≡ hc. Therefore, our improved
differential representation (2.9)–(2.11) of the solutions of (2.23) and (2.24) takes the form

v = Φ − 1
2
∇(r ·Φ + Ψ), (2.25)

P = −ηχc∇ ·Φ + Pc, (2.26)

where Pc ≡ P0 + [hc − hc] specifies the new characteristic reference pressure that is arbitrarily
chosen, since the total pressure enters the momentum equation (2.23) under the gradient
action. As a consequence of (2.22), relations (2.11) reduce to Laplace’s equations for the
potentials Φ and Ψ, that is,

ΔΦ = 0, ΔΨ = 0, (2.27)

respectively. Consequently, we have to find two harmonic potentials and calculate the
magnetic flow fields from the differential representation (2.25) and (2.26) in circular
cylindrical geometry, whenever the boundary conditions of the corresponding physical
problem are known.

Our boundary value problem must be supplemented by the appropriate boundary
conditions fixed to the precisely defined boundaries of the circular cylinder of radius α and
of finite length L. Those conditions are the following:

v = 0 for r = α, (2.28)

r̂ · v = ϕ̂ · v = 0, ẑ · v = v
(

r, ϕ
)

for z = 0, (2.29)

∂(r̂ · v)
∂z

=
∂(ϕ̂ · v)

∂z
= 0, −p + η

∂(ẑ · v)
∂z

= 0 for z = L, (2.30)

where the first one defines the nonslip boundary condition on the wall of the cylinder at
r = α, the second one refers to the entrance of the cylinder at z = 0 demanding the transversal
components of the velocity to vanish and specifying a known imposed axial velocity v(r, ϕ),
while the third one cancels the axial derivatives of the transversal components of the velocity
and demands that the axial stresses are set to zero (see also [30, 31]) at the exit of the
cylinder at z = L. Although the second part of boundary condition (2.30) comprises the
thermodynamic pressure, it is to our convenience to consider small height variations, so as to
neglect the hydrostatic pressure force and, consequently, to set the total pressure from (2.26)
approximately equal to p, meaning that P ∼= p. In addition, in order to secure consistency
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with the physical requirements of our problem, these conditions are supplemented with the
demand of conservation of mass at the edge of the finite cylinder (see also [32]), that is,

∇ · v = 0 for z = L (2.31)

In the limiting case, where the length of the cylinder tends to infinity, we demand that
the velocity field at the outlet of the duct obtains a fully developed profile

lim
L→+∞

v ≡ vP =
A

4ηχc

(

α2 − r2
)

ẑ, lim
L→+∞

∂P

∂z
≡ dPP

dz
= −A for z = L, (2.32)

respectively, where −A ≡ dPP/dz < 0 is the constant pressure gradient at the z-direction of
the magnetic Poiseuille flow (vP, PP). Immediate integration gives

PP = −A(z − L). (2.33)

We point out that the constant of the integration in order to find PP has been taken equal
to AL in order to be in accordance with (2.32) and the same time keep consistency at
infinity. Moreover, the effect of the magnetic field (2.20) is inherited to the velocity profile
(2.32), which carries the parameter χc (in the absence of particles or magnetic field, χc = 1,
and we obtain the hydrodynamic Poiseuille flow). On the other hand, the nature of the
asymptotic condition (2.32) determines the character of the flow fields v and P . In simple
words, condition (2.32) allows us to decompose the flow fields as follows:

v = vP + vg, P = PP + Pg, (2.34)

where the pair of flow fields (vP, PP) refers to the Poiseuille flow, while the general velocity
field vg and the general total pressure field Pg must satisfy the differential representation
(2.25), (2.26)with (2.27) of the solutions of (2.23) and (2.24),

vg = Φ − 1
2
∇(r ·Φ + Ψ), Pg = −ηχc∇ ·Φ + Pc with ΔΦ = 0, ΔΨ = 0, (2.35)

in view of (2.20)–(2.22) for χc. Straightforward calculations within the frame of identities
(A.3) and (A.10) confirm the satisfaction of the magnetic Stokes equations (2.23) and (2.24)
by the Poiseuille flow fields (vP, PP) given in (2.32) and (2.33). Thus, decomposition (2.34)
holds true, and the boundary condition (2.32) is substituted by

lim
L→+∞

vg = 0, lim
L→+∞

∂Pg

∂z
= 0 for z = L, (2.36)

a condition that must be satisfied automatically when the 3D flow fields (2.34) are calculated.
Our goal is to solve the aforementioned boundary value problem (2.23)–(2.24)with the

boundary conditions (2.28)–(2.30) supplemented with (2.31), using the decomposition (2.34)
with (2.32) or (2.36), (2.33) and the differential representation (2.35) in circular cylindrical
coordinates, in order to construct the three-dimensional flow fields (v, P) in a closed 3D
analytical form, accompanied by a particular numerical implementation of the results.
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3. The Magnetic 3D Flow Fields in Circular Cylindrical Coordinates

According to the analysis described above, the required 3D flow fields (2.34) of our problem,
in view of (2.32), (2.33), and (2.34), assume the form

v = u(r)ẑ +Φ − 1
2
∇(r ·Φ + Ψ), P = Pc + p(z) − ηχc∇ ·Φ, (3.1)

in terms of the functions (χc provided by (2.22))

u(r) =
A

4ηχc

(

α2 − r2
)

, p(z) = −A(z − L), where A =
−dp(z)
dz

= const. > 0. (3.2)

Since our case involves an interior flow problem, it is imposed the use of regular solutions
on the axis of symmetry of the circular cylinder (r = 0), which means that the Neumann
functionsNn(μr)must be excluded from any general harmonic expansion of the type (A.30).
The constant parameter μ ∈ R from the separation of variables of the Laplace equation in our
system (see the appendix for that matter)will be determined from boundary condition (2.28)
in the end of our analytical procedure. However, until then, we will introduce the symbol
“
∫
∑

μ · · · ”, which denotes integration if μ takes continuous values or summation in the case
where μ is a parameter with discrete values. Consequently, the complete representation of the
regular potentials Φ and Ψ, which belong to the kernel space of Δ, is

Φ =
∞
∑

n=0

∫

∑

μ

4
∑

i=1

eμ,(i)n H
μ,(i)
n , Ψ =

∞
∑

n=0

∫

∑

μ

4
∑

i=1

d
μ,(i)
n H

μ,(i)
n , (3.3)

where, for n ≥ 0, μ ∈ R, and i = 1, 2, 3, 4, the coefficients eμ,(i)n = a
μ,(i)
n x̂1 + b

μ,(i)
n x̂2 + c

μ,(i)
n x̂3

and d
μ,(i)
n denote the unknown vector and the scalar constant coefficients of the harmonic

potentials Φ and Ψ, respectively. On the other hand, within the frame of (A.30) the H-
functions, usually named as eigenfunctions, for every kind i = 1, 2, 3, 4 are

H
μ,(1)
n = Jn

(

μr
)

sinnϕ cosh
(

μz
)

for μ ∈ R, (3.4)

H
μ,(2)
n = Jn

(

μr
)

sinnϕ sinh
(

μz
)

for μ ∈ R, (3.5)

H
μ,(3)
n = Jn

(

μr
)

cosnϕ cosh
(

μz
)

for μ ∈ R, (3.6)

H
μ,(4)
n = Jn

(

μr
)

cosnϕ sinh
(

μz
)

for μ ∈ R, (3.7)

where n ≥ 0, while all the needed information for the Bessel, the trigonometric, and the
hyperbolic functions is summarized in the appendix. Inserting the potentials (3.3) in the flow
fields (3.1) and by extensive use of identities (A.2), (A.3), and (A.5), we derive the relation

v = u(r)ẑ +
1
2

∞
∑

n=0

∫

∑

μ

4
∑

i=1

{

eμ,(i)n H
μ,(i)
n −

[(

eμ,(i)n · r
)

+ d
μ,(i)
n

]

∇H
μ,(i)
n

}

, (3.8)
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for the velocity field, while for the total pressure field we obtain

P = Pc + p(z) − ηχc

∞
∑

n=0

∫

∑

μ

4
∑

i=1

{

eμ,(i)n · ∇H
μ,(i)
n

}

, (3.9)

in the cylinder’s prescribed dimensions V (R3). That way, the generality of the potentials
is inherited to the magnetic flow fields (3.8) and (3.9), via the set of unknown constant
coefficients eμ,(i)n and d

μ,(i)
n for n ≥ 0, μ ∈ R, and i = 1, 2, 3, 4, which have to be calculated

explicitly from the proper conditions (2.28)–(2.31). Additionally, the parameter μ will be
evaluated from the same conditions.

Since the vector character of the vector harmonic potential Φ is reflected upon the
corresponding constant coefficients, which are written in Cartesian coordinates, we are
obliged to work in the Cartesian system. Thereupon, before we proceed to the boundary
conditions, it is necessary, for our convenience in calculations, to evaluate the gradient of the
harmonic H-functions (3.4)–(3.7) that appear in the flow fields (3.8) and (3.9). Obviously
Δ(∇H

μ,(i)
n ) = ∇(ΔH

μ,(i)
n ) = 0, n ≥ 0, μ ∈ R, i = 1, 2, 3, 4, which means that ∇H

μ,(i)
n belong

to the subspace produced by H
μ,(i)
n , and it is feasible to be written as a function of them in

Cartesian coordinates. Therefore, we will work on Cartesian coordinates as far as the vector
character of the velocity (3.8) is concerned, and using the transformation (A.14) we will
return to the circular cylindrical basis r̂, ϕ̂, ẑ (see also (A.13)). Hence, in view of (A.13),
(A.15) and the basic relations for the trigonometric functions (A.25)–(A.28), utilizing the
recurrence relations for the Bessel functions (A.22), (A.23), and in terms of the H-functions
(3.4)–(3.7), for i = 1, we are led to

∇H
μ,(1)
n =

(

r̂
∂

∂r
+
ϕ̂

r

∂

∂ϕ
+ ẑ

∂

∂z

)

[

Jn
(

μr
)

sinnϕ cosh
(

μz
)]

= r̂μ
d
(

Jn
(

μr
))

d
(

μr
) sinnϕ cosh

(

μz
)

+
ϕ̂

μr
μnJn

(

μr
)

cosnϕ cosh
(

μz
)

+ ẑμJn
(

μr
)

sinnϕ sinh
(

μz
)

