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The discretisation of rotordynamic systems usually results in a high number of coordinates, so the computation of the solution of
the equations of motion is very time consuming. An efficient semianalytic time-integration method combined with a substructure
technique is given, which accounts for nonsymmetric matrices and local nonlinearities. The partitioning of the equation of motion
into two substructures is performed. Symmetric and linear background systems are defined for each substructure. The excitation
of the substructure comes from the given excitation force, the nonlinear restoring force, the induced force due to the gyroscopic
and circulatory effects of the substructure under consideration and the coupling force of the substructures. The high effort for the
analysis with complex numbers, which is necessary for nonsymmetric systems, is omitted. The solution is computed by means of
an integral formulation. A suitable approximation for the unknown coordinates, which are involved in the coupling forces, has
to be introduced and the integration results in Green’s functions of the considered substructures. Modal analysis is performed for
each linear and symmetric background system of the substructure. Modal reduction can be easily incorporated and the solution
is calculated iteratively. The numerical behaviour of the algorithm is discussed and compared to other approximate methods of
nonlinear structural dynamics for a benchmark problem and a representative example.
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1. Introduction

The presence of skew-symmetric matrices is typical for
rotordynamic systems. Hence the computation of rotordy-
namic systems differs from ordinary structural problems due
to gyroscopic and circulatory terms, represented by skew-
symmetric matrices in the equations of motion; see, for
example, Krämer [1]. Modal analysis of such nonsymmetric
systems usually involves very expensive computations with
complex variables. Nonlinear restoring forces in rotordy-
namic systems frequently come from the bearings. There
is a need for numerical routines for treating the case of
catastrophic loading of such structures in the time domain.
Frequently nonlinear rotordynamic systems therefore are
used as benchmark problems for the verification of the
behaviour of new computational solution strategies. In
order to keep the computational effort lower, a substructure
method is given in the present contribution. The total set of
equations of motion is substructured in a way that the slave
degrees of freedom have no corresponding components in
the vector of the nonlinear restoring force. These equations

represent substructure 1 and describe the motion of the
linear rotor in the state space. The solution is computed using
the configuration-space modes and modal impulse response
functions of the linear symmetric parts of the system
matrices. The master degrees of freedom are characterized
by the presence of nonlinear components. This method of
partitioning of the equations of motion of the total system
with respect to the nonlinearities of the system is known
from the Finite Element Method; see Bathe and Gracewski
[2], where usually the Newmark or related direct numerical
integration schemes are applied.

In contrast a state-space formulation in connection
with a Duhamel-type time integration is given in this
contribution. Modal analysis is performed in the confi-
guration space considering linear symmetric operators, in
order to derive a simple closed-form representation of the
two transition matrices of the substructures in the state
space. This avoids the more costly analysis with complex
numbers due to nonsymmetric matrices and relates the
state-space formulation to modal analysis with real eigen-
vectors of the configuration space. The time integration for
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both substructures involves the Duhamel-type convolution
integral, where the transition matrices are used as kernels.
The nonlinearities, the circulatory terms, and the coupling
forces are treated as induced forces of the linear system
with symmetric matrices. The solution of the second sub-
structure is formulated in the same way. The derivation
of an algorithm with a minimum number of nonlinear
equations relates the present paper to the component mode
analysis, which has been developed by Tongue and Dowell
[3] with respect to the transient behaviour of systems
with localized nonlinearities and has been extended by
Dowell [4]. The Lagrange multiplier method is used in both
papers to incorporate the compatibility conditions of the
substructures. Kim and Park [5] applied this component
mode analysis to nonlinear transient vehicle dynamics. In
contrast to the present method the formulation in Dowell
[4] is set up separately for the subsystems. Furthermore, we
end with a nonlinear system of equations for the increments
of the master degrees of freedom, which is solved with the
modified Newton-Raphson-method. The present algorithm
is formulated in the state space, which is conventional in
control engineering, and is suitable not only for nonlinear
but also for gyroscopic and circulatory terms. When inserting
the coupling conditions and approximating the induced
forces, a minimal set of nonlinear equations is derived.
Using a time-stepping procedure, this system of incremental
equations can be solved iteratively. In order to improve
the efficiency of the algorithm different time steps can
be applied for each substructure, which can result in a
more efficient algorithm, which will be analysed elsewhere.
Computing linear and nonlinear rotordynamic effects by
means of modal analysis of the linear symmetric parts
only, the present paper extends Holl and Irschik [6] with
respect to different approximations of the coupling and
induced forces and less restrictions for the system matrices.
The approximation of the actual time evolution of the
physical coordinates is used in the convolution integrals.
An extension has been developed by Holl [7] for the case
of mass coupling of the substructures. In the more simple
case of nonlinearities depending only on the coordinates
of substructure 2, the state-space representation can be
reduced to a formulation in the configuration space. Further
reductions of the computational effort can be achieved using
modal analysis with a reduced base of eigenvectors, which is
analysed in Holl [8]. As a numerical benchmark application
a rotordynamic system is subject to a defined horizontal
acceleration component at the bearings.

