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1. Introduction

Nonlinear Schrödinger (NLS) equations appear in a great array of contexts [1], for example,
in semiconductor electronics [2, 3], optics in nonlinear media [4], photonics [5], plasmas [6],
the fundamentation of quantum mechanics [7], the dynamics of accelerators [8], the mean
field theory of Bose-Einstein condensates [9, 10], or in biomolecule dynamics [11]. In some of
these fields and in many others, the NLS equation appears as an asymptotic limit for a slowly
varying dispersive wave envelope propagating a nonlinear medium [12].

The study of these equations has served as the catalyzer for the development of new
ideas or even mathematical concepts such as solitons [13] or singularities in partial differential
equations [14, 15].

In the last years, there has been an increased interest in a variant of the standard
nonlinear Schrödinger equation, that is, the so-called nonlinear Schrödinger equation with
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inhomogeneous nonlinearity, which is

iψt = −ψxx + g(x)|ψ|2ψ, (1.1)

with x ∈ R, where ψ(t, x) is a complex valued function and g(x) is a real function.
This equation arises in different physical contexts such as nonlinear optics and dynamics

of Bose-Einstein condensates with Feschbach resonance management [16–26]. Different aspects
of the dynamics of solitons in these contexts have been studied such as the emission of solitons
[16, 17] and the propagation of solitons when the space modulation of the nonlinearity is a
random [18], periodic [22], linear [19], or localized function [21]. Equation (1.1) admits special
solutions called standing waves, solitary waves, or bright solitons of the form ψ(t, x) = u(x)eiλt,
where the profile u is time-independent. The function u satisfies

−uxx + λu + g(x)u3 = 0. (1.2)

The study of the existence of decaying solutions for equations or systems like (1.2) has
gained the interest of many mathematicians in recent years. Many results are available for
semilinear elliptic equations in R

N . Without being exhaustive, we refer to [27–35].
At this point, it should be noticed that a way to get compactness in semilinear elliptic

problems in unbounded domains is to assume the invariance of the coefficients under a
compact group of symmetries. Indeed, dealing with the following equation:

−Δu + a(x)u = b(x)|u|p−1u (1.3)

with x ∈ R
N , Strauss radial compact imbedding (see, e.g., [36]) implies the existence of a

positive radial ground state as soon as a and b are radially symmetric, positive, and bounded.
More sophisticated conditions have been exploited, for example, in [37]. However, these results
do not apply to the one-dimensional case. Indeed, assuming radial symmetry means that
the coefficients a and b are even functions. One can therefore look for even solutions, but
H1(0,+∞) do not have better compactness properties than H1(R). Nevertheless, symmetry is
always a simplifying condition and it has been extensively used for finding connecting orbits in
reversible Hamiltonian systems [38]. In [39], a unique positive homoclinic solution is obtained
for the model equation

−u′′ + a(x)u = b(x)u3, (1.4)

assuming that a and b are even and bounded from below by a positive constant such that
xa′(x) > 0 and xb′(x) < 0, for every x /= 0. Analytical solutions of (1.4) have been calculated
in [40, 41] for different functions a and b. Finally, we want to mention another approach to
the problem. In [42], Torres, motivated by the study of the propagation of electromagnetic
waves through a multilayered optical medium, proved the existence of two different kinds of
homoclinic solutions to the origin in a Schrödinger equation with a nonlinear term, by using a
fixed-point theorem in cones.

Our purpose is to complete the mentioned bibliography with a variant of the cubic-
quintic nonlinear Schrödinger equation. The cubic-quintic nonlinear Schrödinger equation
with inhomogeneous nonlinearities is

−u′′ + λu = a(x)u3 + b(x)u5. (1.5)
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This equation can be seen as a particular case of the so-called nonpolynomial
Schrödinger equation (NPSE) [43]. Really, in the case of weak nonlinearity, the NPSE can be
expanded, which leads to a simplified 1D equation with a combination of cubic and quintic
terms [44]. In this form, we can obtain (1.5).