= μJn
(

μr
)

sinnϕ sinh
(

μz
)

x̂1 + μ cosh
(

μz
)

×
[

x̂2
(

cosϕ sinnϕJ ′n
(

μr
) − sinϕ cosnϕ

n

μr
Jn
(

μr
)

)

+x̂3
(

sinϕ sinnϕJ ′n
(

μr
)

+ cosϕ cosnϕ
n

μr
Jn
(

μr
)

)]

= μH
μ,(2)
n x̂1 +

1
2
μ cosh

(

μz
)[

x̂2
(−Jn+1

(

μr
)

sin(n + 1)ϕ + Jn−1
(

μr
)

sin(n − 1)ϕ
)

+x̂3
(

Jn−1
(

μr
)

cos(n − 1)ϕ + Jn+1
(

μr
)

cos(n + 1)ϕ
)]

,

(3.10)

or

∇H
μ,(1)
n = μ

[

H
μ,(2)
n x̂1 +

1
2

(

−Hμ,(1)
n+1 +H

μ,(1)
n−1
)

x̂2 +
1
2

(

H
μ,(3)
n+1 +H

μ,(3)
n−1
)

x̂3
]

, (3.11)
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for every n ≥ 0 and μ ∈ R, where the prime at the Bessel functions denotes derivation with
respect to the variable μr ∈ R. In the same way we calculate the rest three gradients, that is,

∇H
μ,(2)
n = μ

[

H
μ,(1)
n x̂1 +

1
2

(

−Hμ,(2)
n+1 +H

μ,(2)
n−1
)

x̂2 +
1
2

(

H
μ,(4)
n+1 +H

μ,(4)
n−1
)

x̂3
]

,

∇H
μ,(3)
n = μ

[

H
μ,(4)
n x̂1 +

1
2

(

−Hμ,(3)
n+1 +H

μ,(3)
n−1
)

x̂2 − 1
2

(

H
μ,(1)
n+1 +H

μ,(1)
n−1
)

x̂3
]

,

∇H
μ,(4)
n = μ

[

H
μ,(3)
n x̂1 +

1
2

(

−Hμ,(4)
n+1 +H

μ,(4)
n−1
)

x̂2 − 1
2

(

H
μ,(2)
n+1 +H

μ,(2)
n−1
)

x̂3
]

,

(3.12)

for every n ≥ 0 and μ ∈ R, where it is obvious that Δ(∇H
μ,(i)
n ) = ∇(ΔH

μ,(i)
n ) = 0. Here,

we must add that, in order to avoid negative values of n within the above relationships, we
impose

H
μ,(i)
−n ≡ 0, n ≥ 0, μ ∈ R, i = 1, 2, 3, 4. (3.13)

Expressions (3.11) and (3.12) can be collected in the general formulae

∇H
μ,(i)
n = μ

[

H
μ,(ai)
n x̂1 +

1
2

(

−Hμ,(i)
n+1 +H

μ,(i)
n−1
)

x̂2 +
ci
2

(

H
μ,(bi)
n+1 +H

μ,(bi)
n−1
)

x̂3
]

, μ ∈ R, (3.14)

for every n ≥ 0, while ai = i + (−1)i+1, bi = i + 2ci for i = 1, 2, 3, 4 and ci = 1, i = 1, 2 or
ci = −1, i = 3, 4. Relation (A.12) and Cartesian definition of eμ,(i)n result in the product

(

eμ,(i)n · r
)

= a
μ,(i)
n z + b

μ,(i)
n r cosϕ + c

μ,(i)
n r sinϕ, n ≥ 0, μ ∈ R, i = 1, 2, 3, 4, (3.15)

which by virtue of (3.14) incorporates with (3.8) to the following velocity field:

v = u(r)ẑ

+
1
2

∞
∑

n=0

∫

∑

μ

4
∑

i=1

{

(

a
μ,(i)
n x̂1 + b

μ,(i)
n x̂2 + c

μ,(i)
n x̂3

)

H
μ,(i)
n

− μ
(

a
μ,(i)
n z + b

μ,(i)
n r cosϕ + c

μ,(i)
n r sinϕ + d

μ,(i)
n

)

×
[

H
μ,(ai)
n x̂1+

1
2

(

−Hμ,(i)
n+1 +H

μ,(i)
n−1
)

x̂2+
ci
2

(

H
μ,(bi)
n+1 +H

μ,(bi)
n−1
)

x̂3
]}

.

(3.16)
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At this point we manipulate properly the H-functions Hμ,(i)
n+1 , H

μ,(i)
n−1 , H

μ,(bi)
n+1 , and H

μ,(bi)
n−1 by a

certain readjustment of the index n at the series to rewrite the velocity (3.16) as

v = u(r)ẑ

+
1
2

∞
∑

n=0

∫

∑

μ

4
∑

i=1

{

x̂1
[

a
μ,(i)
n H

μ,(i)
n − μ

(

a
μ,(i)
n z + b

μ,(i)
n r cosϕ + c

μ,(i)
n r sinϕ + d

μ,(i)
n

)

H
μ,(ai)
n

]

+ x̂2
[

b
μ,(i)
n H

μ,(i)
n +

(

A
μ,(i)
n,− z + B

μ,(i)
n,− r cosϕ + C

μ,(i)
n,− r sinϕ +D

μ,(i)
n,−
)

H
μ,(i)
n

]

+x̂3
[

c
μ,(i)
n H

μ,(i)
n − ci

(

A
μ,(i)
n,+ z + B

μ,(i)
n,+ r cosϕ + C

μ,(i)
n,+ r sinϕ +D

μ,(i)
n,+

)

H
μ,(bi)
n

]}

,

(3.17)

where we note that ẑ = x̂1, the parabolic velocity profile u(r) is given by (3.2), and the new
constant coefficients into the velocity field (3.17) are provided as a function of aμ,(i)

n , b
μ,(i)
n ,

c
μ,(i)
n , and d

μ,(i)
n for n ≥ 0, μ ∈ R, and i = 1, 2, 3, 4, which are grouped via the simple relations

A
μ,(i)
n,± =

μ

2

(

a
μ,(i)
n−1 ± a

μ,(i)
n+1

)

with a
μ,(i)
−1 ≡ 0 for n ≥ 0, μ ∈ R, i = 1, 2, 3, 4, (3.18)

B
μ,(i)
n,± =

μ

2

(

b
μ,(i)
n−1 ± b

μ,(i)
n+1

)

with b
μ,(i)
−1 ≡ 0 for n ≥ 0, μ ∈ R, i = 1, 2, 3, 4, (3.19)

C
μ,(i)
n,± =

μ

2

(

c
μ,(i)
n−1 ± c

μ,(i)
n+1

)

with c
μ,(i)
−1 ≡ 0 for n ≥ 0, μ ∈ R, i = 1, 2, 3, 4, (3.20)

D
μ,(i)
n,± =

μ

2

(

d
μ,(i)
n−1 ± d

μ,(i)
n+1

)

with d
μ,(i)
−1 ≡ 0 for n ≥ 0, μ ∈ R, i = 1, 2, 3, 4. (3.21)

Similarly, formulae (3.14) and the group of constant coefficients (3.18)–(3.21) are
interrelated, and the total pressure (3.9) becomes

P = Pc + p(z) − ηχc

∞
∑

n=0

∫

∑

μ

4
∑

i=1

{

μ
(

a
μ,(i)
n x̂1 + b

μ,(i)
n x̂2 + c

μ,(i)
n x̂3

)

·
[

H
μ,(ai)
n x̂1 +

1
2

(

−Hμ,(i)
n+1 +H

μ,(i)
n−1
)

x̂2 +
ci
2

(

H
μ,(bi)
n+1 +H

μ,(bi)
n−1
)

x̂3
]}

,

(3.22)

or since x̂i ·x̂j = δij (δij being the Kronecker delta) andwith a proper readjustment of the index

n at the series for the H-functions Hμ,(i)
n+1 ,H

μ,(i)
n−1 ,H

μ,(bi)
n+1 , and H

μ,(bi)
n−1 as previously mentioned,

relation (3.22) yields

P = Pc + p(z) − ηχc

∞
∑

n=0

∫

∑

μ

4
∑

i=1

[

μa
μ,(i)
n H

μ,(ai)
n − B

μ,(i)
n,− H

μ,(i)
n + ciC

μ,(i)
n,+ H

μ,(bi)
n

]

, (3.23)
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for the total pressure field, where the corresponding pressure p(z) of the parabolic velocity
profile is provided by (3.2). The velocity (3.17) and the total pressure (3.23) of the micropolar
fluid are ready to accept the boundary conditions (2.28)–(2.30) and condition (2.31) of our
physical problem, in order to determine the unknown constant coefficients aμ,(i)

n , b
μ,(i)
n , c

μ,(i)
n ,

and d
μ,(i)
n for n ≥ 0 and i = 1, 2, 3, 4, as well as the parameter μ ∈ R. During this process, we

must keep in mind that ai = i + (−1)i+1, bi = i + 2ci for i = 1, 2, 3, 4 and ci = 1, i = 1, 2 or
ci = −1, i = 3, 4.