2. Substructuring with Respect to Nonlinear
Restoring Forces

A damped gyroscopic nonlinear system with circulatory
forces is considered in the configuration space in the
following global form, see, for example, Meirovitch [9]:

[M]
{
Ẍ
}

+ ([D] + [G])
{
Ẋ
}

+ ([K] + [N]){X}
+ {RN} = {RE}.

(1)

[M], [D], and [K] are symmetric matrices. The global stiff-
ness matrix [K] is only positive semidefinite if there are rigid
body degree-of-freedoms present and the global mass matrix
[M] is positive definite. The damping matrix [D] is consid-
ered to be of the Rayleigh (proportional) type. If there is any
nonclassical damping present in the mechanical system, then
for the sake of simple notations these corresponding terms
are included in the skew-symmetric gyroscopic matrix [G]
here. In Holl [10] the effect of nonclassical damping of the
system is studied without substructuring.

It is assumed that the nonlinearity is restricted to the
second substructure with the index 2, so that we get

{RN} =
⎧
⎨

⎩

{rN}1

{rN}2

⎫
⎬

⎭ =
⎧
⎨

⎩

0

{rN}

⎫
⎬

⎭. (2)

With the global configuration vector {X} and the
external forces {RE} this partitioning leads to the following
matrix-formulation of the two formally decoupled subsets of
(1):

⎡

⎣
[M]11 0

0 [M]22

⎤

⎦

⎧
⎨

⎩

{
Ẍ
}

1
{
Ẍ
}

2

⎫
⎬

⎭ +

⎡

⎣
[D +G]11 0

0 [D +G]22

⎤

⎦

⎧
⎨

⎩

{
Ẋ
}

1
{
Ẋ
}

2

⎫
⎬

⎭

+

⎡

⎣
[K +N]11 0

0 [K +N]22

⎤

⎦

⎧
⎨

⎩

{X}1

{X}2

⎫
⎬

⎭

=
⎧
⎨

⎩

{rE}1

{rE}2

⎫
⎬

⎭−
⎧
⎨

⎩

{
f
}

1
{
f
}

2

⎫
⎬

⎭−
⎧
⎨

⎩

0

{rN}

⎫
⎬

⎭,

(3)

where { f }1 and { f }2 are the coupling forces of the
substructures. Equation (3) may be explained physically in
the sense of the structural deformation method, where the
equations of motion of the substructure formally can be set
up by treating the other parts of the structure to be rigid and
fixed; see, for example, Meirovitch [9], Gasch and Knothe
[11], and Leung [12]. As can be seen from (3) any mass
coupling between the two substructures under consideration
is not considered here; this extension is demonstrated in
Holl [7] and will be analysed in more detail with special
emphasis to the numerical characteristics of the resulting
algorithm elsewhere. Frequently the application of lumped
mass matrices is preferred in order to prevent a coupling of
the mass matrices.

