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Abstract. This paper describes the design and development of a software package supporting variable precision arithmetic as
a semantic extension to the Fortran 95 language. The working precision of the arithmetic supported by this package can be
dynamically and arbitrarily varied. The facility exploits the data-abstraction capabilities of Fortran 95 and allows the operations
to be used elementally with array operands as well as with scalars.
The number system is defined in such a way as to be closed under all of the basic operations of normal arithmetic; no program-
terminating numerical exceptions can occur. Precision loss situations like underflow and overflow are handled by defining special
value representations that preserve as much of the numeric information as is practical and the operation semantics are defined so
that these exceptional values propagate as appropriate to reflect this loss of information.
The number system uses an essentially conventional variable precision floating-point representation. When operations can be
performed exactly within the currently-set working precision limit, the excess trailing zero digits are not stored, nor do they take
part in future operations. This is both economical in storage and improves efficiency.

1. Introduction

The production of software to provide facilities
to support variable and potentially extreme precision
arithmetic has been an interest for a number of people
for many years [1]. To some extent, this might be said
to be a hobby for those who like playing with numbers
and computers. However, such facilities can be and
have been used in anger to solve real problems where
extremes of precision (accuracy substantially greater
than available with normal real arithmetic) are needed.

The standard languages of the past, with the excep-
tion of Ada and Algol 68, could support these facil-
ities only in the form of procedure libraries. These
were in general cumbersome to use; the comparison
between programming arithmetic in assembler and a
high level language is apt. The MP package by Brent
was made somewhat more usable by the production
of a pre-processor front-end that allowed more normal
arithmetic expressions to be translated into the nec-
essary library calls. The author’s Algol 68 package,
mlaritha, exploited the capabilities of that language to
provide a numeric datatype and operations in the form

of an entirely standard-conformingsemantic extension,
and this was used for some years for the development
of high-accuracy approximations to many of the spe-
cial functions [2]. The advent of Fortran 90 made it
possible to provide much of this Algol 68 functionality
in a still active language. The feasibility of this was
investigated by this author during the design phase of
Fortran 90 [3]. A Fortran 90 module providing a proof
of concept was subsequently implemented and released
via the web [4].

This paper describes the design and development of
a more elaborate module that exploits the capabilities
of the current, Fortran 95, definition of the language.
Fortran 95 is a relatively small extension to the Fortran
90 language [5]. It does, however, add some very im-
portant facilities that greatly enhance the ability of the
programmer to produce data-abstraction modules that
are more effective as semantic extensions. The term
“semantic extension” is used here to mean the ability
to provide a package that defines a new datatype and
the operations to manipulate entities of this type that
is so complete that the user of the package can write
programs which employ the new datatype in ways that
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differ very little from programs manipulating intrinsic
datatype objects. Ideally, it should be possible to hide
the details of the data representation and the detailed
semantics of the operations while at the same time pro-
viding all the essential facilities necessary for manip-
ulating objects of this new type that would be needed
were the type to be added intrinsically by the core lan-
guage designers. As currently defined, the language
does not enable this ideal to be fully realised but For-
tran 95 does allow one to get significantly closer than
was possible with Fortran 90.

Fortran 90 provided for the definition of a suitable
derived datatype and allowed the overloading of the op-
erations that apply between objects of this type. How-
ever, operations on intrinsic numeric types are also de-
fined to apply elementally to conformant arrays of val-
ues. That is, as well as the operator plus being applica-
ble between two scalars of type real, say, plus could be
applied to real array operands of the same shape. In this
case the operation applies to each corresponding pair of
real array elements element by element. This elemental
functionality could not be expressed in any practicable
way in Fortran 90 for derived operations between new
user defined types. Fortran 95 corrects this and extends
this “elemental” possibility to user-written procedures,
including operations. For this to be allowed, however,
an elemental procedure must satisfy some fairly tight
restrictions. The restrictions are broadly designed to
make the procedure verifiably free of side affects.