We begin with the first part of the inlet boundary condition (2.29) at the entrance of the
circular cylinder z = 0. Applying this condition on the velocity field (3.17), condition r̂ · v = 0
at z = 0 results in

∞
∑

n=0

∫

∑

μ

∑

i=1,3

{

(r̂ · x̂2)
[

b
μ,(i)
n H

μ,(i)
n +

(

B
μ,(i)
n,− r cosϕ + C

μ,(i)
n,− r sinϕ +D

μ,(i)
n,−
)

H
μ,(i)
n

]

+(r̂ · x̂3)
[

c
μ,(i)
n H

μ,(i)
n − ci

(

B
μ,(i)
n,+ r cosϕ + C

μ,(i)
n,+ r sinϕ +D

μ,(i)
n,+

)

H
μ,(bi)
n

]}

= 0, z = 0,

(3.24)

since r̂ · ẑ = r̂ · x̂1 = 0, while ϕ̂ · v = 0 at z = 0 renders

∞
∑

n=0

∫

∑

μ

∑

i=1,3

{

(ϕ̂ · x̂2)
[

b
μ,(i)
n H

μ,(i)
n +

(

B
μ,(i)
n,− r cosϕ + C

μ,(i)
n,− r sinϕ +D

μ,(i)
n,−
)

H
μ,(i)
n

]

+(ϕ̂ · x̂3)
[

c
μ,(i)
n H

μ,(i)
n − ci

(

B
μ,(i)
n,+ r cosϕ + C

μ,(i)
n,+ r sinϕ +D

μ,(i)
n,+

)

H
μ,(bi)
n

]}

= 0, z = 0,

(3.25)

since ϕ̂ · ẑ = ϕ̂ · x̂1 = 0. We notice that both conditions (3.24) and (3.25) contain the H-
eigenfunctions of kind i = 1, 3 (relations (3.4), (3.6)), where those survive for z = 0 as it is
revealed from (A.29). Hence, we utilize definitions (3.4) and (3.6), relations (A.13) or (A.14),
as well as (3.19)–(3.21), in order to handle firstly condition (3.24) with extensive use of the
recurrence relations of the trigonometric functions (A.25)–(A.28). Therefore, after long and
tedious calculations on (3.24) with orthogonality arguments of the trigonometric functions
sinnϕ, n ≥ 1, and via the definition for the Bessel functions (A.19), we obtain the following
relations for the constant coefficients:

μd
μ,(1)
n + (n + 2)

(

b
μ,(1)
n+1 − c

μ,(3)
n+1

)

= 0 for n ≥ 1, μ ∈ R,

μd
μ,(1)
n + (n − 2)

(

b
μ,(1)
n−1 + c

μ,(3)
n−1
)

= 0 for n ≥ 1, μ ∈ R,

μd
μ,(1)
n + (n − 2)

(

b
μ,(1)
n+1 − c

μ,(3)
n+1

)

= 0 for n ≥ 1, μ ∈ R,

(3.26)

while for n = 0 we can admit without loss of generality (sin 0ϕ = 0) that dμ,(1)
0 = b

μ,(1)
0 = c

μ,(3)
0 =

0, μ ∈ R. On the other hand, an easymanipulation of (3.26) reveals the nihilism of the constant
coefficients dμ,(1)

n , b
μ,(1)
n , and c

μ,(3)
n for n ≥ 1 and μ ∈ R. Recapitulating,

d
μ,(1)
n = b

μ,(1)
n = c

μ,(3)
n = 0 for n ≥ 0, μ ∈ R, (3.27)
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whilst orthogonality of cosnϕ, n ≥ 0, on (3.24) is provided with similar relations to (3.26),
leading to

d
μ,(3)
n = b

μ,(3)
n = c

μ,(1)
n = 0 for n ≥ 0, μ ∈ R. (3.28)

Since we have finished with condition (3.24), we deal, now, with condition (3.25), and we
observe that results (3.27), (3.28) correlate with (3.18)–(3.21) so as to satisfy automatically this
condition (3.25). Hence, we completed our analysis with the first part of the inlet boundary
condition (2.29), which implied (see (3.27) and (3.28))

d
μ,(i)
n = b

μ,(i)
n = c

μ,(i)
n = 0 for n ≥ 0, μ ∈ R, i = 1, 3, (3.29)

and via (3.18)–(3.21)

D
μ,(i)
n,± = B

μ,(i)
n,± = C

μ,(i)
n,± = 0 for n ≥ 0, μ ∈ R, i = 1, 3. (3.30)

It is worth mentioning that the very same results are obtained in an easier way by using
the velocity field from (3.8) and not from (3.17). Nevertheless, it was a worthwhile way to
crosscheck the relations (3.29).

At this point, before we proceed to the next boundary conditions, we will write down
the flow fields with their form until now. Under this aim, we insert relationships (3.29), (3.30)
into the flow fields (3.17) and (3.23), taking into account the constant parameters ai, bi, ci for
i = 1, 2, 3, 4 with the definitions for the H-functions (3.4)–(3.7), and we recover the velocity
field

v = u(r)ẑ +
x̂1
2

∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

{[(

a
μ,(1)
n − μ

(

a
μ,(2)
n z + b

μ,(2)
n r cosϕ + c

μ,(2)
n r sinϕ + d

μ,(2)
n

))

sinnϕ

+
(

a
μ,(3)
n −μ

(

a
μ,(4)
n z +bμ,(4)n r cosϕ +cμ,(4)n r sinϕ +dμ,(4)

n

))

cosnϕ
]

× cosh
(

μz
)

+
[(

a
μ,(2)
n − a

μ,(1)
n μz

)

sinnϕ

+
(

a
μ,(4)
n − a

μ,(3)
n μz

)

cosnϕ
]

sinh
(

μz
)

}

+
x̂2
2

∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

{[(

b
μ,(2)
n +A

μ,(2)
n,− z + B

μ,(2)
n,− r cosϕ + C

μ,(2)
n,− r sinϕ +D

μ,(2)
n,−
)

sinnϕ

+
(

b
μ,(4)
n +A

μ,(4)
n,− z + B

μ,(4)
n,− r cosϕ + C

μ,(4)
n,− r sinϕ +D

μ,(4)
n,−
)

cosnϕ
]

× sinh
(

μz
)

+
[

A
μ,(1)
n,− sinnϕ +A

μ,(3)
n,− cosnϕ

]

z cosh
(

μz
)

}

+
x̂3
2

∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

{[(

c
μ,(2)
n +A

μ,(4)
n,+ z + B

μ,(4)
n,+ r cosϕ + C

μ,(4)
n,+ r sinϕ +D

μ,(4)
n,+

)

sinnϕ

+
(

c
μ,(4)
n −A

μ,(2)
n,+ z − B

μ,(2)
n,+ r cosϕ − C

μ,(2)
n,+ r sinϕ−D

μ,(2)
n,+

)

cosnϕ
]

× sinh
(

μz
)

+
[

A
μ,(3)
n,+ sinnϕ −A

μ,(1)
n,+ cosnϕ

]

z cosh
(

μz
)

}

,

(3.31)
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while for the total pressure field we arrive at

P = Pc + p(z) − ηχc

∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

{[

μ
(

a
μ,(2)
n sinnϕ + a

μ,(4)
n cosnϕ

)]

cosh
(

μz
)

+
[(

μa
μ,(1)
n − B

μ,(2)
n,− − C

μ,(4)
n,+

)

sinnϕ

+
(

μa
μ,(3)
n − B

μ,(4)
n,− + C

μ,(2)
n,+

)

cosnϕ
]

sinh
(

μz
)

}

,

(3.32)

in terms of the constant coefficients (3.18)–(3.21) and the factor (2.22), where u(r), p(z) are
given via relation (3.2).

Next, we refer to the first part of the outlet boundary condition (2.30), which forces
us to set the axial derivatives of the transversal components of the velocity to nil. Since the
velocity field (3.31) is written in Cartesian coordinates with ẑ = x̂1, we replace this part of
(2.30) by the proper identical relationships

∂(r̂ · v)
∂z

=
∂(ϕ̂ · v)

∂z
= 0 =⇒ ∂(x̂2 · v)

∂z
=

∂(x̂3 · v)
∂z

= 0 for z = L, (3.33)

where we have used the fact that ∂r̂/∂z = ∂ϕ̂/∂z = 0 (see (A.13)), while for reasons of
convenience to our forthcoming manipulations we incorporate the two relations of (3.33)
into

∂

(

v · x̂( 2
3

)

)

∂z
= 0 for z = L. (3.34)

For the respective calculations based on (3.34), the upper index will refer to x̂2, whilst the
lower one will correspond to x̂3. Within this consideration, we apply the boundary conditions
(3.34) to the velocity field (3.31), and since ẑ · x̂2 = ẑ · x̂3 = 0 with ẑ = x̂1, this act gives rise to

∞
∑

n=0

∫

∑

μ

{

μ

(

Jn
(

μr
)

μr

)[

sinnϕ

(

A
μ,
(

1
3

)

n,∓
(

cosh
(

μL
)

+ μL sinh
(

μL
))

+A
μ,
(

2
4

)

n,∓
(

sinh
(

μL
)

+ μL cosh
(

μL
))

+

(

b

c

)μ,(2)

n

μ cosh
(

μL
)

+D
μ,
(

2
4

)

n,∓ μ cosh
(

μL
)

⎞

⎠

+ cosnϕ

⎛

⎝ ±A
μ,
(

3
1

)

n,∓
(

cosh
(

μL
)

+ μL sinh
(

μL
))

±A
μ,
(

4
2

)

n,∓
(

sinh
(

μL
)

+ μL cosh
(

μL
))

+

(

b

c

)μ,(4)

n

μ cosh
(

μL
) ±D

μ,
(

4
2

)

n,∓ μ cosh
(

μL
)

⎞

⎠

⎤

⎦

+ μ cosh
(

μL
)

Jn
(

μr
)

[

B
μ,
(

2
4

)

n,∓ cosϕ sinnϕ + C
μ,
(

2
4

)

n,∓ sinϕ sinnϕ

±Bμ,
(

4
2

)

n,∓ cosϕ cosnϕ ± C
μ,
(

4
2

)

n,∓ sinϕ cosnϕ

]}

= 0,

(3.35)
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which are two similar relations at z = L, and the case n = 0 is taken by the general case for
n ≥ 1 into (3.35). We take into account the recurrence relations of the trigonometric functions
(A.25)–(A.28), we use the Bessel recurrence relation (A.23), and, after some calculations via
(A.19), orthogonality of sinnϕ, n ≥ 0 and a certain readjustment of the index n at the series
infer the following formulae:

A
μ,
(

1
3

)

n,∓
(

cosh
(

μL
)

+ μL sinh
(

μL
))

+A
μ,
(

2
4

)

n,∓
(

sinh
(

μL
)

+ μL cosh
(

μL
))

+

⎡

⎣

(

b

c

)μ,(2)

n

+D
μ,
(

2
4

)

n,∓

⎤

⎦μ cosh
(

μL
)

= −n cosh
(

μL
)

(

B
μ,
(

2
4

)

n−1,∓ ± C
μ,
(

4
2

)

n−1,∓

)

= −n cosh
(

μL
)

(

B
μ,
(

2
4

)

n+1,∓ ∓ C
μ,
(

4
2

)

n+1,∓

)

for n ≥ 0, μ ∈ R.