Equation (3) is the starting point of a substructure
technique with special emphasis on the system nonlineari-
ties. For rotordynamic systems, usually the partitioning of
the equations is done, so that the rotor forms the linear
substructure 1, while the nonlinear effects are gathered in
substructure 2. As can be seen from (3), in the present
contribution the restriction that [G] and [N] are located in
two different substructures and do not produce any coupling
of the two substructures is dropped, which was used in Holl
and Irschik [6]. The coupling forces in (3) become

{
f
}

1 = [F]1{Z}2,
{
f
}

2 = [F]2{Z}1, (4)
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where the state-space notation

{Z}1 =
⎧
⎨

⎩

{X}1
{
Ẋ
}

1

⎫
⎬

⎭, {Z}2 =
⎧
⎨

⎩

{X}2
{
Ẋ
}

2

⎫
⎬

⎭ (5)

is used and the coupling matrices are

[F]1 = [[K + N]12[D + G]12],

[F]2 = [[K + N]21[D + G]21].
(6)

The above mentioned conditions [M]12 = [0] and
[M]21 = [0] of the dynamic system are considered. The
case of an inertial coupling in (3) can be incorporated
using integration by parts; see Holl [7], where different
approximations with respect to the integral kernel are
reported elsewhere.

3. Formulation for the Substructure with Linear
Restoring Forces

The present method takes advantage of the well-known
solutions of linear vibration problems with symmetric
matrices and proportional damping. A reformulation of (3)
for substructure 1 leads to

[M]11
{
Ẍ
}

1 + [D]11
{
Ẋ
}

1 + [K]11{X}1

= {rE}1 −
{
f
}

1 − [G]11
{
Ẋ
}

1 − [N]11{X}1 = {P}1,
(7)

where the system is excited by the external excitation, the
coupling forces, and the motion of the system itself. The
mechanical behaviour of substructure 1 is characterized
by the symmetric matrices [M]11, [K]11, and [D]11. The
increment Δ{Z}1 of the state-vector of (5) at discrete time-
intervals Δt is found in the form of the integral equation:

Δ{Z}1 = ([U(Δt)]− [I]){Z0}1

+
∫ Δt

0
[U(Δt − τ)]

⎧
⎨

⎩

{0}
[M]−1

11 {P}1

⎫
⎬

⎭dτ.
(8)

The mass matrix is positive definite and the inverse
[M]−1

11 in (8) needs not to be computed, which is demon-
strated in Holl and Irschik [6]. {Z0}1 denotes the state
vector at the beginning of the time interval under consid-
eration. An efficient computation of the transition matrix
[U(t)]1 was defined in Holl and Irschik [6] by [U(t)]1 =
[Φ]1[Λ(t)]1[Φ]−1

1 . This result is based on the consideration
of an initial value problem {Y(t)}1 = [Λ(t)]1{Y0}1 as
the computation of the series expansion of [U(t)]1 is
uncomfortable. In order to get the modal transition matrix,
the symmetric n1× n1 eigenvalue problem corresponding to
the left hand side of (7) has to be solved:

([K]11 − λ1i[M]11)
{
ψ
}

1i = {0}, λ1i = ω2
1i, i = 1, . . . ,n1.

(9)

The eigenvectors {ψ}1i are real and orthogonal with
respect to [M]11 and [K]11 and orthonormalized with

respect to [M]11, see, for example, Meirovitch [9]:
[Ψ]T1 [M]11[Ψ]1 = [I] and [Ψ]−1

1 = [Ψ]T1 [M]11 with [Ψ]1 =
[{ψ}11{ψ}12{ψ}13 · · · {ψ}1i · · · {ψ}1n1

]. [I] is the identity
matrix. The modal expansion of the state-vector is defined
by

{Z(t)}1 = [Φ(t)]1{Y(t)}1 =
⎡

⎣
[Ψ]1 [0]

[0] [Ψ]1

⎤

⎦

⎧
⎪⎨

⎪⎩

{
Y
}

1{
Ẏ
}

1

⎫
⎪⎬

⎪⎭
. (10)

{Y}1 denotes the vector of modal coordinates. The
modal transition matrix [Λ(Δt)]1 mentioned above consists
of four diagonal submatrices:

[Λ(Δt)]1 =
⎡

⎣
[W(Δt)]1 [V(Δt)]1
[
Ẇ(Δt)

]
1

[
V̇(Δt)

]
1

⎤

⎦, (11a)

where the diagonal elements of these submatrices are

W(t)i1 = e−σi1ωi1t

⎛

⎝cos(νi1t) +
sin(νi1t)√

1− σ2
i1

⎞

⎠, (11b)

V(t)i1 = e−σi1ωi1t sin(νi1t)
νi1

(11c)

with the modal parameters

ω2
i1 =

{
ψ
}T

1i[K]11
{
ψ
}

1i,

2σi1ωi1 =
{
ψ
}T

1i[D]11
{
ψ
}

1i,

νi1 = ωi1
√

1− σ2
i1.