This is required so as to allow elemental execution
in any order or even in parallel. In practice, these re-
strictions can have some fairly significant ramifications
for program design.

Designing a variable-precision number system to
have operations with strictly no side effects requires
there to be no error exits. The sort of procedure that
could implement multiply, say, can only return infor-
mation to the invoking program via the operation result.
For example, a multiply that resulted in some form of
overflow could not set a global error flag or cause an
error exit. These would constitute a side effect in the
terms of the elemental extension rules. In this context,
to produce a variable-precision number system where
the operations were overloaded both for scalar argu-
ments and were also elementally extended for array ar-
guments, the number system must be closed under the
operations that are defined for it. Return values must
be defined for all possible values of the arguments. Ex-
ceptions must be indicated by suitably defined result
values. These must in turn propagate sensibly through
the operations if received by them as operands. In de-

signing a variable-precision number representation and
operator semantics which satisfy these criteria in rea-
sonably sensible ways, we have tried to define a set of
special “exceptional” values and representations that
retain as much of the information that can be considered
reasonably reliable, given that a numeric exception has
occurred somewhere in the chain of operations.

It becomes clear to anyone who works with dynam-
ically controllable floating-point number systems for
any length of time that if you have a value exactly rep-
resentable with a few digits only that is what should be
used. It is both wasteful in storage and in processing
to retain a possibly large number of redundant trail-
ing zero digits because the current working precision
permits such a number. Most variable precision pack-
ages normalise results so as to remove both leading
and trailing zeros for this reason and this package is no
exception.

2. The number system

The datatype chosen to represent numbers with a
variable precision and large range is entirely conven-
tional. It employs a fixed radix and uses an integer
component to hold the exponent power to that radix.
The mantissa is an integer array of variable length; each
element holding a “digit”. The datatype is defined by

TYPE NUMBER
INTEGER :: exp=rad+2

! holds the base rad exponent
INTEGER,POINTER :: sig(:)=>NULL()

! holds the significand
ENDTYPE NUMBER

If A is a value in this number representation

A = (rad**exp)*SUM(sig(i)*rad**(-i))
for i=1,N

where rad is the radix of the number system and N
is the allocated size of the sig array as well as the
number of digits stored.

For convenience in converting between externally
represented decimal values and such internal numbers,
the radix is chosen to be a power of ten. To provide for
reasonable efficiency, we want to have a given decimal
precision implemented by as few (smallest N) digits in
the significand as possible. This means we want the
highest power of ten representable in an INTEGER. To
simplify some operations and to enable potentially ex-
act operations to be performed exactly we need also to
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have the square root of the radix exactly representable.
This further restricts the radix to be an even power of
ten. For a typical machine, such as a PC or a Unix
workstation where default Fortran integers are 32 bit,
the decimal range is 9, i.e. the biggest representable IN-
TEGER is greater than 109, but smaller than 1010. This
makes a suitable value for rad of 108 or 100,000,000.

Normalised numbers have:

ABS(sig(i)) < rad for i=1,N
sig(1)/=0

and allsig(i) have the same sign, the sign of the value.
Digits for i>N are either exactly zero or they have
been truncated because of the limit set by the current
working precision. The system maintains a global limit
for the current working accuracy, which determines the
maximum number, ndig, of digits to be retained from
any operation. This can be changed dynamically at any
time.

The value zero is not a properly normalised number
in this representation but it is as usual defined as a
special case, represented by

sig(1)=0, N=1, exp=-rad-2

The value of the exponent is strictly irrelevant but it
is convenient to use a conventional value in this case for
the exponent of zero; we choose therefore an exponent
smaller than the smallest allowed normalised exponent,
-rad.

As with any such floating-point number system, the
range of valid exponent values is limited. In perform-
ing operations on normalised values, it is possible to
produce result values that are too big to be represented,
or are too small but not zero. These are the well-known
overflow and underflow exceptions. When any of these
exceptions occur information is necessarily lost. After
an overflow, we no longer know much except that a
very large number has been produced. However, we
usually do know whether it is a large positive number
or a large negative number. Similarly, when underflow
occurs we generally know we have produced a very
small value of a known sign.