(3.36)

Orthogonality arguments on the functions cosnϕ, n ≥ 0 with similar readjustment of n imply

±A
μ,
(

3
1

)

n,∓
(

cosh
(

μL
)

+ μL sinh
(

μL
)) ±A

μ,
(

4
2

)

n,∓
(

sinh
(

μL
)

+ μL cosh
(

μL
))

+

⎡

⎣

(

b

c

)μ,(4)

n

±D
μ,
(

4
2

)

n,∓

⎤

⎦μ cosh
(

μL
)

= −n cosh
(

μL
)

(

±Bμ,
(

4
2

)

n−1,∓ − C
μ,
(

2
4

)

n−1,∓

)

=−n cosh
(

μL
)

(

±Bμ,
(

4
2

)

n+1,∓ + C
μ,
(

2
4

)

n+1,∓

)

for n ≥ 0, μ ∈ R,

(3.37)

where (3.36) and (3.37) are four (double-equality) relationships. Recall that the upper and
the lower indices reflect the vanishing of x̂2 and x̂3 transversal components of the velocity
field at z = L, respectively.

In order to proceed we have to simplify the velocity field (3.31) and the total pressure
field (3.32) in terms of the expressions (3.36) and (3.37) for the constant coefficients. In view
of that, we are primarily involved with the velocity (3.31), and we smartly manipulate certain
group of terms (of the x̂2 and of the x̂3 components) with respect to (A.27), (A.28), as well as
with a particular change of n, to obtain

∞
∑

n=0

∫

∑

μ

⎧

⎨

⎩

rJn
(

μr
)

(

B
μ,
(

2
4

)

n,∓ cosϕ sinnϕ ± C
μ,
(

4
2

)

n,∓ sinϕ cosnϕ

)

+Jn
(

μr
)

⎡

⎣

(

b

c

)μ,(2)

n

+D
μ,
(

2
4

)

n,∓

⎤

⎦ sinnϕ

⎫

⎬

⎭

sinh
(

μz
)

=
∞
∑

n=0

∫

∑

μ

r

2

⎧

⎨

⎩

sinnϕ sinh
(

μz
)

[(

B
μ,
(

2
4

)

n−1,∓ ± C
μ,
(

4
2

)

n−1,∓

)

Jn−1
(

μr
)

+

(

B
μ,
(

2
4

)

n+1,∓ ∓ C
μ,
(

4
2

)

n+1,∓

)

Jn+1
(

μr
)

]

+ sinnϕ sinh
(

μz
)

⎡

⎣

(

b

c

)μ,(2)

n

+D
μ,
(

2
4

)

n,∓

⎤

⎦Jn
(

μr
)

⎫

⎬

⎭
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=
∞
∑

n=0

∫

∑

μ

⎧

⎨

⎩

(

B
μ,
(

2
4

)

n+1,∓ ∓ C
μ,
(

4
2

)

n+1,∓

)

r
Jn−1
(

μr
)

+ Jn+1
(

μr
)

2
+

⎡

⎣

(

b

c

)μ,(2)

n

+D
μ,
(

2
4

)

n,∓

⎤

⎦Jn
(

μr
)

⎫

⎬

⎭

× sinnϕ sinh
(

μz
)

=
∞
∑

n=0

∫

∑

μ

⎧

⎨

⎩

n

μ

(

B
μ,
(

2
4

)

n+1,∓ ∓ C
μ,
(

4
2

)

n+1,∓

)

+

⎡

⎣

(

b

c

)μ,(2)

n

+D
μ,
(

2
4

)

n,∓

⎤

⎦

⎫

⎬

⎭

Jn
(

μr
)

sinnϕ sinh
(

μz
)

=
∞
∑

n=0

∫

∑

μ

[

−
(

cosh
(

μL
)

+ μL sinh
(

μL
))

μ cosh
(

μL
) A

μ,
(

1
3

)

n,∓ −
(

sinh
(

μL
)

+ μL cosh
(

μL
))

μ cosh
(

μL
) A

μ,
(

2
4

)

n,∓

]

× Jn
(

μr
)

sinnϕ sinh
(

μz
)

,

(3.38)

where we have used the two equalities of relation (3.36) and the recurrence formula (A.23).
Similarly, another group of terms of the velocity (3.31) shows that

∞
∑

n=0

∫

∑

μ

⎧

⎨

⎩

rJn
(

μr
)

(

±Bμ,
(

4
2

)

n,∓ cosϕ cosnϕ + C
μ,
(

2
4

)

n,∓ sinϕ sinnϕ

)

+Jn
(

μr
)

⎡

⎣

(

b

c

)μ,(4)

n

±D
μ,
(

4
2

)

n,∓

⎤

⎦ cosnϕ

⎫

⎬

⎭

sinh
(

μz
)

=
∞
∑

n=0

∫

∑

μ

[

∓
(

cosh
(

μL
)

+ μL sinh
(

μL
))

μ cosh
(

μL
) A

μ,
(

3
1

)

n,∓ ∓
(

sinh
(

μL
)

+ μL cosh
(

μL
))

μ cosh
(

μL
) A

μ,
(

4
2

)

n,∓

]

× Jn
(

μr
)

cosnϕ sinh
(

μz
)

,

(3.39)

where, here (we omitted common steps like those followed in (3.38)), we made use of (A.25),
(A.26) and of relationship (3.37). Thus, we accomplished to simplify the x̂2-component and
the x̂3-component of the velocity field (3.31). In addition, some further analysis on the second
equalities of (3.36) and (3.37) gives

B
μ,
(

2
4

)

n−1,∓ ± C
μ,
(

4
2

)

n−1,∓ = B
μ,
(

2
4

)

n+1,∓ ∓ C
μ,
(

4
2

)

n+1,∓ with B
μ,
(

2
4

)

−1,∓ = C
μ,
(

4
2

)

−1,∓ ≡ 0 for n ≥ 0, μ ∈ R, (3.40)

±Bμ,
(

4
2

)

n−1,∓ − C
μ,
(

2
4

)

n−1,∓ = ±Bμ,
(

4
2

)

n+1,∓ + C
μ,
(

2
4

)

n+1,∓ with B
μ,
(

4
2

)

−1,∓ = C
μ,
(

2
4

)

−1,∓ ≡ 0 for n ≥ 0, μ ∈ R, (3.41)

respectively, where in view of definitions (3.19)–(3.20) and after some trivial processing,
expressions (3.40) and (3.41) take the form

b
μ,(2)
n+1 − c

μ,(4)
n+1 = b

μ,(2)
n−1 + c

μ,(4)
n−1 with b

μ,(2)
−1 = c

μ,(4)
−1 ≡ 0 for n ≥ 0, μ ∈ R, (3.42)

b
μ,(4)
n+1 + c

μ,(2)
n+1 = b

μ,(4)
n−1 − c

μ,(2)
n−1 with b

μ,(4)
−1 = c

μ,(2)
−1 ≡ 0 for n ≥ 0, μ ∈ R, (3.43)
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respectively. The last equations (3.42), (3.43) provide us with the simplification of the third
component of the velocity (3.31). Hence, proceeding to the x̂1-component of (3.31), for once
more we utilize the relations (A.25)–(A.28), (A.23), and we apply a certain readjustment of
the index n so as to write

− 1
2

∞
∑

n=0

∫

∑

μ

μrJn
(

μr
)

cosh
(

μz
)

[(

b
μ,(2)
n cosϕ + c

μ,(2)
n sinϕ

)

sinnϕ

+
(

b
μ,(4)
n cosϕ + c

μ,(4)
n sinϕ

)

cosnϕ
]

= −1
4

∞
∑

n=0

∫

∑

μ

μr cosh
(

μz
)

{

sinnϕ
[(

b
μ,(2)
n+1 − c

μ,(4)
n+1

)

Jn+1
(

μr
)

+
(

b
μ,(2)
n−1 + c

μ,(4)
n−1
)

Jn−1
(

μr
)

]

+ cosnϕ
[(

b
μ,(4)
n+1 + c

μ,(2)
n+1

)

Jn+1
(

μr
)

+
(

b
μ,(4)
n−1 − c

μ,(2)
n−1
)

Jn−1
(

μr
)

]}

= −1
2

∞
∑

n=0

∫

∑

μ

μr cosh
(

μz
)

[

(

b
μ,(2)
n+1 − c

μ,(4)
n+1

)

sinnϕ
Jn+1
(

μr
)

+ Jn−1
(

μr
)

2

+
(

b
μ,(4)
n+1 + c

μ,(2)
n+1

)

cosnϕ
Jn+1
(

μr
)

+ Jn−1
(

μr
)

2

]

= −1
2

∞
∑

n=0

∫

∑

μ

nJn
(

μr
)

cosh
(

μz
)

[(

b
μ,(2)
n+1 − c

μ,(4)
n+1

)

sinnϕ +
(

b
μ,(4)
n+1 + c

μ,(2)
n+1

)

cosnϕ
]

.

(3.44)

On the other hand, the total pressure (3.32) can also be simplified by using again definitions
(3.19)–(3.20) and considering (3.42), (3.43) to evaluate

−Bμ,(2)
n,− − C

μ,(4)
n,+ =

μ

2

[(

b
μ,(2)
n+1 − c

μ,(4)
n+1

)

−
(

b
μ,(2)
n−1 + c

μ,(4)
n−1
)]

= 0 for n ≥ 0, μ ∈ R,

−Bμ,(4)
n,− + C

μ,(2)
n,+ =

μ

2

[(

b
μ,(4)
n+1 + c

μ,(2)
n+1

)

−
(

b
μ,(4)
n−1 − c

μ,(2)
n−1
)]

= 0 for n ≥ 0, μ ∈ R.

