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Abstract. Nonlinear models of transverse vibration of axially movirgcoelastic beams subjected external transverse loads vi
steady-state periodical response are numerically inyasti. An integro-partial-differential equation and atipddifferential
equation of transverse motion can be derived respectivety & model of the coupled planar vibration for an axially ingv
beam. The finite difference scheme is developed to calcstately-state response for the model of coupled planar @nvth
models of transverse motion under the simple support bayntaumerical results indicate that the amplitude of thadyestate
response for the model of coupled vibration and two modelsaokverse vibration predict qualitatively the same teniss with

the changing parameters and the integro-partial-difteakequation gives results more closely to the coupledgiaibration.
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1. Introduction

Axially moving beams are extensively investigated becdahsg can model many engineering devices such as
magnetic tapes, plastic films, power transmission betltsilédibers and paper sheets. Under certain conditions, an
axially moving beam may undergo transverse and longituditgions that are usually coupled if the geometrical
nonlinearity has to be considered. Thurman and Mote firstld@ed the governing equations of planar motion of
axially moving beams [1]. Under certain conditions, noeén models for transverse motion can be obtained to
govern the transverse motion via the transverse motionear@upled from the longitudinal motion. Under the quasi-
static stretch assumption, Wickert developed a nonlineatehfor transverse motion of axially moving beams [2].
The approach is also referred as Kirchhoff’s approach [3le Todel was respectively applied to analyze chaotic
response [4], parametrically excited [5—8], parametritability [9], complex dynamic [10], free vibration [11,]12
and forced vibration [13] of transverse vibration of axjathoving beams. Another nonlinear model for transverse
motion can be derived from the coupled model by setting albitudinal term zero and omitting higher order
nonlinear terms. This model has been used to investigad\statate response of Parametric resonance stability [6,
7,14-16], internal resonance [17], nonlinear dynamic,[fr& vibration [11], forced vibration, and forced vibati
internal damping [19] of axially moving beams. These twangerse vibration models for axially moving beams
are respectively a nonlinear integro-partial-differahgiquation and a nonlinear partial-differential equation

Very limited attentions have been paid to the differenceveen the integro-differential equation and the partial-
differential equation. Approximate analytical resultsséd on the two models were compared for steady-state
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response of parametric vibration [6,7,15] and free vilorafiLl1,12,20] of axially moving beams. It is found that the
predictions made by the two models are qualitatively theesat quantitatively different. However, so far it has
not been clear which model yields better outcomes.

To examine the validity of the two nonlinear models and t@daine the superiority in the sense of approximating
the coupled governing equation of planar vibration, thedvarse responses calculated numerically from two models
were respectively compared with the transverse comporaéstlated from the coupled equation for free vibration of
axially moving strings [21] and beams under both the simpgsrt boundary and the fixed boundary conditions [20],
and also with the steady-state responses, which were atdaduirom the three nonlinear models of axially moving
viscoelastic beams subjected external transverse loat#s thre fixed boundary conditions [22], and the comparison
results indicated that the integro-differential equatian provide closer results to the coupled equation. Theafoal
the present investigation is to examine the validity of the honlinear models of axially moving viscoelastic beams
subjected external transverse loads and to determine pregistity under the simple support boundary.

The present paper is organized as follows. Section 1 eshedslithe integro-partial-differential model and the
partial-differential equation model for the transversetiomofrom the coupled model of an axially moving beam.
Section 2 presents the finite difference scheme to solvedhierging equations numerically. Section 3 presents
numerical results of the steady-state periodical respeasmilated from these models presented in Section 1,
and compares the coupled equations of planar motion withgmu@rning equations of transverse motion via the
steady-state periodical response. Section 4 ends the withehe concluding remarks.

2. Mathematical formulations

Consider a uniform axially moving beam of densityinitial tensionP,, cross-sectional are4, and moment of
inertial I. The beam travels at the uniform constant transport speetlveen two boundaries separated by distance
. The distance from the left boundary is measured by fixed awiardinater. Assume that the deformation of
the beam is confined to the vertical plane. The beam is s@tj¢otan external transverse excitati(e, t) only,
wheret is the time. The in-plane motion of the beam is specified bytthesverse displacementz, t) and the
longitudinal displacement(z, t), the viscoelastic material of the beam obeys the Kelvin rhptefor a slender
beam (for example, witti/(Al?) < 0.001), the Newton second law of motion yields