Provided the range of normalised numbers is suf-
ficiently great to handle all reasonable problems, we
could essentially treat overflow values as approxima-
tions to plus or minus infinity. Similarly, we could treat
underflow as approximations to zero. However, again
the fact that we usually still know the sign of the very
small value, it is better to define underflow as producing
either a plus or a minus infinitesimal.

Adding representations coding for these four excep-
tional cases was the first step taken to attempt to de-

fine a number system that was closed under the normal
operations of arithmetic. Given that we are working
with a large radix, the largest even power of ten rep-
resentable in an integer, we can arbitrarily define the
maximum and minimum exponents as plus and minus
radix. This will give a very large range of normalised
values. It will sacrifice a relatively limited set of po-
tentially representable values and will allow some of
these to be used to represent the “exceptional” values.
With the radix rad=100,000,000 the extreme nor-
malised values are roughly ten to the power plus and
minus eight hundred million,

(108)+100000000, (108)−100000000

These are very, very large and very, very small num-
bers. We can conventionally define a representation for
values larger than this denoted as +ovf, -ovf, by

sig(1)=+1 or sig(1)=-1, N=1
and exp=rad+1

We can also define underflowing small values, de-
noted by +unf, -unf, to be represented

sig(1)=+1 or sig(1)=-1, N=1
and exp=-rad-1

By definition, these are specific values that are either
larger or smaller than any normalised values. We can
define the semantics of the operations so that overflow
and underflow result in one or other of these values
being returned.

Unfortunately, once we start trying to define sensi-
ble semantics for the arithmetic operations when these
special values are included within the value set for the
operands, we find this is not sufficient. We have some
operations that do not have a defined result of any mag-
nitude. For example, the operation exact-zero divided
by exact-zero,0/0, is intrinsically ill determined. Sim-
ilarly, the operationovf-ovf could produce any value
whatsoever. It is therefore effectively indeterminate.
We must be able to represent the result of such opera-
tions. In practice we have not found any need to dis-
tinguish between these two cases. The same special
value representation can be used for both situations. A
suitable representation for the “indeterminate” value,
ind, could be

sig=>NULL() and exp=rad+2

which is also the representation we have chosen for
the initial value for any object of the datatype; the
significand is disassociated and the exponent is larger
even than that of the overflow value.
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When we look more closely at defining how these
additional special values should propagate through the
arithmetic operations, we find we need further spe-
cial values to obtain a sensible closed number system
that preserves as much information as possible. We
can also generate values whose magnitude is unknown
but where the sign is predictable. The operation of
-ovf*unf, the product of a very large negative value
by a very small positive value, must be negative but
otherwise we have no way of determining the magni-
tude. We therefore need representations for, -unk and
+unk, negative and positive unknown. Here,

sig(i)=-1 or sig(i)=+1, N=1
and exp=rad+2

would be suitable representations. The complete set of
values in the number system is therefore

-unk, -ovf, -x, -unf, 0,
+unf, +x, +ovf, +unk, ind

where x denotes a properly normalised value.
There is a superficial similarity between some of

these special values and those added to the set of nor-
mal numbers defined by the IEEE floating point stan-
dard [6]. The values +ovf, -ovf, and ind are sim-
ilar to IEEE +∞, -∞ and Nan. However, the IEEE
special values do not include analogues of the signed
unknowns, ±unk, or the signed underflow, ±unf.
The IEEE arithmetic deals with underflow by first hav-
ing denormalised values for “gradual underflow” and
signed zeros which continue to carry sign information
when eventual underflow “flushes to zero”. With a vari-
able precision system such as here gradual underflow
via denormalised values is not a practical option and
since the Fortran standard does not permit a zero inte-
ger to be signed are underflow values needed to provide
closure. The IEEE special values were designed not so
much to provide a closed number system as to form part
of a system for handling arithmetic exceptions. Fortran
95 does not define an exception handling system so the
special value set defined here is intended to provide a
closed number system that will preserve and propagate
as much numeric information as reasonable through a
calculation sequence even where no exception flagging
or handling facility exists.