Equation (1.5) has a lot of applications to the mean field theory for Bose-Einstein
condensates [45] and nonlinear optics [4]. We want to remark that in the free space, that is,
a(x) = 4 and b(x) = 3σ, where σ = ±1 (see, e.g., [46]), (1.5) has a localized exact solution:

u(x) =
λ1/2

(
1 +
√

1 + σλcosh
(
2
√
λx

))1/2
. (1.6)

On the other hand, it is known that for (1.5) some soliton solutions become bistable (i.e.,
singular solitons with the same carried power but different propagation parameters) [47–50].

An interesting problem arises when we consider the time-dependent cubic-quintic
nonlinear Schrödinger equation

iψt = −ψxx − g1(x)|ψ|2ψ − g2(x)|ψ|4ψ (1.7)

since the problem of collapse appears. In the presence of the self-focusing quintic term, collapse
is inevitable, and it may affect the stability of solitons against small perturbations.

It is known that (1.7), for gi(x) ≡ Ci = constant, i = 1, 2 (homogeneous case), has no
blowup solution in the class

{
ψ ∈ H1(R) | ‖ψ(0, x)‖L2 < ‖R‖L2

}
, (1.8)

where R is the ground state of the equation

−u′′ + λu − C1u
3 − C2u

5 = 0. (1.9)

In the class
{
ψ ∈ H1(R) | ‖ψ(0, x)‖L2 = ‖R‖L2

}
, (1.10)

one has that (1.7) has a unique blowup solution (see, e.g., [14]).
In any case, in this paper, we focus on the proof of the existence of solutions of (1.5), and

we will not consider the problem of collapse and stability of the solutions of (1.7), which is an
open problem in the case of inhomogeneous nonlinearity and will be studied elsewhere.

Thus, in this paper, we will prove the existence of bright solitons for (1.5). To do it, we
will use critical point theory (the mountain pass theorem). Thus, we will use a variational
approach to our equation, and prove that it satisfies the conditions of the mountain pass
theorem. Moreover, using bifurcation theory, we will prove that when the chemical potential
λ→ 0+, ‖uλ‖2→ 0. Finally, we will solve this equation by using a numerical scheme, called
imaginary time method.

The rest of the paper is organized as follows. In Section 2, we use a variational
approach to the stationary cubic-quintic nonlinear Schrödinger equation with inhomogeneous
nonlinearity, and some preliminary results are collected. Section 3 contains the main result
about the existence of positive solutions. Section 4 deals with a result about bifurcation theory.
Finally, Section 5 contains a numerical scheme to solve the time-dependent cubic-quintic
nonlinear Schrödinger equation with inhomogeneous nonlinearity.
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2. The variational approach

In this paper, we will study the cubic-quintic nonlinear Schrödinger equation with inhomoge-
neous nonlinearities gi(x), i = 1, 2 (CQINLSE), on R, that is,

iψt = −ψxx − g1(x)|ψ|2ψ − g2(x)|ψ|4ψ, (2.1)

with gi : R→R, i = 1, 2, which satisfies the following properties:

gi ∈ L∞(R), gi(x) > 0, lim
|x|→∞

gi(x) = 0, i = 1, 2. (2.2)

The solitary wave solutions of (2.1) are given by ψ(x, t) = eiλtu(x), where u(x) is the
solution of

−uxx + λu = g1(x)u3 + g2(x)u5, (2.3)

which can be identified as bright solitons due to their boundary conditions:

u(x) −→ 0 asx −→ ±∞. (2.4)

In this paper, we search for positive solutions to λ > 0. Thus, the following theorem gives
the existence of positive solitary waves, for λ > 0.

Theorem 2.1 (existence of a positive solution). When λ > 0, (2.3) has a positive solution u ∈
H1(R).

In order to prove this theorem, we will introduce a set of preparatory definitions and
lemmas. Formally, (2.3) is the Euler-Lagrange equation of the functional J : H1(R)→R,
defined by

J(u) =
1
2

∫

R

[
|ux|2 + λ|u|2

]
dx − 1

4

∫

R

g1(x)|u|4dx −
1
6

∫

R

g2(x)|u|6dx. (2.5)

We define

‖u‖2 =
∫

R

|ux|2 + λ|u|2dx,

Ψ1(u) =
1
4

∫

R

g1(x)|u|4dx,

Ψ2(u) =
1
6

∫

R

g2(x)|u|6dx.