(11d)

The integrals of (8) can be evaluated now if the time-
evolution of the forcing terms { f }1, {X}1, and {Ẋ}1 would
be known. Considering a suitable time-step, which is chosen
for the computation of the solution of the nonlinear dynamic
system in (8), the time-evolution of these unknown portions
of the forcing terms, but not the integrands as a whole,
has to be approximated within the time interval. Different
approximations seem to be suitable up to second order in the
local time coordinate τ within the time step. For the analysis
given here the following approximations are used:

{X(τ)}1 = {X0}1 +
{
Ẋ0

}
1τ +

({
Ẋ(Δt)

}
1 −

{
Ẋ0

}
1

) τ2

2Δt
,

{
Ẋ(τ)

}
1 =

{
Ẋ0

}
1 +

({
Ẋ(Δt)

}
1 −

{
Ẋ0

}
1

) τ

Δt
.

(12)

Based on these approximations the integral in (8) can be
solved analytically. The coupling forces from (4) are inserted
before the integration is performed. For the interpolation
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of the coordinates of both substructures (12) is used. The
solution of the convolution integral then results to

∫ Δt

0
[U(Δt − τ)]

⎧
⎨

⎩

{0}
[M]−1

11 {P}1

⎫
⎬

⎭dτ

= [J(Δt)]1
(
[G]11

{
Ẋ0

}
1 + [N]11{X0}1

)

+ [J(Δt)]1
(
[D +G]12

{
Ẋ0

}
2 + [K +N]12{X0}2

)

+
[
J(Δt)

]

1

(
[G]11

{
ΔẊ

}
1 + [N]11

{
Ẋ0

}
1Δt

)

+
[
J(Δt)

]

1

(
[D +G]12

{
ΔẊ

}
2 + [K +N]12

{
Ẋ0

}
2Δt

)

+
[
J(Δt)

]

1

� t

2

(
[N11]

{
ΔẊ

}
1 + [K +N]12

{
ΔẊ

}
2

)
.

(13)

The 2n1 x n1 matrices [J(Δt)]1, [J(Δt)]1 and [J(Δt)]1 are
computed for the cited parabolic approximation:

[J(Δt)]1 =
∫ Δt

0

⎡

⎣
[Ψ]1[V(Δt − τ)]1[Ψ]T1

[Ψ]1
[
V̇(Δt − τ)

]
1[Ψ]T1

⎤

⎦dτ,

[
J(Δt)

]

1
=
∫ Δt

0

⎡

⎣
[Ψ]1[V(Δt − τ)]1[Ψ]T1

[Ψ]1
[
V̇(Δt − τ)

]
1[Ψ]T1

⎤

⎦ τ

Δt
dτ,

[
J(Δt)

]

1
=
∫ Δt

0

⎡

⎣
[Ψ]1[V(Δt − τ)]1[Ψ]T1

[Ψ]1
[
V̇(Δt − τ)

]
1[Ψ]T1

⎤

⎦
(
τ

Δt

)2

dτ.