2 2 2 Py + AEe + An%e + Ancs) (1+ 3¢
pA<%+2C§gt+C2%)§(O+ €+ 778157; ncé)zl( +Bz):0
T T T “ v
V5 ()
2 2 2 Py + AEe + An% + Ancde) &v
pA <%+205é}t+02%)§( 0+ €+ n§t+ 770281') ox (1)
T x i w v
V397 +(3)
0t O%v O%v

where a comma precedingor ¢ denotes partial differentiation with respectt@r ¢, E is the Young's modulus;
is the dynamic viscosity, and the disturbed strait, t) of the beam is given by the nonlinear geometric relation

ou\? ov\?
= 1+ — — | -1 2
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In the following, a special form of external transverse &t@n is considered. It is assumed that the excitation is

spatially uniform and temporally harmonic. That is

F (x,t) = bcos(wt) (3)

whereb andw are respectively the amplitude and the frequency of theeatexcitation.
To cast Egs (1), (2), and (3) dimensionless, introduce #resformation of the time and the space coordinates
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and define new parameters
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Wherekﬁ accounts for the bending stiffness of the beam, dimensisilarametet: denotes the dynamic viscosity,
dimensionless parametkr represents the effect of nonlinearity, dimensionlessmpatark, represents the effects

of nonlinearity associated with the dynamic viscositgnd f (z, t) are the dimensionless axial speed and transverse
load respectively. Under transformation (2), Eq. (1) caexgressed in the new parameters defined by Eqg. (5) as
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In small but finite stretching problems in literature of naekr oscillations, the coupling between transverse and
longitudinal vibration is assumed negligible and only a fewer order nonlinear terms need to be retained. Inserting
u = 0 into Eqg. (6) and omitting higher order nonlinear termsg&boverning equation of transverse vibration under
an external load in the dimensionless form [22]
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On the other hand, the quasi-static stretch assumptionstahone can use the averaged value of the disturbed
tension to replace the exact value. In this case, Eq. (7)rbeso
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Equations (7) and (8) are two nonlinear models of transwélsations.
In the present investigation, only the simply supported@hkends boundary conditions are considered, the
boundary conditions of the dimensionless form are [20]

w(0,t) =u(l,t) =0 9)

o
r=0 0Jzx2

0%v

52 =0 (10)

v(0,t) =v(l,t) =0,

z=1

3. Numerical approach

The finite difference method will be employed to solve numedty Eq. (6) with Eq. (2), and Eqgs (7) and (8).
Introduce thel, x T' equally spaced mesh grid with space stegnd time step

z;=jh (j=0,1,2,..L,h=1/L), t, =nt (n=0,1,2,..7T). (11)
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Denote the function values(z,t) andv (z,t) at (z;,t,) asu} andv}. Applying the centered difference approxi-
mations to the time, space and mixed partial derivativeddéa [20]
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Substitution of Egs (12) and (13) into Eq. (6) leads to a sedgdbraic equations with respectit andv; that can

be solved as under the boundary conditions Eqgs (9) and (L@yéscribed parameters and initial conditions. Then
the resulting grid values? andv} are used in the finite difference schemes as an approximatitre continuous
solutionsu(z, t) andv(z,t) to Eq. (6). Similarly, by substituting Eq. (13) into Eqs (Fda(8), the resulting grid
valueg; are used in the finite difference schemes as approximatitmeteontinuous solutions(z, t) to Eqs (7)
and (8) respectively. Naturally, Eqs (7) and (8) need caordiEq. (10) only.

4. Steady-state responses

For periodical transverse loads, the beam may move pealbgliafter a short transition time. Such periodical
motion is referred as the steady-state response. Usuadlypéeriodical steady-state responses are not sensitive to
initial conditions. In the following, the beam center dspement is used to represent the beam motion. For an
evenN, vy, is the beam center displacement. The final steady-statenssps actually independent the initial
conditions, while the various initial condition may leaddifferent transient processes.

Let k; = 0.8 andy = 0.5. In this case, the natural frequency of the linear eaststem can be numerically
solved [6] asu; = 8.320. Ask; represents the effect of nonlinearity, it is called the meedr coefficient. Because,
physicallyk, is rather small [22], its variation has no discernible efi@t the steady-state response. Therefore, in
the following calculations, choogg = 0 for the sake of simplicity. Based on the numerical soligiohEqs (6), (7),
and (8), the differences between the models can be investigéa the time history near the resonances. Figure 1
illustrates the time history in the first resonancedfer 0.5,a = 0.0001k%; = 100. In Fig. 1, the dots, the dash-dot
lines and the solid lines stand for the humerical solutiern&ds (6), (7) and (8). The numerical results demonstrate
that the time history of Eq. (7) is different from those of E§3% and (8) for the initial state, and the amplitude of
Eq. (7) is smaller than those of Eqs (6) and (8) for the stetatg periodic response.