(2.6)

We can therefore rewrite the functional (2.5) in the following way:

J(u) =
1
2
‖u‖2 −Ψ1(u) −Ψ2(u). (2.7)

Remark that H1(R) ↪→ Lp(R), p ≥ 2, and thus J is well defined on H1(R) and is smooth.
It is very easy to check that, for each fixed λ > 0, ‖·‖ is an equivalent norm to that which is
usual in H1(R). Clearly, J is of C2 class and its critical points give rise to solutions of (2.3) such
that lim|x|→∞u = 0.
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3. Existence of a positive solution

In order to obtain critical points of J , we will use the mountain pass theorem [51]. This
theorem deals with the existence of critical points of a functional J ∈ (C1(E),R), where E is
a Hilbert space (although, in general, E can be a Banach space), which satisfies the following
two ”geometric” assumptions.

(MP1) There exist r, ρ > 0 such that J(u) ≥ ρ, for all u ∈ E, with ||u|| = r.

(MP2) There exists v ∈ E, ||v|| > r, such that J(v) ≤ 0 = J(0).

Moreover, it assumes the compactness condition (PS)c, called the Palais-Smale condition at
level c.

Every sequence un such that

(1) J(un)→ c,

(2) J ′(un)→ 0

has a converging subsequence. J ′(u) is called the derivative of J at u, which exists by the Riesz
theorem and is given by the following expression:

(
J ′(u) | ζ

)
= (u | ζ) −

(
Ψ′1(u) | ζ

)
−
(
Ψ′2(u) | ζ

)
, ∀ζ ∈ H1(R), (3.1)

where

(
Ψ′1(u) | ζ

)
=
∫

R

g1(x)u3ζ,

(
Ψ′2(u) | ζ

)
=
∫

R

g2(x)u5ζ.

(3.2)

The sequences satisfying (1),(2) are called (PS)c sequences.
Consider the class of all the paths joining u = 0 and u = v:

Γ =
{
γ ∈ C

(
[0, 1], E

)
: γ(0) = 0, γ(1) = v

}
, (3.3)

and set

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)), (3.4)

with t being the variable of the curve γ . For reader’s convenience, we will enunciate a
simplified version of the mountain pass theorem (see [51] for the general setting).

Theorem 3.1 (mountain pass theorem). If J ∈ C1(E,R) satisfies the geometric conditions (1.1) and
(1.2) and the (PS)c Palais-Smale condition holds, then c is a positive critical level for J . Precisely, there
exists z ∈ E such that J(z) = c > 0 and J ′(z) = 0. In particular, z/= 0 and z/=v.

Consider the following lemma.

Lemma 3.2. The functional J satisfies the geometric assumptions of the mountain pass theorem.
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Proof. (1) From the definition of J , the hypothesis (2.2) on gi, i = 1, 2, and the Sobolev
embedding H1(R) ↪→ Lp(R), p ≥ 2 (see, e.g., [36]), we obtain

J(u) =
1
2
‖u‖2 −Ψ1(u) −Ψ2(u) ≥

1
2
‖u‖2 − C‖u‖4 −M‖u‖6, (3.5)

where C and M are positive constants. As a consequence, there exist r, ρ > 0 such that

J(u) ≥ ρ, ∀u ∈ H1(R), with ‖u‖ = r, (3.6)

which proves that J verifies (MP1).
(2) Consider v0 ∈ H1(R) \ {0}, and let s be a parameter such that for s > 0,

Jλ
(
sv0

)
=
s2

2
∥∥v0

∥∥2
λ − s

4Ψ1
(
v0
)
− s6Ψ2

(
v0
)
↘ −∞ as s↗∞. (3.7)

As a consequence, taking v = s0v0 with s0 � 1, we obtain Jλ(v) < 0 = Jλ(0). It follows that
J(sv)→ −∞ as s→ +∞.

In order to apply the mountain pass theorem (2), we have to study (PS)c sequences.

Lemma 3.3. Palais-Smale sequences are bounded.