(14)

In (14) the approximations are smoothened by solving
the convolution integral. Note that only those submatrices of
[Λ(Δt)]1 are involved, which correspond to initial impulses.
(8) now becomes

{ΔZ}1 = ([U(Δt)]1 − [I]){Z0}1 + {ΔZE}1

− [J(Δt)]1([N]11{X0}1 + [K +N]12{X0}2)

−
(

[J(Δt)]1[G]11 +
[
J(Δt)

]

1
[N]11Δt

){
Ẋ0

}
1

− ([J(Δt)]1[D +G]12)
{
Ẋ0

}
2

−
([
J(Δt)

]

1
[K +N]12Δt

){
Ẋ0

}
2

−
([
J(Δt)

]

1
[G]11 +

Δt

2

[
J(Δt)

]

1

)
[N]11

{
ΔẊ

}
1

−
([
J(Δt)

]

1
[D +G]12

){
ΔẊ

}
2

−
(
Δt

2

[
J(Δt)

]

1

)
[K +N]12

{
ΔẊ

}
2,

(15)

where

{ΔZE}1 =
∫ Δt

0
[U(Δt − τ)]

⎧
⎨

⎩

{0}
[M]−1

11 {RE}1

⎫
⎬

⎭dτ, (16)

takes account for the imposed excitation loading. The
algebraic manipulations of putting over {ΔX}1 to the left-
hand side of (15) and solving for {ΔZ}1 finally lead to the
compact form:

[C]1{ΔZ}1 = [C0]1{Z0}1 −
[
Cf 0

]

1
{Z0}2

−
[
Cf

]

1
{ΔZ}2 + {ΔZE}1.

(17)

The form of the used dummy matrices depends on
the applied approximation of the time evolution of the
coordinate, and for the given case of (12) these matrices are
computed by

[C]1 = [I] +
[

[0]
[
J(Δt)

]

1
[G]11 +

Δt

2

[
J(Δt)

]

1
[N]11

]
,

[C0]1 = [U]1 − [I]

−
[

[J]1[N]11 [J]1[G]11 +
[
J
]

1
[N]11Δt

]
,

[
Cf 0

]

1
= [[J]1[K +N]12 [0]]

+
[

[0] [J]1[D +G]12 +
[
J
]

1
[K +N]12Δt

]
,

[
Cf

]

1
=
[

[0]
[
J
]

1
[D +G]12 +

Δt

2

[
J
]

1
[K +N]12

]
.

(18)

The matrix [C]1 in (17) results from the gyroscopic and
circulatory terms at the right hand side of (7). Usually the
time-step is kept constant during the coarse of computation.
In this case the dummy matrices occuring in (18) are calcu-
lated only once, before the beginning of the time-stepping
procedure. In case of a linear substructure with a large
number of degrees-of-freedom, the modal expansion of (10)
can be performed with a reduced base of eigenvectors. An
analysis involving modal synthesis can save considerable cal-
culation time with only a small reduction in computational
accuracy, see Holl [13] for the case without substructuring.
For the application of the modal synthesis technique to this
method further investigations are performed.

4. Formulation for the Substructure with
Nonlinear Restoring Forces

The equations of motion of substructure 2 again are repre-
sented as a linear system with symmetric matrices which are
excited by external, induced, and nonlinear forces:

[M]22
{
Ẍ
}

2 + [D]22
{
Ẋ
}

2 + [K]22{X}2

= {rE}2 −
{
f
}

2 − [G]22
{
Ẋ
}

2 − [N]22{X}2 − {rN}.
(19)

The increment of the state-vector {ΔZ}2 is found from
(17) simply by changing the indices and extension for the
nonlinear restoring force:

[C]2{ΔZ}2 = [C0]2{Z0}2 −
[
Cf 0

]

2
{Z0}1 −

[
Cf

]

2
{ΔZ}1

+ {ΔZE}2 − {ΔZN}.
(20)
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Finally the increment of the displacement due to the
nonlinearity is computed by

{ΔZN} = [J(Δt)]2{rN0} +
[
J(Δt)

]

2
{ΔrN}, (21)

where it is assumed that the nonlinear force varies linear
within the time step.