(3.45)

Recapitulating the effect of the boundary condition (3.34), via (3.36) and (3.37), on the flow
fields (3.31) and (3.32), we work as follows. In terms of (3.38), (3.39), (3.44), and (3.45), the
only b’s, c’s, and d’s constant coefficients appear inside the x̂1-component of the velocity field
(3.31), associated with each other as coefficients of the eigenfunctions Jn(μr) sinnϕ cosh(μz)
and Jn(μr) cosnϕ cosh(μz) for every n ≥ 0 and μ ∈ R. Since they appear nowhere else in the
velocity or the total pressure, we can group them as

e
μ,(1)
n ≡ −μdμ,(2)

n − n
(

b
μ,(2)
n+1 − c

μ,(4)
n+1

)

for n ≥ 0, μ ∈ R, (3.46)

e
μ,(3)
n ≡ −μdμ,(4)

n − n
(

b
μ,(4)
n+1 + c

μ,(2)
n+1

)

for n ≥ 0, μ ∈ R, (3.47)
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without loss of generality. We insert the simplified relations (3.38), (3.39), and (3.44) into the
velocity field (3.31), where with the aim of the new constant coefficients eμ,(1)n , e

μ,(3)
n for n ≥ 0

and μ ∈ R provided by (3.46), (3.47), respectively, is furnished by

v = u(r)ẑ +
x̂1
2

∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

{

sinnϕ
[(

a
μ,(1)
n + e

μ,(1)
n

)

cosh
(

μz
)

+ a
μ,(2)
n sinh

(

μz
)

−μz
(

a
μ,(1)
n sinh

(

μz
)

+ a
μ,(2)
n cosh

(

μz
)

)]

+ cosnϕ
[(

a
μ,(3)
n + e

μ,(3)
n

)

cosh
(

μz
)

+ a
μ,(4)
n sinh

(

μz
)

−μz
(

a
μ,(3)
n sinh

(

μz
)

+ a
μ,(4)
n cosh

(

μz
)

)]}

+
∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

2μ
[(

1 + μL tanh
(

μL
))

sinh
(

μz
) − μz cosh

(

μz
)]

×
[

−
(

A
μ,(1)
n,− sinnϕ +A

μ,(3)
n,− cosnϕ

)

x̂2 +
(

A
μ,(1)
n,+ cosnϕ −A

μ,(3)
n,+ sinnϕ

)

x̂3
]

+
∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

2μ
[

tanh
(

μL
) − μ(z − L)

]

sinh
(

μz
)

×
[

−
(

A
μ,(2)
n,− sinnϕ +A

μ,(4)
n,− cosnϕ

)

x̂2 +
(

A
μ,(2)
n,+ cosnϕ −A

μ,(4)
n,+ sinnϕ

)

x̂3
]

,

(3.48)

while the total pressure field (3.32) with the aid of relations (3.45) becomes

P = Pc + p(z) − ηχc

∞
∑

n=0

∫

∑

μ

μJn
(

μr
)

[

sinnϕ
(

a
μ,(1)
n sinh

(

μz
)

+ a
μ,(2)
n cosh

(

μz
)

)

+ cosnϕ
(

a
μ,(3)
n sinh

(

μz
)

+ a
μ,(4)
n cosh

(

μz
)

)]

,

(3.49)

whereas the A’s constant coefficients are given through the a’s constant coefficients via
(3.18), the factor χc satisfies (2.22), while u(r) and p(z) are given by relations (3.2). Hence,
in order to complete our analytical method and obtain the final closed form of the flow
fields (3.48) and (3.49), we have to calculate the rest of the constant coefficients, that is, the
a
μ,(1)
n , a

μ,(2)
n , a

μ,(3)
n , a

μ,(4)
n , e

μ,(1)
n , and e

μ,(3)
n for every n ≥ 0, μ ∈ R from the remaining boundary

conditions.
Continuing, we handle the second part of the outlet boundary condition (2.30), and,

as we mentioned earlier, we impose no height variations by setting P ∼= p, in order to take

P = η
∂(ẑ · v)

∂z
for z = L, (3.50)
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fromwhich, with the contribution of the z-component of the velocity field (3.48) and the total
pressure (3.49) (note that x̂1 = ẑ, while expressions (3.2) denote p(L) = 0 and ∂u(r)/∂z = 0),
we obtain for z = L the following condition:

Pc − χc

∞
∑

n=0

∫

∑

μ

μJn
(

μr
)

[

sinnϕ
(

a
μ,(1)
n sinh

(

μL
)

+ a
μ,(2)
n cosh

(

μL
)

)

+ cosnϕ
(

a
μ,(3)
n sinh

(

μL
)

+ a
μ,(4)
n cosh

(

μL
)

)]

=
1
2

∞
∑

n=0

∫

∑

μ

μJn
(

μr
)

[

sinnϕ
(

e
μ,(1)
n sinh

(

μL
) − a

μ,(1)
n μL cosh

(

μL
) − a

μ,(2)
n μL sinh

(

μL
)

)

+ cosnϕ
(

e
μ,(3)
n sinh

(

μL
) − a

μ,(3)
n μL cosh

(

μL
) − a

μ,(4)
n μL sinh

(

μL
)

)]

.

(3.51)

Orthogonality arguments with respect to the eigenfunctions Jn(μr) sinnϕ and Jn(μr) cosnϕ
for n ≥ 0 and μ ∈ R yield

Pc = 0, (3.52)

e
μ,
(

1
3

)

n =
μL cosh

(

μL
) − 2χc sinh

(

μL
)

sinh
(

μL
) a

μ,
(

1
3

)

n +
μL sinh

(

μL
) − 2χc cosh

(

μL
)

sinh
(

μL
) a

μ,
(

2
4

)

n , (3.53)

for n ≥ 0 and μ ∈ R, where we have expressed the e’s constant coefficients via the a’s constant
coefficients into the flow fields (3.48) and (3.49).

Consequently, we are left with four sets of constant coefficients; those are
a
μ,(1)
n , a

μ,(2)
n , a

μ,(3)
n , and a

μ,(4)
n for every n ≥ 0, μ ∈ R, which must be determined from the

continuity restraint (2.31) and the second part of the inlet boundary condition (2.29). The
constant parameter μ ∈ R will be evaluated from the nonslip boundary condition (2.28) in
the end of this analysis. Afterwards we will verify that the limit (2.32) is valid. Although we
deal with a well-posed boundary value problem, we observe that we have four conditions
in order to calculate four constant coefficients and also parameter μ. Hence, one constant
coefficient will be undetermined. However, in view of a detailed analysis on the completeness
of general solutions explained in [34] and also applied in [25], the differential representation
used here (2.25) and (2.26) with (2.27), as well as the corresponding differential solutions
[8–10], offers certain degrees of freedom to our solutions and permit the interrelation of
the harmonic potentials Φ and Ψ between each other in such a way so as to avoid any
kind of indeterminacies to particular analytical solutions. This interrelation does not affect
the generality of the analytical solutions (see, e.g., [25]), and it is applied to the constant
coefficients. Therefore, we adopt the theory of [34], and we make a mathematical technique
by choosing to express the a’s constant coefficients of kind i = 2, 4 in terms of those of kind
i = 1, 3, via the relationships of proportionality

a
μ,
(

2
4

)

n = λμa
μ,
(

1
3

)

n , A
μ,
(

2
4

)

n,± = λμA
μ,
(

1
3

)

n,± , for n ≥ 0, μ ∈ R, (3.54)
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whereas λμ ∈ R is the new parameter to be calculated for μ ∈ R, while the second equality
of (3.54) is a consequence of definitions (3.18). Relationship (3.54) does not constrain the
generality of our analytical method and at the same time will provide us with a closed unique
solution. By substitution of relations (3.53) and (3.54) into the flow fields (3.48), (3.49), we
can easily show that

v = u(r)ẑ +
x̂1
2

∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

(

a
μ,(1)
n sinnϕ + a

μ,(3)
n cosnϕ

)

× {−μz[sinh(μz) + λμ cosh
(

μz
)]

+ λμ sinh
(

μz
)

+
[(

μL − 2χcλμ
)
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(

μL
)

+
(

1 − 2χc

)

+ λμμL
]
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(

μz
)}

+
∞
∑

n=0

∫

∑

μ
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(

μr
)

2μ
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1 +
(
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)

tanh
(

μL
) − λμμ(z − L)

]

sinh
(

μz
) − μz cosh

(

μz
)}

×
[

−
(

A
μ,(1)
n,− sinnϕ +A

μ,(3)
n,− cosnϕ

)

x̂2 +
(

A
μ,(1)
n,+ cosnϕ −A

μ,(3)
n,+ sinnϕ

)

x̂3
]

,

(3.55)

for the velocity field and

P = p(z) − ηχc

∞
∑

n=0

∫

∑

μ

μJn
(

μr
)

(

a
μ,(1)
n sinnϕ + a

μ,(3)
n cosnϕ

)

(

sinh
(

μz
)

+ λμ cosh
(

μz
))

,

(3.56)

for the total pressure field, respectively. Recall that the A’s constant coefficients are provided
via the a’s constant coefficients from (3.18) and the factor χc is given through (2.22), while
u(r) and p(z) assume the relations (3.2).

In order to impose the continuity restriction (2.31) at z = L, it would provide us
with analytical convenience if we could write the velocity field (3.55) in pure cylindrical
coordinates, meaning with the cylindrical unit vectors r̂, ϕ̂, ẑ. In view of that, it is obvious
that x̂1 = ẑ, while substituting the unit vectors in Cartesian coordinates x̂2 and x̂3 from (A.14),
using (3.18), (A.22), (A.23), (A.25)–(A.28) and for one more time rearranging the index n
inside the series, we perform some analytical steps to express the Cartesian part of (3.55) in
cylindrical coordinates as

∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

2μ
Zμ(z)

[

−
(

A
μ,(1)
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n,− cosnϕ

)

x̂2 +
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A
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n,+ cosnϕ −A

μ,(3)
n,+ sinnϕ

)

x̂3
]

=
1
2

∞
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n=0

∫

∑

μ

Zμ(z)
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dJn
(

μr
)

d
(

μr
)

(

a
μ,(1)
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μ,(3)
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+ϕ̂
nJn
(

μr
)

μr

(

a
μ,(1)
n cosnϕ − a

μ,(3)
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)

]

,

(3.57)
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where by definition

Zμ(z) =
[

1 +
(

μL + λμ
)

tanh
(

μL
) − λμμ(z − L)

]

sinh
(

μz
) − μz cosh

(

μz
)

, (3.58)

for λμ ∈ R and μ ∈ R. By virtue of condition (2.31) in circular cylindrical coordinates (see the
gradient from (A.15)) on the velocity (3.55), with the aim of (3.57) and definition (3.58), we
conclude that

2χc

∞
∑

n=0

∫

∑

μ

μJn
(

μr
)

(

a
μ,(1)
n sinnϕ + a

μ,(3)
n cosnϕ

)

[

sinh
(

μL
)

+ λμ cosh
(

μL
)]

= −
∞
∑

n=0

∫

∑

μ

μJn
(

μr
)

(

a
μ,(1)
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μ,(3)
n cosnϕ

)sinh
(

μL
)

cosh
(

μL
) − μL + λμsinh

2(μL
)

cosh
(

μL
) ,

(3.59)

where we have used the Bessel ordinary differential equation (A.18) to evaluate

d2Jn
(

μr
)

d
(

μr
)2

+
1
(

μr
)

dJn
(

μr
)

d
(

μr
) − n2

(

μr
)2

Jn
(

μr
)

= −Jn
(

μr
)

for μ ∈ R. (3.60)

Simple orthogonality arguments of the products μJn(μr)(a
μ,(1)
n sinnϕ+a

μ,(3)
n cosnϕ) for every

n ≥ 0 and μ ∈ R on (3.59) provides us with the constant parameter λμ as

λμ =
μL − 2−1

(

2χc + 1
)

sinh
(

2μL
)

(

2χc + 1
)

cosh2(μL
) − 1

with sinh
(

2μL
)

= 2 sinh
(

μL
)

cosh
(

μL
)

for μ ∈ R.