Proof. From condition (1) of the definition of (PS) sequences, J(un) ≤ k and we obtain

∥∥un
∥∥2 ≤ 2k + 2Ψ1

(
un

)
+ 2Ψ2

(
un

)
. (3.8)

From J ′(un)→ 0 and using the definition of J ′, we infer

∣∣∥∥un
∥∥2 − 4Ψ1

(
un

)
− 6Ψ2

(
un

)∣∣ =
∣∣(J ′

(
un

)
| un

)∣∣ ≤
∥∥J ′

(
un

)∥∥∥∥un
∥∥ = ε

∥∥un
∥∥, (3.9)

for ε > 0. Thus,
∫

R

g1(x)u4
n +

∫

R

g2(x)u6
n ≤

∥∥un
∥∥2 + ε

∥∥un
∥∥. (3.10)

Using (3.8), we obtain

∥∥un
∥∥2 ≤ 2k +

1
2

∫

R

g1(x)u4
n +

1
3

∫

R

g2(x)u6
n

≤ 2k +
1
2

[∫

R

g1(x)u4
n +

∫

R

g2(x)u6
n

]

≤ 2k +
1
2
∥∥un

∥∥2 +
ε

2
∥∥un

∥∥,

(3.11)

and thus, for all n and some constant k, we deduce that

1
2
∥∥un

∥∥2 ≤ 2k +
ε

2
∥∥un

∥∥ (3.12)

and the boundedness of (PS) sequences follows.



Juan Belmonte-Beitia 7

Lemma 3.4. Ψi is weakly continuous and Ψ′i is compact, for each i = 1, 2.

Proof. Let un ⇀ u weakly in H1(R). As any weakly convergent sequence is bounded, that is,
there exists a constantK > 0 such that ‖un‖H1(R) ≤ K, then, according to the Sobolev imbedding
theorem, constants C,M > 0 must exist such that ‖un‖L4(R) < C and ‖un‖L6(R) < M. So, given
ε > 0, from condition (2.2), it follows that there exist R1, R2 > 0 such that

∫

|x|≥R1

g1(x)
(
|un|4 − |u|4

)
dx ≤ ε,

∫

|x|≥R2

g2(x)
(
|un|6 − |u|6

)
dx ≤ ε.

(3.13)

On the other hand, let BR1 and BR2 be the open balls of radii R1 and R2, respectively.
Since H1(BR1) is compactly embedded in L4(BR1) and H1(BR2) is also compactly embedded
in L6(BR2), we have that un→u strongly in L4(BR1) and L6(BR2), respectively. Moreover, there
exists a constant M > 0 such that

∣∣∣∣

[∫

|x|≤R1

g1(x)
∣∣un

∣∣4
dx

]1/4

−
[∫

|x|≤R1

g1(x)|u|4dx
]1/4∣∣∣∣

=
∣∣∥∥g1/4

1 un
∥∥
L4(BR1 )

−
∥∥g1/4

1 u
∥∥
L4(BR1 )

∣∣ ≤
∣∣∥∥g1/4

1 (un − u)
∥∥
L4(BR1 )

∣∣ ≤M
∥∥un − u

∥∥
L4(BR1 )

≤ ε,
(3.14)

for ε > 0 and a sufficiently large n. It is easy to check that a similar inequality exists for
g2(x). Putting together the two preceding inequalities, it follows that Ψi, i = 1, 2, is weakly
continuous.

The proof that Ψ′i, i = 1, 2, is compact is similar. Let

∥∥Ψ′1(un) −Ψ
′
1(u)

∥∥ = sup
‖ϕ‖≤1

{∫
g1(x)

(∣∣un
∣∣3 − |u|3

)
ϕ dx

}
, (3.15)

for ϕ ∈ H1(R). Using the Holder inequality, we obtain
∥∥Ψ′1(un) −Ψ

′
1(u)

∥∥ ≤
∥∥g1(x)

(
|un|3 − |u|3

)∥∥
Lp(R)‖ϕ‖Lq(R), (3.16)

with 1/p + 1/q = 1, p ≥ 2, q < ∞. Using the arguments previously exposed, we immediately
show that

∥∥g1(x)
(∣∣un

∣∣3 − |u|3
)∥∥

Lp(R) ≤ ε, (3.17)

for n� 1 and ε > 0. This shows that Ψ1′ is a compact operator. The proof for Ψ2′ is similar.