Again the dummy matrices are computed from (18),
where the indices have to be changed properly. Equation (17)
has to be premultiplied by the inverse of [C]1. This matrix
inversion is necessary in the following, as the increment
of the state vector of substructure 1 of (17) is inserted in
(20). The dimension of this matrix [C]1 can be reduced
essentially if modal reduction is applied, which again makes
the procedure more efficient. Again [C]−1

1 is computed
once before the beginning of the time stepping procedure.
After combining the formulations of both substructures
the present nonlinear substructure technique results in
an incremental algorithm with a minimum number of
nonlinear equations. The reformulated (17) in incremental
form is inserted into the master (20), which leads to

[B]2{ΔZ}2 +
[
J(Δt)

]

2
{ΔrN} = {P}2, (22)

where the dummy linear system matrix

[B]2 = [C]2 +
[
Cf

]

2
[C]−1

1

[
Cf

]

1
(23)

and the dummy load vector

{P}2 = {ΔZE}2 −
[
Cf

]

2
[C]−1

1 {ΔZE}1

+
(

[C0]2 −
[
Cf

]

2
[C]−1

1

[
Cf 0

]

1

)
{Z0}2

−
([
Cf 0

]

2
+
[
Cf

]

2
[C]−1

1 [C0]1

)
{Z0}1

− [J(Δt)]2{rN0}

(24)

are known at the beginning of the time step. Additionally
the matrix [B]2 has the dimension n2 × n2 and has to
be triangularized. Equation (22) is suitable for general
nonlinearities of the type {rN} = {rN ({Z}1, {Z}2)} and
can be solved using any appropriate iteration procedure
for a system of nonlinear equations. Here the modified
Newton-Raphson method is implemented, see Bathe [14].
The increment of the vector of the nonlinear force in (22)
is computed by

{ΔrN} = {rN ({Z0}1 + {ΔZ}1, {Z0}2 + {ΔZ}2)}
− {rN ({Z0}1, {Z0}2)},

(25)

where {ΔZ}1 is expressed by (8) and the modified (17) as a
linear function of {ΔZ}2, which is known from (22).

When including an adaptive time stepping procedure,
see, for example, Crisfield [15], all the dummy matrices
used in the above algorithm have to be computed after
a change in the time step, which is similar to the direct
numerical integration procedures. It is mentioned that the
modal analysis for the substructures has to be computed only
once.

0

0.2

0.4

0.6

0.8

1

A
bs

ol
u

te
va

lu
es

of
th

e
ei

ge
nv

al
u

es

0 0.5 1 1.5

Dimensionless time step Δt/T1

Figure 1: Spectral Radius for the Present Method.

5. Stability Analysis of the Procedure

The analysis of the numerical behaviour of this substruc-
ture method involves the numerical dissipation, numerical
dispersion, and stability, see, for example, Hughes [16] and
Holl [13]. In the following the stability characteristics of
the method are demonstrated. Equations (17) and (20) can
be reformulated with the additional assumption that the
external excitation and nonlinear forces are zero:

Δ{Z} =
⎧
⎨

⎩

Δ{Z}1

Δ{Z}2

⎫
⎬

⎭ =
([
Ũ(Δt − τ)

]
− [I]

)
⎧
⎨

⎩

{Z0}1

{Z0}2

⎫
⎬

⎭. (26)

[Ũ(Δt − τ)] is the resulting approximate transfer matrix.
A comparison with the corresponding exact transfer matrix
formulation

Δ{Z} = ([U(Δt − τ)]− [I]){Z0} (27)

shows the effect of the approximation of a part of the
integral. The stability analysis for this procedure defines
that the absolute value of the eigenvalues λi, which is also
called spectral radius ρ, has to be less than one: ρ =
max |λi| ≤ 1. This result also follows from the corresponding
Jordan form of the transfer matrix, see Bathe [14], when
considering (26) for n time steps, see Holl [13]. For the
present approximations the formulation of (26) can be
derived and the eigenvalues of this approximate transfer
matrix are computed. For sake of simplicity an example with
two degrees of freedom is considered, which is described by

the matrices [M] =
[ 1 0

0 1

]
, [D+G] =

[ 0.2 0.4

−0.4 0.3

]
and [K+N] =

[
1 −1

−1 4

]
. The approximate transfer matrix was computed

and analysed with respect to the spectral radius. Figure 1
shows the results for the absolute values of the eigenvalues for
different dimensionless time steps. The exact solution of the
eigenvalues is marked by dashed lines. The good correlation
between the exact and the approximate results can be seen
in the considered range even for very large time steps. The
parameter T1 is calculated from T1 = 2π

√
M11/K11.
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Figure 2: Geometry of the Rotordynamic System.
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Figure 3: Horizontal Acceleration at the Bearings.