(3.61)

Actually, the flow fields retain only the parameter μ, and their equivalent form with respect
to (3.61) is

v = u(r)ẑ + x̂1
∞
∑
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∫

∑

μ

Jn
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)

gμ
(

μz
)
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μ
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μ

(
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A
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n,− sinnϕ +A

μ,(3)
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)
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+
(

A
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)

x̂3
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,

(3.62)

from velocity field (3.55) and

P = p(z) +
∞
∑

n=0

∫

∑

μ

Jn
(

μr
)

hμ

(

μz
)

(

a
μ,(1)
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μ,(3)
n cosnϕ

)

, (3.63)
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from total pressure field (3.56), respectively, where the prime appearing at g′μ(μz) denotes
derivation with respect to the variable μz ∈ R. The new functions of expansions (3.62) and
(3.63) are defined as

gμ
(

μz
)

=
1
2

[

μL − 2−1
(

2χc + 1
)

sinh
(

2μL
)

(

2χc + 1
)

cosh2(μL
) − 1

sinh
(
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)

+

(

1 +
2χc +

(
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)2

(

2χc + 1
)

cosh2(μL
) − 1

)
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(
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)

+
z

ηχc
hμ

(

μz
)

]

for μ ∈ R,

(3.64)

where

hμ

(

μz
)

= −ηχcμ

[

sinh
(

μz
)

+
μL − 2−1

(

2χc + 1
)

sinh
(

2μL
)

(

2χc + 1
)

cosh2(μL
) − 1

cosh
(

μz
)

]

for μ ∈ R. (3.65)

Here, we must recall that the A’s constant coefficients are given through the a’s constant
coefficients via (3.18) and the factor χc is provided by (2.22), while u(r) and p(z) assume the
well-known expressions (3.2).

One can easily manipulate relationships (3.64) and (3.65) to prove that, for z = L,

lim
L→+∞

hμ

(

μL
)

= lim
L→+∞

h′
μ

(

μL
)

= 0, lim
L→+∞

gμ
(

μL
)

= lim
L→+∞

g ′
μ

(

μL
)

= 0, for μ ∈ R, (3.66)

and provided that the remaining unknown constant coefficients aμ,(1)
n and a

μ,(3)
n for n ≥ 0, as

well as the unknown parameter μ ∈ R, are bounded, the velocity (3.62) and total pressure
(3.63) asymptotically lead to

lim
L→+∞

v = u(r)ẑ, lim
L→+∞

∂P

∂z
=

dp(L)
dz

for z = L −→ +∞. (3.67)

Hence, we obtain the predictable parabolic profile of the Poiseuille flow (3.2), and,
consequently, the asymptotic limit (2.32) holds true.

Our next step involves the determination of the constant parameter μ, which will be
calculated by the nonslip condition (2.28), where the velocity (3.62) vanishes (v = 0) at r = α,
that is,

x̂1
∞
∑

n=0

∫

∑

μ

Jn
(
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)

gμ
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μz
)

(
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μ,(1)
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∞
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μ
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−
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A
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μ,(3)
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)
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+
(

A
μ,(1)
n,+ cosnϕ −A

μ,(3)
n,+ sinnϕ

)

x̂3
]

= 0,

(3.68)
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which is a three-component condition, and each component must be set to nil at r = α. In the
aim of satisfying all the three conditions from (3.68) at the same time, we easily observe that
it is required the nihilism of the Bessel functions on the surface of the cylinder, that is,

Jn
(

μα
)

= 0 for n ≥ 0, μ ∈ R, (3.69)

a condition that provides us with the value of the parameter μ as discrete eigenvalues via

μ ≡ μm
n =

ρmn
α

for n ≥ 0, m ≥ 1, (3.70)

where ρmn is the m-root (m ≥ 1) of order n ≥ 0 of the Bessel functions (Jn(ρmn ) = 0).
Consequently, formula (3.70) determines the parameter μ ∈ R, which is rather an expected
result for such kind of problems. Since the constant parameter μ takes discrete values, it
is obvious that the defined symbol “

∫
∑

μ · · · ” used inside the fields (3.62), (3.63) must be
substituted by the standard series symbol “

∑∞
m=1 · · · ”. Thus, the orthogonality relation for the

Bessel functions (A.32) can be applied in our forthcoming calculations at which wewill retain
the μm

n -symbolism given now by (3.70), where μm
n is the m-parameter (m ≥ 1) of order n ≥ 0.

Introducing the new constant coefficients that have to be calculated as

am
n ≡ a

μ,(1)
n , bmn ≡ a

μ,(3)
n for n ≥ 0, m ≥ 1, μ ≡ μm

n ∈ R, (3.71)

and instead of (3.18) their equivalent forms
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(3.72)

for every n ≥ 0, m ≥ 1, and μ ≡ μm
n ∈ R, the velocity field (3.62) is given via the eigenvalue-

type expansion

v = u(r)ẑ + x̂1
∞
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,

(3.73)

while the total pressure field (3.63), under the aforementioned readjustment, gives rise to

P = p(z) +
∞
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∞
∑

m=1
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(
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n r
)
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n

(
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)
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The functions (3.64) and (3.65), which are involved into the flow fields (3.73) and (3.74), are
now provided by the following formulae:

gm
n
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μm
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(
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+
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(3.75)

where
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n

(

μm
n z
)

= −ηχcμ
m
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(
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(
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(
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(
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for n ≥ 0, m ≥ 1.

(3.76)

Here, μm
n , χc and u(r), p(z) satisfy relations (3.70), (2.22), and (3.2), respectively, while the

remaining constant coefficients am
n and bmn for n ≥ 0 and m ≥ 1 will be determined from the

second part of boundary condition (2.29), which is the last one to deal with.
Straightforward application of the imposed entrance velocity ẑ · v = v(r, ϕ) for z = 0 at

the velocity (3.73) (note that x̂1 = ẑ) and use of (3.70) result in

u(r) +
∞
∑

n=0

∞
∑

m=1

Jn
(

ρmn
r
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)

gm
n (0)
(
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)

= v
(

r, ϕ
)

. (3.77)

By virtue of the orthogonality relation (A.32) and the well-known orthogonality of the
trigonometric functions, relation (3.77) reveals that

{
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n

bmn

}

= εn

[

πα2

2
gm
n (0)J

2
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(

ρmn
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]−1 ∫2π
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v
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r, ϕ
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]

Jn
(

ρmn
r

α

)

{

sinnϕ
cosnϕ

}

rdr dϕ, (3.78)

for n ≥ 0 and m ≥ 1, where εn = 2 for n ≥ 1, ε0 = 1 and u(r) is given in (3.2). It is trivial
to check the nice behavior of the constant coefficients (3.78) as L → +∞. Relations (3.78)
coincide with (3.72) and provide us with the final form of the flow fields (3.73) and (3.74).

Two basic special cases are the following. If the imposed velocity is only a function
of the variable r, that is, v(r), then from relations (3.78) the only constant coefficients that
survive are the bm0 for m ≥ 1 and the magnetic flow becomes axisymmetric. Moreover, in this
case, if v(r) = u(r), then (3.78) shows that am

n = bmn = 0 for n ≥ 0 andm ≥ 1; thus, the magnetic
flow (3.73) becomes the magnetic Poiseuille flow v = u(r)ẑ.

In the sense of making this work more complete, we follow some easy analytical steps,
identical to those followed for the production of relationship (3.57), with extensive use of
formulae (A.25)–(A.28) and with a proper rearranging of the index n ≥ 0, in order to write
the velocity (3.73) in pure circular cylindrical coordinates with unit vectors r̂, ϕ̂, and ẑ. In
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view of this aim, we substitute the Cartesian unit vectors x̂i, i = 1, 2, 3, from (A.14) into (3.73),
and we utilize expressions (3.72) in terms of the functions
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(
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(
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(
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(3.79)

fm
n

(

nϕ
)

= am
n sinnϕ + bmn cosnϕ for n ≥ 0, m ≥ 1, (3.80)

where μm
n = ρmn /α (ρmn being the m-root (m ≥ 1) of order n ≥ 0 of the Bessel functions). Thus,

we obtain the equivalent form of the velocity field (3.73)
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(3.81)

and of the total pressure field (3.74)

P
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Recapitulating, we completed our analytical method with the application of all the
required boundary conditions of the particular physical problem that we had to solve. Hence,
given a known velocity field v(r, ϕ) at the entrance of the circular pipe, the velocity, and the
total pressure of amagnetic fluid (perturbed by the three-dimensional constant magnetic field
(2.20)) within the prescribed dimensions

V
(

R
3
)

=
{(

r, ϕ, z
)

: 0 ≤ r ≤ α, 0 ≤ ϕ < 2π, 0 ≤ z ≤ L
}

, (3.83)

assume the expansions (3.81) and (3.82), respectively, where am
n , bmn for n ≥ 0 andm ≥ 1 have

been calculated through relations (3.78). The functions hm
n (μ

m
n z), g

m
n (μ

m
n z), j

m
n,±(μm

n r, μ
m
n z), and

fm
n (nϕ) for n ≥ 0 and m ≥ 1 are given by (3.75), (3.76), (3.79), and (3.80), respectively, while

μm
n = ρmn /α, χc and u(r), p(z) satisfy relationships (3.70), (2.22), and (3.2), respectively. Since

ρmn is the m-root (m ≥ 1) of order n ≥ 0 of the Bessel functions, that is, Jn(ρmn ) = 0, then
obviously jmn,±(ρmn , μ

m
n z) = 0. Finally, any information needed beyond this section, which

concerns the Bessel functions Jn(μm
n r) or the trigonometric and hyperbolic functions, is

collected into the appendix.