We are now prepared to prove Theorem 2.1.
Let un be a sequence that verifies the Palais-Smale conditions (1) and (2). Since ‖un‖ ≤ K,

we have that un ⇀ u weakly in H1(R). According to Lemma 3.4, Ψ′i, i = 1, 2, is compact.
Therefore, there exists a subsequence, still denoted as un, such that Ψ′i(un)→Ψ′i(u). On the
other hand, we know that

J ′(u) = u −Ψ′1(u) −Ψ
′
2(u). (3.18)
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Hence, we deduce that

un = J ′
(
un

)
+ Ψ′1

(
un

)
+ Ψ′2

(
un

)
. (3.19)

As J ′(un)→ 0, since un is a Palais-Smale sequence, we obtain

un −→ Ψ′1(u) + Ψ′2(u), (3.20)

proving that (PS)c holds for every c.
We can thus apply the mountain pass theorem (2) since the conditions of this theorem

are satisfied, and there exists uλ ∈ H1(R) such that J(uλ) = c and J ′(uλ) = 0. The positivity is
clear, using the maximum principle.

4. Bifurcation from the positive solution

By using the bifurcation theory (see, e.g., [52, 53] for an introduction to bifurcation theory), we
can investigate the behavior of the positive solution uλ when λ↘ 0.

Let c(λ) denote the mountain pass critical level of J for the positive solution uλ. We
suppose that gi(x), i = 1, 2, moreover to verify condition (2.2), satisfies the following: there
exist Ci > 0, Ki > 0, i = 1, 2, and τ1 > 1 and τ2 ∈ (0, 1) such that

gi(x) ≥ Ki|x|−τi , ∀|x| ≥ Ci, i = 1, 2. (4.1)

Thus, we are able to prove the following lemma.

Lemma 4.1. If gi(x), i = 1, 2, satisfies conditions (2.2) and (4.1), then c(λ)→ 0 as λ→ 0+.

Proof. Fix the function Φ(x) = |x|e−|x| and set uα(x) = Φ(αx). There hold

∥∥u′α
∥∥2
L2(R) = αA1, A1 =

∫

R

|Φ′|2dx,

∥
∥uα

∥
∥2
L2(R) = α

−1A2, A2 =
∫

R

Φ2dx.

(4.2)

One thus finds that

∥∥uα
∥∥2 =

1
2
∥∥u′α

∥∥2
L2(R) + λ

∥∥uα
∥∥2
L2(R) =

1
2
A1α + λA2α

−1. (4.3)

If we take λ = α2, then we obtain ‖uα‖2 = A3α, λ > 0, for A3 = 1/2A1 +A2 > 0. Moreover,
by using (4.1), we deduce

Ψ1
(
uα

)
=

1
4

∫

R

g1(x)
∣∣uα(x)

∣∣4
dx ≥ 1

4
K1

∫

|x|≥C1

|x|−τ1
∣∣uα(x)

∣∣4
dx,

Ψ2
(
uα

)
=

1
6

∫

R

g2(x)
∣
∣uα(x)

∣
∣6
dx ≥ 1

6
K2

∫

|x|≥C2

|x|−τ2
∣
∣uα(x)

∣
∣6
dx.

(4.4)
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By changing variable y = αx, we discover that

∫

|x|≥C1

|x|−τ1
∣∣Φ(αx)

∣∣4
dx =

∫

|y|≥C1α

∣∣∣
∣
y

α

∣∣∣
∣

−τ1∣∣Φ(y)
∣∣4
α−1dy ≥ ατ1−1

∫

|y|≥C1

|y|−τ1
∣∣Φ(y)

∣∣4
dx,

∫

|x|≥C2

|x|−τ2
∣∣Φ(αx)

∣∣6
dx =

∫

|y|≥C2α

∣∣∣∣
y

α

∣∣∣∣

−τ2∣∣Φ(y)
∣∣6
α−1dy ≥ ατ2−1

∫

|y|≥C2

|y|−τ2
∣∣Φ(y)