6. Numerical Example

The presented method is applied to the rotordynamic system
sketched in Figure 2. The rotor is made of steel, with Young’s
modulus E = 2.1 1011N/m2, Poisson’s ratio 0.3, and mass
density ρSteel = 7850 kg/m3. The stationary angular speed
of the rotor is 1500 rotations per minute. Equation (1) is
derived using Finite Elements for the rotordynamic system,
where stiffness and gyroscopic matrices are taken for rotating
beam elements and rotor elements. As mentioned above
a lumped-parameter mass matrix is used, see Leung [12].
Assuming short bearings, the nonlinear bearing behaviour
is described according to the formulas of Childs [17], where
ε0 = 0.5 is taken for the steady state motion. This steady
state is disturbed by the sudden occurrence of a horizontal
acceleration component at the bearings, which is given in
Figure 3.

Results of the numerical computations with the above
semianalytic procedure are shown in Figures 4, 5 and 6,
where the time-evolution of the motion at the left and right
disk of the rotordynamic system and at the right bearing is
shown. The actual displacements are shown in dimensionless
form. They are related to the static displacement due to the
weight of the rotor itself. The motion is drawn in a plane
perpendicular to the rotor axis and for a few cycles of motion.
A time-step of 0.002 millisecond has been used so that a
converged result is guaranteed.
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A comparison to the unconditionally stable version of
the Newmark method shows that the effort with the present
substructure algorithm is about 20% less than that with the
Newmark method, when converged results are considered.

7. Conclusion

The application of the substructure technique in the pre-
sented procedure results in a semi-analytic method, which
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Figure 6: Motion at the Right Bearing.

allows for efficient computation of nonlinear rotordynamic
systems. Only a few restrictions to the parameters of the
system have been introduced. The system matrices can be
very general, as for example, the nonproportional damping is
considered in the generalized gyroscopic matrix. The stability
of the resulting method is shown for the case of a benchmark
system. Modal reduction can be implemented easily in the
resulting formulation as the nonlinearity is treated in a
suitable manner.

Nomenclature

[M]: Global mass matrix
[D]: Global damping matrix
[G]: Global gyroscopic matrix
[K]: Global stiffness matrix
[N]: Global stiffness and circulatory

matrix
{X}: Global configuration vector
{Ẋ}: Global velocity vector
{Ẍ}: Global acceleration vector
{RN}: Nonlinear restoring force
{RE}: Externally imposed force
{ f }1: Coupling forces of substructure 1
[F]1: Coupling matrix of substructure 1
{P}1: Generalized load vector of

substructure 1

{Z}1 =
{ {X}1

{Ẋ}1

}
: Global state space vector of substr. 1

Δ{Z}1: Increment of the state space vector
{Z0}1: Initial value of {Z}1

{Y(t)}1: Modal state space vector
{Y}1: Vector of modal coordinates
[U(Δt)]: Global transition matrix
[U(Δt)]1: Transition matrix of substructure 1
[Ũ(Δt − τ)]: Approximate global transition matrix
[Λ(Δt)]1: Modal transition matrix of

substructure 1
[J(Δt)]1: Transition matrix for step load
[J(Δt)]1: Transition matrix for ramp load

[J(Δt)]1: Transition matrix for parabolic load

[C]1: Dummy matrix
[C0]1: Dummy matrix
[Cf 0]1: Dummy matrix
[Cf ]1: Dummy matrix
[B]2: Dummy system matrix
[Φ(t)]1: Total modal matrix of the

substructure 1
[Ψ]1: Modal matrix of the substructure 1
[I]: Identity matrix
[W(Δt)]1: Diagonal matrix of the step response
[V(Δt)]1: Diagonal matrix of the impulse

response
ωi1: ith modal eigenfrequency of substr. 1
σi1: ith modal damping of substructure 1
νi1: ith damped modal eigenfrequency
n1: Degrees of freedom of substructure 1
λ1i: ith eigenvalue of the substructure 1.
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