4. Numerical Results and Discussion

The problem under consideration is the creeping flow inside a straight circular tube under
the influence of a constant vector uniform magnetic field arbitrarily orientated. The radius of
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the pipe is α, and its length is L. The mean axial velocity of the flow at the inlet of the pipe is
given by the relation

U =

∫∫

Λv
(

r, ϕ
)

rdr dϕ
∫∫

Λrdr dϕ
, (4.1)

where Λ is the cross section at the inlet. Consequently, the mass flow rate at the inlet of the
duct is

ṁ = ρUΛ. (4.2)

If we consider the limiting case of a semi-infinite duct with L → +∞ and apply mass
conservation at the inlet and the outlet of the duct, then it is obtained that the mass rate
at which the fluid enters the cylinder must be equal to the mass rate at the exit. Taking into
account the analysis presented in (2.32), we obtain a relation that expresses the axial pressure
gradient −A in terms of the mean axial velocity at the inlet U, through the fully developed
velocity profile u(r) of (3.2) as

ṁ = ρUΛ = ρ

∫∫

Λu(r)rdr dϕ
∫∫

Λrdr dϕ
Λ = ρ

Aα2

8ηχc
Λ, (4.3)

which yields

A =
8Uηχc

α2
. (4.4)

In order for our results to have general applicability, we introduce the nondimensional
variables

v =
v
U
, v

(

r, ϕ
)

=
v
(

r, ϕ
)

U
, u(r) =

u(r)
U

, r =
r

α
,

z =
z

α
, L =

L

α
, P =

P

ηU/α
, A =

A

ηU/α2
.

(4.5)

Thus, we can apply solution (3.81) and (3.82) to the problem of developing flow of a
micropolar fluid in the entrance region of a circular duct to obtain the corresponding flow
field. In all the cases that we examined in the summations of (3.81) and (3.82), we used the
first 18 terms.

In the first case the inlet velocity profile was chosen to be

v
(

r, ϕ
)

= 1 − r5, (4.6)

which is very close to a uniform inlet velocity. Figure 1 shows contour plots of the dim-
ensionless axial velocity component uz ≡ ẑ · v, the dimensionless radial velocity component
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Figure 1:Contour plots of the dimensionless axial velocity component uz, the dimensionless radial velocity
component ur , and the dimensionless total pressure P over a longitudinal-radial section of the duct.
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Figure 2: Diagrams of the dimensionless axial velocity distribution uz along the radial direction for
different axial lengths z.

ur ≡ r̂ · v, and the dimensionless total pressure P . The plots are taken in a longitudinal-radial
section of the duct, as shown in Figure 1.

It is observed that, as the flow moves downstream, it becomes fully developed. The
radial velocity vanishes, the pressure drop becomes constant and uniform over the cross-
section of the duct, and the axial velocity obtains a parabolic form. This last observation
is clearer in the plots of Figure 2 that depict the development of the axial velocity in the
longitudinal direction.

This figure shows the dimensionless axial velocity distribution uz along the radial
direction for different axial lengths. It is seen that the axial velocity has initially the inlet
profile (4.6), which gradually transforms to the parabolic profile. It must be noted, however,
that the inlet profile is slightly distorted in the area close to the center at r = 0, where we see
a small reduction of the axial velocity although the inlet profile (4.6) is nondecreasing. This is
attributed to the function of the inlet profile, which changes very rapidly with r.
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Figure 3:Contour plots of the dimensionless axial velocity component uz, the dimensionless radial velocity
component ur , the dimensionless angular velocity component uϕ, and the dimensionless total pressure P
at several downstream locations.

Since the solution that we present is able to predict 3D flow without any symmetries,
we chose to examine a flowwith a nonsymmetrical profile. Thus, we imposed an inlet velocity
profile given by the function

v
(

r, ϕ
)

= 1 − r5 + sin(πr) sinϕ. (4.7)

Figure 3 shows contours of the dimensionless axial velocity component uz, the dimensionless
radial velocity component ur , the dimensionless angular velocity component uϕ ≡ ϕ̂ · v, and
the dimensionless total pressure P , at several downstream locations.
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Figure 4:Variation of parameter χc with themagnetic fieldH and the volumetric concentration ofmagnetic
particles φ, where the plot corresponds to fully developed flow of a micropolar fluid.

A general remark is that, as the flow enters the pipe, there is intense movement of
the fluid in the cross-sectional plane, which gradually leads to a fully developed velocity.
The pressure distribution, which is initially highly nonuniform, changes as the flow moves
downstream, and it eventually reaches a uniform profile.

Another interesting characteristic of micropolar flow is the increase of the viscosity,
and consequently of the friction losses, due to the magnetic field. In order to investigate these
effects, we define the Reynolds number Re and the Fanning friction factor f as in [35]:

Re =
ρUDh

η
, f =

τw
ρU2/2

, (4.8)

whereDh = 2α is the hydraulic diameter and τw is wall shear stress. For fully developed flow
in a circular duct, the wall shear stress is related to the axial pressure drop via the relation
2τw = −αdPP/dz = αA. Applying this relation to (4.8) and using (4.4), we obtain the relation
for the friction factor f product with the Reynolds number

f Re = 16χc, (4.9)

which is valid for fully developed magnetic flow in a circular duct. If there are no magnetic
particles or if there is no magnetic field, then χc = 1 and (4.9) gives the well-known relation
f Re = 16. Thus, in order to assess the additional friction losses due to the magnetic field, we
examine the parameter χc.

Figure 4 depicts the dependence of χc on the magnetic field H and on the volumetric
concentration of magnetic particles φ, which is defined in relation (2.4).

The plots correspond to constant temperature T = 300K, magnetic dipole strengthm =
2 × 10−18 A·m2, viscosity η = 10−3 kg/ms, and small magnetic particles of radius rp < 10−7 m
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so that the assumptions that were made for the derivation of the Stokes equations are valid.
It is noted that the parameter χc does not depend on the particle radius rp. This can be seen
from the relation (2.22) after the substitution of τS, τB, I and of M0,c from (2.21). From the
plot of Figure 4 it is observed that, independently of the concentration φ, the parameter χc

undergoes a steep increase in the interval 103 < H < 105 (A/m), while it remains steady for
smaller or higher values of the magnetic field. Moreover, it is observed that the parameter χc

increases in a linear manner as the concentration φ increases.

5. Conclusions

Many applications of practical interest in modern engineering technology deal with the
micropolar magnetohydrodynamic flow of magnetic fluids in the presence of magnetic fields.
In this paper we examined how a 3D constant uniform magnetic field perturbs a three-
dimensional steady creeping motion (Stokes flow) of a viscous incompressible micropolar
fluid of approximately zero conductivity in a circular cylinder of a finite length. The ferrofluid
was considered to be a colloidal suspension of nonconductive ferromagnetic material of very
small spherical particles, which follow the Brownian motion and behave as rigid magnetic
dipoles, while the magnetization of the carrier liquid had been taken into account from
its general equilibrium expression. We used a special case of a general three-dimensional
theoretical model that governs the micropolar hydrodynamic flow in such liquids, which was
based on the reduction of the partial differential equations to a simpler shape that is similar
to low-Reynolds number flow and are called magnetic Stokes equations. The interaction of
the applied magnetic field with the ferromagnetic particles has been inherited within those
equations through the additional effective viscosity and the magnetic pressure of the fluid in
terms of both its hydrodynamic and magnetic properties.

We used an improved new complete and unique differential representation of
magnetic Stokes flow, drawn from the potential representation theory, which is valid for
nonaxisymmetric micropolar flows and provides in an analytical fashion the velocity and
total pressure fields in terms of easy-to-find potentials. Therein, we applied the proper
boundary conditions according to the physical requirements on the boundaries, and we
managed in a cumbersome and tedious way to obtain the three-dimensional magnetic Stokes
flow fields in a closed analytical form of expansions of infinite series, in terms of the applied
3D constant magnetic field, of the interior circular cylindrical eigensolutions, and of the
certain hydrodynamic or magnetic parameters.

In order to study the characteristics of the 3D flow and compute the velocity and total
pressure fields associated with creeping magnetic flow, we proceeded to a necessary numer-
ical implementation of our results in a circular duct. The development of the flow, as the
magnetic fluid moves downstream of the duct under the effect of the imposed magnetic field,
has been presented graphically for various imposed velocities at the inlet, while the variation
of the additional viscosity due to the magnetic field versus the magnetic field magnitude and
the concentration of particles inside the ferrofluid has been depicted through specific plots.

Appendix

Mathematical Material

In the interest of making this paper complete and independent it is necessary to provide some
useful information concerning important mathematical tools, which are adequate for both the
analytical and the numerical part of the present paper.
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Differential Identities

Consequently, we begin by providing important identities [29], which were used extensively
during our analytical calculations. Let u, v and f,g denote two scalar and two vector fields,
respectively. Then, the basic vector differential identities involve the action of the gradient
and the Laplace operators on certain expressions, that is,

∇(uv) = u∇v + v∇u, (A.1)

∇ ⊗ (uf) = u(∇ ⊗ f) +∇u ⊗ f, (A.2)

∇ · (uf) = u∇ · f +∇u · f, (A.3)

∇ × (uf) = u∇ × f +∇u × f, (A.4)

∇(f · g) = (∇ ⊗ f) · g + (∇ ⊗ g) · f, (A.5)

∇ · (f ⊗ g) = (∇ · f)g + f · (∇ ⊗ g), (A.6)

∇ × ∇ × f = ∇(∇ · f) −Δf, (A.7)

∇ · (∇ ⊗ f) = Δf, (A.8)

∇ · (∇ ⊗ f)T = ∇(∇ · f), (A.9)

Δ(uf) = fΔu + uΔf + 2∇u · (∇ ⊗ f), (A.10)

Δ(f · g) = f ·Δg + g ·Δf + 2(∇ ⊗ f)T : (∇ ⊗ g), (A.11)

where the symbols “⊗”, “:”, and “T” denote juxtaposition, double inner product, and
transposition, respectively. The proofs of identities (A.1)–(A.11) are based on classical
analysis by expanding the vectors f and g in Cartesian coordinates.