3. The arithmetic operations

The algorithms chosen to implement the arithmetic
operations are all entirely conventional. Addition and

subtraction use a working register at least two digits
bigger than that required by the working precision. The
operand with the largest exponent is copied into the ap-
propriate place in this register and the smaller operand
added or subtracted depending on the relevant signs.
The resulting register value is then normalised to the
above conventions, removing any trailing zeros. The
multiply and divide algorithms are variations on the
“school” methods for “long-multiplication” and “long-
division”.

A key issue is how the special case values should
propagate if received as values for operands. The fol-
lowing table gives a definition of the semantics for the
operation plus (+) for operands drawn from the ex-
tended set defined above.

The entry Alg denotes the application of the basic
plus algorithm to normalised operands. Of course, it is
possible that this algorithm may produce a result that
is zero, overflows (±ovf) or underflows (±unf), as
well as properly normalised values.

The definitions chosen for the special-case opera-
tions need some discussion.

Obviously any operation involving an ind operand,
which indicates a total lack of information about the
value, must produce an ind result. As we have no
information at all about the indeterminate value, we can
have no information about the result value.

For operations involving a signed but otherwise un-
known value, we can return a signed unknown result
if we can guarantee that the sign remains predictable.
Otherwise, we must return an indeterminate value.

Since the only information we have about an over-
flow value is that it is very large, the operation of
ovf-ovf has no predictable value or sign. We there-
fore define the result here as ind. Adding an overflow
to any other value we assume will continue to produce
a similar signed overflow. The only case where this
could be seriously wrong would be ovf-x. If the ovf
was the result of a marginal overflow and x is also very
close to the overflow threshold, the true result could
well be a reasonably small value and not at all close to
an overflow at all. We do know the sign of the overflow
must be preserved. We perhaps strictly should return a
signed unknown in such cases. However, in most cases
the normalised value will be of reasonable magnitude
so the result is likely to be large. The best, or perhaps
least worst, value to propagate in such an operation is
an ovf.

In all cases of addition operations involving the un-
derflow (±unf) values with finite or large values, we
treat the underflow values as if they were zero. Again,
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Exceptional value propagation by addition operation A + B

B A -unk -ovf -X -unf 0.0 +unf +X +ovf +unk ind

-unk -unk -ovf -unk -unk -unk ind Ind ind ind ind
-ovf -ovf -ovf -ovf -ovf -ovf -ovf -ovf ind ind ind

-X -unk -ovf Alg -X -X -X Alg +ovf ind ind
-unf -unk -ovf -X -unf -unf 0.0 +X +ovf ind ind
0.0 -unk -ovf -X -unf 0.0 +unf +X +ovf +unk ind

+unf ind -ovf -X 0.0 +unf +unf +X +ovf +unk ind
+X ind -ovf Alg +X +X +X Alg +ovf +unk ind

+ovf ind ind +ovf +ovf +ovf +ovf +ovf +ovf +ovf ind
+unk ind ind ind ind +unk +unk +unk +ovf +unk ind
ind ind ind ind ind ind ind Ind ind ind ind

this could be somewhat erroneous for an operation like
x-unf if the true values are close to the thresholds.
However, in the vast majority of operations this will
not be the case. The most useful way of propagating
the effect of the exception in such cases is to treat un-
derflow like zero. However, it is well known that for
normal fixed-precision floating-point arithmetic some
algorithms are subject to serious loss of accuracy if un-
derflow is automatically set to zero. Some care would
therefore be needed in coding such problems using this
number system. The lack of an exception-flagging sys-
tem makes this even trickier.

The remaining exceptional propagation isunf-unf;
this must produce an underflowing value but one that
has an indeterminate sign. In a sense this is an ap-
proximation to zero, and as we are not distinguishing
between exact and approximate values, a reasonable
result is zero.