Based on the numerical solutions of Eqgs (6), (7), and (8)diffierences between the models can be investigated
via the amplitude-frequency (described by= w — w;) response curves near the resonances. Figure 2 illustrates
the amplitude-frequency response curves in the first resmsafor different nonlinear coefficients, load amplitudes
and viscosity coefficients. In Fig. 2, the dots, the dashlides and the solid lines stand for the numerical solutions
to Egs (6), (7) and (8). The numerical results demonstratithinee models qualitatively predict the same tendencies
with the changing parameters, while quantitatively, tremeecertain differences and results from Eq. (8) are closer
to those from Eq. (6).
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Fig. 1. The time history calculated from three models in the&t fiesonance.
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Fig. 2. The steady-state responses calculated from threlelmim the first resonance.

Based on the numerical solutions of Eqgs (6), (7), and (8)difierences between the models can be investigated
via the shape of beams in the resonances. Figure 3 showsahesshf beams in the first resonances for different
nonlinear coefficients, load amplitudes, and viscosityffiments. In Fig. 3, the dots, the dash-dot lines and the
solid lines stand for the numerical solutions to Eqs (6), éAy (8), respectively. In all cases, results from Eq. (7) or



286

0.008 0.0150
—~ ~
(=) S
S
7 2l
= /.’ N
0.004 ol 0.0075

H. Ding and L.-Q. Chen / Nonlinear models for transverse dédrwibration of axially moving viscoelastic beams

0.000 - 0.0000 -
0.0 0.5 x 1.0 0.0 0.5 x 10
(a) b=0.5, a=0.0001, £;=100 (b) b=0.5, a=0.0005, k=100
0.010 0.008
) = N
% % /".’ .\‘\.
s r e - - N
5 /." \'\. \3 /'/ ‘\.
EN , AN - a N
. N \
0.005 | gl \ 0.004 | i \
. \ E \
’ '\ G \
/ A I/ \
4 N\ 4 \
/ N\
'/ .\ 4 '\
0.000 - : 0.000 : . :
0.0 0.5 x 10 00 0.5 X 10

(c) b=0.5, a=0.0001, k1=0.75 (d) 5=0.75, =0.0001, ;=100

Fig. 3. The shape of beam calculated from three models inrstadsonance.

Eq. (8) are close to those from Eq. (6), and those from Eq.ré8¢k@ser. In addition, Fig. 3 shows the slight lack of
symmetry in the beam deflections, and the fact illustrate®ffect of the axial motion.
It should be remarked that, in the above examples, the ladiggdacement is almost 10% of the whole beam

span. Therefore, even if the vibration is reasonable lalgetransverse modes (7) and (8), especially Eq. (8), can
still yield satisfactory results.

5. Conclusions

This paper is devoted to compare the nonlinear models of¥enre vibration of axially moving viscoelastic
beams subjected external transverse loads via stea@dypstaddical response. The planar vibration is governed by
a set of coupled nonlinear partial-differential equatioidie coupled governing equations can be reduced to two
kinds of governing equations of transverse vibration. Greenionlinear partial-differential equation, and the otber
a nonlinear integro-partial-differential equation. Theté difference scheme is developed to solve these gowgrnin
equations numerically. The steady-state responses caddated from the three models. The investigation leads
to the following conclusions£”under the periodical tragise loads, there are steady-state periodic responses in
transverse vibration. Qualitatively, the three modeldjmtethe same tendencies with the changing parameters.
Quantitatively, in the view of both the center amplitude #melbeam shape, the nonlinear integro-partial-diffea¢nti
equation yields the results closer to those from the cougdpritions. The differences among the three models are
not sensitive to the nonlinear coefficients, the dynamicassty, and the external load amplitudes.



H. Ding and L.-Q. Chen / Nonlinear models for transverse dédrwibration of axially moving viscoelastic beams 287
Acknowledgments

The work described in this paper was supported by the NdtiNatural Science Foundation of China (No.
10902064), the National Outstanding Young Scientists Fafn@hina (No. 10725209), Shanghai Subject Chief
Scientist Project (No. 09XD1401700), Shanghai LeadingfmaProgram, Shanghai Leading Academic Discipline
Project (No. S30106), and the program for Changjiang scbalad Innovative Research Team in University (No.
IRT0844).