∣∣6
dx,

(4.5)

where the domain of integration can be changed since 0 < α ≤ 1. Therefore, there exist A5 > 0
and A6 > 0 such that Ψ1(uα) ≥ K1α

τ1−1A5/4 and Ψ2(uα) ≥ K2α
τ2−1A6/6. Putting together all the

preceding estimates, we obtain

J
(
uα

)
=

1
2
‖uα‖2 −Ψ1

(
uα

)
−Ψ2

(
uα

)
≤ 1

2
A3α −

K1A5

4
ατ1−1 − K2A6

6
ατ2−1. (4.6)

Recall that

c(λ) = inf
γ∈Γ

max
0≤t≤1

J
(
γ(t)

)
, (4.7)

where Γ is the class of all paths joining 0 and v, J(v) ≤ 0. Let us consider the following
continuous curve:

γ : [0, 1] −→ H1(R),

t −→ tMuα,
(4.8)

where M is a constant, M � 1. It is clear that γ is a path in Γ since it joins 0 and vα =Muα and
J(Muα) ≤ 0, for sufficiently large M. Then,

c(λ) ≤ max
0≤t≤1

J
(
tMuα

) (
λ = α2). (4.9)

We now use the above estimate to evaluate max0≤t≤1J(tMuα). There holds

J
(
tMuα

)
≤ β(t) = 1

2
A3t

2M2α − 1
4
K1A5α

τ1−1t4M4 − 1
6
K2A6α

τ2−1t6M6. (4.10)

The maximum of β is achieved at

tmax = ±M

√√√√
√−K1A5α

τ1−τ2

2K2A6
+

√√
√
√K2

1A
2
5α

2τ1−2τ2

4K2
2A

2
6

+
α1−τ2

K2A6
. (4.11)

Therefore,

c(λ) ≤ 1
2
A3t

2
maxM

2α − 1
4
K1A5α

τ1−1t4maxM
4 − 1

6
K2A6α

τ2−1t6maxM
6, (4.12)

with λ = α2. Since τ1 > 1 and τ2 ∈ [0, 1), we find that c(λ)→ 0 as λ = α2→ 0+.
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We have proved that the MP critical point uλ satisfies J(uλ) = c(λ)→ 0 as λ→ 0+.
Moreover, multiplying (2.3) by uλ, using the fact that u′(±∞) = 0, since u(±∞) = 0 and

by integration, we obtain
∫

R

∣∣uλ
∣∣2
dx + λ

∫

R

u2
λdx =

∫

R

g1(x)u4
λdx +

∫

R

g2(x)u6
λdx (4.13)

or

J
(
uλ

)
= Ψ1

(
uλ

)
+ 2Ψ2

(
uλ

)
. (4.14)

As J(uλ)→ 0 as λ→ 0+, it must be verified that Ψ1(uλ)→ 0 and Ψ2(uλ)→ 0 as λ→ 0+. Thus,
‖uλ‖→ 0 as λ→ 0+.

We have proved that when λ→ 0+, ‖uλ‖2→ 0. In fact, we can prove that, for λ = 0, if there
exist solutions which are different from the trivial ones, these solutions would have an infinite
amount of nodes. To do so, we will first prove the nonexistence of positive solutions of the
equation

−uxx − g1(x)u3 − g2(x)u5 = 0, u(±∞) = 0. (4.15)

Let u be a strict positive solution of (4.15). Then,

uxx = −g1(x)u3(x) − g2(x)u5 < 0, ∀x ∈ R. (4.16)

Let x0 be a global maximum point of the solution u, that is, u(x0) = maxx∈Ru(x) > 0.
This maximum point clearly exists owing to the boundary conditions. Then, u′(x0) = 0 and,
moreover, u′′(x) < 0, for all x ∈ R. Then, from [x0,+∞), u must be decreasing and therefore
u′(x) < 0, for all x ∈ [x0,+∞). Then, u must cross the x-axis since u′′(x) < 0, for all x ∈ R, which
contradicts the initial hypothesis.