Circular Cylindrical Coordinate System

In terms of the three variables r ∈ [0,+∞), ϕ ∈ [0, 2π), and z ∈ (−∞,+∞), we define the
implemented to our work circular cylindrical coordinate system [27] via the Cartesian basis
as follows:

r =
3
∑

i=1

xix̂i = zx̂1 + r cosϕx̂2 + r sinϕx̂3, (A.12)

where r is the position vector, while the coordinate vectors of this system r̂, ϕ̂, ẑ assume the
forms

r̂ = −∂ϕ̂
∂ϕ

= cosϕx̂2 + sinϕx̂3, ϕ̂ =
∂r̂
∂ϕ

= − sinϕx̂2 + cosϕx̂3, ẑ = x̂1 (A.13)
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or their inverse

x̂1 = ẑ, x̂2 = cosϕr̂ − sinϕϕ̂, x̂3 = sinϕr̂ + cosϕϕ̂. (A.14)

The gradient ∇ and the Laplacian Δ are provided by the expressions

∇ =
3
∑

i=1

x̂i
∂

∂xi
= r̂

∂

∂r
+
ϕ̂

r

∂

∂ϕ
+ ẑ

∂

∂z
, Δ =

3
∑

i=1

∂2

∂x2
i

=
1
r

∂

∂r

(

r
∂

∂r

)

+
1
r2

∂2

∂ϕ2
+

∂2

∂z2
, (A.15)

and then the forthcoming relationships are easily verified using the vector relations (A.12),
(A.13), and (A.15), that is,

∇ ⊗ r̂ =
1
r
ϕ̂ ⊗ ϕ̂, ∇ ⊗ ϕ̂ = −1

r
ϕ̂ ⊗ r̂, ∇ ⊗ ẑ = ˜0, (A.16)

as well as

∇ ⊗ r = ˜I =
3
∑

i=1

x̂i ⊗ x̂i = r̂ ⊗ r̂ + ϕ̂ ⊗ ϕ̂ + ẑ ⊗ ẑ, (A.17)

whereas ˜I stands for the unit dyadic and ˜0 refers to the zero dyadic [28]. Our boundary value
problem is adjusted to the type of circular cylindrical geometry introduced here, where the
x1-axis is the axis of symmetry of an infinite circular cylinder and the other two axes are
located properly so as to obtain a (r, ϕ, z) right-handed system.

Bessel and Neumann Special Functions

In the sequel, we define the special functions used in this project. The Bessel functions Jn(x)
and the Neumann functionsNn(x) [29] of order n ≥ 0 are linear independent solutions of the
Bessel differential equation

x2y′′(x) + xy′(x) +
(

x2 − n2
)

y(x) = 0, (A.18)

for n = 0, 1, 2, . . ., which is valid for every x ∈ R. These functions are defined as follows:

Jn(x) =
∞
∑

κ=0

(−1)κ
κ!(n + κ)!

(x

2

)n+2κ
for x ∈ R, (A.19)

Nn(x) =
1
π

[

dJν(x)
dν

− (−1)n dJ−ν(x)
dν

]

ν=n
for x ∈ R, (A.20)

for n ≥ 0 and ν ∈ R, where the Bessel functions Jν(x) for real ν are furnished by the formula

Jν(x) =
∞
∑

κ=0

(−1)κ
κ!Γ(κ + ν + 1)

(x

2

)ν+2κ
with Γ(κ + ν + 1) =

∫+∞

0
e−ttκ+νdt for x ∈ R, (A.21)
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via the well-known Gamma function Γ(κ + ν + 1) [29] for every κ ≥ 0 and ν ∈ R. In our
case, where ν = n = 0, 1, 2, . . ., it is easily confirmed that J−n(x) = (−1)nJn(x) and N−n(x) =
(−1)nNn(x) for x ∈ R. The limiting cases as x → 0, where Jn(x) converge, or as x → +∞,
whereNn(x) are regular, are discussed in many standard references such as [29], and it is not
worth to mention them here. The Bessel and the Neumann functions satisfy the important
recurrence relations

dZn(x)
dx

=
1
2
[Zn−1(x) − Zn+1(x)] =

n

x
Zn(x) − Zn+1(x) = Zn−1(x) − n

x
Zn(x) for x ∈ R,

(A.22)

2n
x
Zn(x) = Zn−1(x) + Zn+1(x) for x ∈ R, (A.23)

defined as Zn(x) ≡ Jn(x) or Zn(x) ≡ Nn(x) for n ≥ 0 and x ∈ R. The Bessel differential
equation (A.18) and its solutions (A.19)–(A.21) appear in several physical boundary value
problems such as ours, where under the same notation the variable x is written as x = μr ∈
R, with μ ∈ R being a constant parameter, which comes from the method of separation of
variables of a partial differential equation in the circular cylindrical coordinate system. This
parameter is specified by the boundary conditions of the particular physical problem that has
to be satisfied in each case. Upon that procedure, if the parameter μ becomes an eigenvalue
μm
n ∈ R for n ≥ 0 and m ≥ 1, then x is substituted by x = μr ≡ μm

n r ∈ R, whereas μ ≡ μm
n is

the m-parameter (m ≥ 1) of order n ≥ 0. Thus, both the Bessel and the Neumann functions
satisfy the orthogonality relation

∫b

a

rZn

(

μm′
n r
)

Zn

(

μm
n r
)

dr = δmm′

{

b2

2

[

(

Zn

(

μm
n b
))2 − Zn−1

(

μm
n b
)

Zn+1
(

μm
n b
)

]

−a
2

2

[

(

Zn

(

μm
n a
))2 − Zn−1

(

μm
n a
)

Zn+1
(

μm
n a
)

]

}

,

(A.24)

for n ≥ 0 and m,m′ ≥ 1, with δmm′ being the Kronecker delta and a, b ∈ R being constants.

Trigonometric and Hyperbolic Functions

As far as the trigonometric functions sinnϕ and cosnϕ are concerned for n ≥ 0, which are
used in this paper, the following expressions hold true:

sinϕ sinnϕ =
1
2
[

cos(n − 1)ϕ − cos(n + 1)ϕ
]

, (A.25)

cosϕ cosnϕ =
1
2
[

cos(n − 1)ϕ + cos(n + 1)ϕ
]

, (A.26)

cosϕ sinnϕ =
1
2
[

sin(n + 1)ϕ + sin(n − 1)ϕ
]

, (A.27)

sinϕ cosnϕ =
1
2
[

sin(n + 1)ϕ − sin(n − 1)ϕ
]

, (A.28)
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where ϕ ∈ [0, 2π) stands for the azimuthal angle, taken for the first period of the
trigonometric circle, while the orthogonality here is obvious for the functions sinnϕ and
cosnϕ for n ≥ 0. On the other hand, the hyperbolic functions introduced in our paper are
well known and can be taken also by their exponential form, that is,

sinh
(

μz
)

=
eμz − e−μz

2
, cosh

(

μz
)

=
eμz + e−μz

2
with tanh

(

μz
)

=
1

coth
(

μz
) =

sinh
(

μz
)

cosh
(

μz
) ,

(A.29)

where z ∈ (−∞,+∞), whilst the parameter μ, as we mentioned previously, comes from the
boundary conditions of a specific boundary value problem.

Harmonic Functions in Circular Cylindrical Geometry

Then, in view of our physical problem, every harmonic function w (Δw(r, ϕ, z) = 0) in the
circular cylindrical coordinate system is written as

w
(

r, ϕ, z
)

=
∞
∑

n=0

∫

∑

μ

[

a
μ
nJn
(

μr
)

+ b
μ
nNn

(

μr
)

](

c
μ
n cosnϕ+ d

μ
n sinnϕ

)(

e
μ
n cosh

(

μz
)

+ f
μ
n sinh

(

μz
)

)

,

(A.30)

where aμ
n, b

μ
n, c

μ
n, d

μ
n, e

μ
n, and f

μ
n for n ≥ 0 are constants, whilst the symbol “

∫
∑

μ · · · ” refers to
the constant parameter μ and denotes integration if μ takes continuous values or summation
in the case where μ is a parameter with discrete values. At this point we must make the
following basic remark. Here, as we pointed earlier, the parameter μ comes from the method
of separation of variables for the Laplace equation in circular cylindrical coordinates, where
only the particular physical problem and the boundary conditions can dictate its value. For
example, as in our case, when one has to face an interior problem inside a circular cylinder of
radius α ∈ R, where the boundary conditions require nihilism of the Bessel functions on the
surface of the cylinder, then the regularity of the solution demands Zn(μr) ≡ Jn(μr) and the
boundary conditions provide us with the discrete values of the parameter as μ ≡ μm

n = ρmn /α,
where ρmn ∈ R is the m-root (m ≥ 1) of order n ≥ 0 of the Bessel functions and the eigenvalue
now μm

n is the m-parameter (m ≥ 1) of order n ≥ 0. Hence, for this particular problem of
determining parameter μ, expansion (A.30) becomes

w
(

r, ϕ, z
)

=
∞
∑

n=0

∞
∑

m=1

[

am
n Jn
(

μm
n r
)

+ bmn Nn

(

μm
n r
)](

cmn cosnϕ + dm
n sinnϕ

)

× (emn cosh
(

μm
n z
)

+ fm
n sinh

(

μm
n z
))

,

(A.31)

where am
n , b

m
n , cmn , d

m
n , emn , and fm

n for n ≥ 0, m ≥ 1 are the new constants, while we have
a = 0, b = α and relation (A.24) takes the form

∫α

0
rJn
(

ρm
′

n

r

α

)

Jn
(

ρmn
r

α

)

dr = δmm′
α2

2
(

Jn+1
(

ρmn
))2

, n ≥ 0, m,m′ ≥ 1, (A.32)
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which is the orthogonality expression frequently utilized within our calculations. In addition,
this situation of an internal problem requires the use of regular solutions on the axis of
symmetry of the circular cylinder (r = 0), which means that only the Bessel functions
Jn(μr) ≡ Jn(μm

n r) survive inside the expansion (A.30) or (A.31), and, thus, this is reflected
to the vanishing of the corresponding constants, that is, bμn = 0 for n ≥ 0 or bmn = 0 for n ≥ 0
and m ≥ 1, respectively.
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