References

[1] A.L. Thurman and C.D. Mote Jr., Free, periodic, nonlinescillation of an axially moving stripJournal of Appled Mechanic36 (1969),
83-91.
[2] J.A. Wickert, Non-linear vibration of a traveling tensied beaminternational Journal of Non-Linear Mechani@¥ (1992), 503-517.
[3] G.Suweken and W.T. Van Horssen, On the weakly nonlirteamsversal vibrations of a conveyor belt with a low and twaeying velocity,
Nonlinear Dynamic81 (2003), 197-223.
[4] B. Ravindra and W.D. Zhu, Low dimensional chaotic resgmof axially accelerating continuum in the supercritiegime,Archive of
Applied Mechanic$8 (1998), 195-205.
[5] F.Pellicano, A. Fregolent, A. Bertuzzi and F. Vestrdijmary and parametric non-linear resonances of a powsrtrssion beltJournal
of Sound and Vibratio244 (2001), 669—684.
[6] L.Q.Chenand X.D. Yang, Steady-state response of gxmtlving viscoelastic beams with pulsating speed: comparis two nonlinear
models,International Journal of Solid and Structud? (2005), 37-50.
[7] L.Q.ChenandH.Ding, Steady-state responses of axaaliglerating viscoelastic beams: approximate analydisamerical confirmation,
Science in China G1(2008), 1707-1721.
[8] L.N.Panda and R.C. Karb, Nonlinear dynamics of a pipevegimg pulsating fluid with combination, principal parame&and internal
resonances]ournal of Sound and VibratioB09 (2008), 375—-406.
[9] R.G. Parker and Y. Lin, Parametric instability of axjathoving media subjected to multifrequency tension anddfleetuations ASME
Journal of Applied Mechanic88 (2001), 49-57.
[10] F. Pellicano and F. Vestroni, Complex dynamic of higiead axially moving system3ournal of Sound and VibratioB58(2002), 31-44.
[11] L.Q.Chenand X.D. Yang, Nonlinear free vibration of aiedly moving beam: comparison of two modelsurnal of Sound and Vibration
299(2007), 348-354.
[12] H. Ding and L.Q. Chen, Equilibria of axially moving beann the supercritical regiméirchive of Applied Mechanic009) DOI:
10.1007/s00419-009-0394-y.
[13] T.Z. Yang, B. Fang, Y. Chen and Y.X. Zhen, Approximatdusions of axially moving viscoelastic beams subject to tifiséquency
excitations,International Journal of Non-Linear Mechanidgl (2009), 230-238.
[14] M.H. Ghayesh and S.E. Khadem, Rotary inertia and teatpez effects on non-nonlinear vibration, steady-staparse and stability of
an axially moving beam with time-dependent velocityernational Journal of Mechanical Sciencg8 (2008), 389-404.
[15] M.H. Ghayesh and S. Balar, Non-linear parametric \tibreand stability analysis for two dynamic models of axiatioving Timoshenko
beamsApplied Mathematics Modellin(2009), doi: 10.1016/j.apm.2009.12.019
[16] M.H. Ghayesh and S. Balar, Non-linear parametric \tibraand stability of axially moving visco-elastic Raylbifpeams]nternational
Journal of Solids and Structureks (2008), 6451-6467.
[17] W. Zhang and C.Z. Song, Higher-dimensional periodid @haotic oscillations for viscoelastic moving belt with ltiple internal
resonancednternational Journal of Bifurcation and Chad¥ (2007), 1637—1660.
[18] S.H. Chen, J.L. Huang and K.Y. Sze, Multidimensionahdstedt-Poincé& method for nonlinear vibration of axially moving beams,
Journal of Sound and Vibratio806(2007), 1-11.
[19] K. Marynowski and T. Kapitaniak, Zener internal dangpin modelling of axially moving viscoelastic beam with tirdependent tension,
International Journal Non-Linear Mechanie (2007), 118-131.
[20] H. Ding and L.Q. Chen, On two transverse nonlinear modébxially moving beamsScience in China (52 (2009), 743—751.
[21] L.Q.Chen and H. Ding, Two nonlinear models of a transesr vibrating stringArchive of Applied Mechanica8 (2008), 321-328.
[22] L.Q.Chenand H. Ding, Steady-state transverse regpion=oupled planar vibration of axially moving viscoelasteamsASME Journal
of Vibration and Acoustic$32(2010), 011009.



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

o

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