As

uxx = −g1(x)u3(x) − g2(x)u5(x) < 0 if u > 0,

uxx = −g1(x)u3(x) − g2(x)u5(x) > 0 if u < 0,
(4.17)

it is clear that the solution has an infinite amount of nodes.

5. Numerical method

In this section, we will solve (2.1) by using an imaginary time method. This method allows us
to calculate the positive solution, or ground state, of (2.3).

First, we have the change t→ − it in (2.1). Thus, we obtain

ut = uxx + g1(x)|u|2 + g2(x)|u|4u. (5.1)

We must study (5.1) numerically. To this end, we have developed a Fourier pseudospec-
tral scheme for the discretization of the spatial derivatives combined with a split-step scheme
to compute the time evolution. Split-step schemes are based on the observation that many
problems may be decomposed into exactly solvable parts and on the fact that the full problem
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may be approximated as a composition of the individual problems. For instance, the solution
of partial differential equations of the type ∂tu(x, t) = N(t, x, u, ∂x, . . .)u = (A + B)u can be
approximated from the exact solutions of the problems ∂tu = Au and ∂tu = Bu.

Let us decompose the evolution operator in (5.1) by taking [54, 55]

A = ∂xx,

B = g1(x)|u|2 + g2(x)|u|4.
(5.2)

To proceed with split-step-type methods, it is necessary to compute the explicit form of
the operators e(t−t0)A and e(t−t0)B. To obtain the action of the operators, we solve the subproblems

∂tu = ∂xxu,

∂tu = g1(x)|u|2u + g2(x)|u|4u.
(5.3)

Thus, after some algebra and defining the time step τ as τ = (t − t0)/c, c ∈ R, after a
suitable renaming, we obtain the explicit form of the operators

e(t−t0)A ≡ ecτA = F−1e−k
2cτF,

e(t−t0)B ≡ ecτB = e(g1(x)|u|2+g2(x)|u|4)(t−t0),
(5.4)

where F denotes the spatial Fourier transform. As we now have the explicit form of the
solutions of subproblems (5.3), we are able to obtain the positive solution of (2.1) to any degree
of accuracy. We have used the second-order splitting classical method whose equation is

u(x, t + τ) = eτA/2eτBeτA/2u(x, t) +O(τ3). (5.5)

This scheme has many advantages. First, it is more accurate than the numerical methods based
on finite difference [56]. Second, from the practical point of view, the calculation of the Fourier
transform, which is the most computer time-consuming step in the calculations, may be done
by using the fast Fourier transform (FFT). Thus, the computational cost of the method is of
order O(N2 logN), with N being the points’ number in each spatial direction of the grid
which is quite acceptable. The use of discrete transforms to represent the continuous Fourier
transform in (5.5) implicitly imposes periodic boundary conditions on u. However, since u
is expected to be negligible on the boundaries (otherwise the computational domain must
be enlarged), this is not an essential point. Another convenient property of this scheme is its
preservation of the L2-norm of the solutions.

Thus, the pictures in Figure 1 show the positive solutions of (2.1) for various g1(x), g2(x)
functions, which satisfy condition (2.2). For the first picture (Figure 1(a)),

g1(x) =
C1

1 + x2
,

g2(x) =
C2

1 + x4
,

(5.6)

with C1 = −1 and C2 = −1. For the second picture (Figure 1(b)),

g1(x) = C1e
−x2
,

g2(x) =
C2

1 + 2x2
,

(5.7)

with C1 = −1 and C2 = −1.
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Figure 1: Some stationary solutions of (2.1) for (a) g1(x), g2(x) functions given by (5.6), and (b) g1(x), g2(x)
functions given by (5.7) (see text).

6. Conclusions

In this paper, we have proved the existence of bright soliton or positive solutions of the cubic-
quintic nonlinear Schrödinger equations with inhomogeneous nonlinearities. In order to do
this, we have used a variational approach and a critical point theory. Moreover, by using
bifurcation theory, we have proved that the norm of the positive solution goes to zero as the
parameter λ tends to zero. Finally, by using an imaginary time method, we have numerically
solved the inhomogeneous nonlinear Schrödinger equation for different nonlinearities.
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