The algorithm used to perform the addition opera-
tion for normalised operands is designed to produce a
result with the maximum potential precision, subject
to the constraint that no more significant digits will
be retained than are permitted by the current working
precision setting. If both operands and the “exact” re-
sult can be accommodated within the current working
precision, an “exact” result will be returned with only
significant digits included; neither leading nor trailing
zero digits will be retained. If the number of potentially
correct digits is greater than the number required by the
current working precision, the result is truncated to this
length.1

1The radix is large. Each digit corresponds to a number of decimal
digits. For a typical system using IEEE arithmetic where default
integers are 32-bit this number is eight. However, the first digit may
contain only one decimal digit. Thus to guarantee a given decimal
accuracy, nD say, the number of digits retained must be at least
CEILING(n/8) + 1. For a particular working precision, the actual
number of decimal digits stored for any given value can vary by 8D.
There is a trade-off between fine granularity precision control, that
needs a small radix, and efficiency that requires a large radix.

The definitions for exception value behaviour and the
operation of the subtraction algorithm follow directly
from the above.

The definitions that have been used for multiplica-
tion are shown by the table below. Zero is treated as an
exact value even though it may have arisen merely as an
approximation. In this number system as in most con-
ventional floating-point systems, we do not distinguish
these cases. Therefore, if either operand is a zero the
result is returned as zero. This is the case even when
the other operand is indeterminate. In most cases an
indeterminate value will merely be a value of unknown
sign and unknown magnitude. For all other cases when
either operand is indeterminate the only possible result
is indeterminate. If either operand is a signed unknown
(±unk), the result is also a signed unknown. The
product of an overflow value with another overflow or
a normalised value should result in an overflow result
of the appropriate sign. Of course, there will be oc-
casions when this can produce rather seriously wrong
results, For example, a product of a nearly underflow-
ing normalised value with a barely overflowing one
could produce a finite value of almost any magnitude.
However, on the assumption that most normalised val-
ues will be of relatively finite range and all we know
about an overflow is that it is very large, propagating
the overflow appears to be sensible. An operation such
as (±ovf)*(±unf) has no predictable magnitude but
a well-determined sign and the appropriate signed un-
known is the required result.

The product of normalised values, indicated by Alg
for algorithm, uses a version of the common school-
room long-multiplication algorithm. Each digit is mul-
tiplied by each other digit and the result accumulated
into a register the size of which is na+nb+1, where
na and nb are the sizes of the argument significands.
The multiplication and accumulation process is done in
such a way that the accumulator is normalised, modulo
rad, at all times. In order to ensure that no integer over-
flow occurs while multiplying two digits that could be
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Exceptional value propagation by multiplication operation A * B

B A -unk -ovf -X -unf 0.0 +unf +X +ovf +unk ind

-unk +unk +unk +unk +unk 0.0 -unk -unk -unk -unk ind
-ovf +unk +ovf +ovf +unk 0.0 -unk -ovf -ovf -unk ind

-X +unk +ovf Alg +unf 0.0 -unf Alg -ovf -unk ind
-unf +unk +unk +unf +unf 0.0 -unf -unf -unk -unk ind
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

+unf -unk -unk -unf -unf 0.0 +unf +unf +unk +unk Ind
+X -unk -ovf Alg -unf 0.0 +unf Alg +ovf +unk Ind

+ovf -unk -ovf -ovf -unk 0.0 +unk +ovf +ovf +unk Ind
+unk -unk -unk -unk -unk 0.0 +unk +unk +unk +unk Ind
ind ind ind ind ind 0.0 ind ind ind ind ind

as large as rad-1, the digits are decomposed modulo
SQRT(rad), and the multiply and accumulation done
using these components.

If the operands are exact and the current working
precision is such that the result can be accommodated
without truncation, the result remains exact. Other-
wise the result will be truncated to the current working
precision.

Division is defined to propagate the exception values
in an entirely analogous way. The algorithm is also an
analogue of the schoolroom long division. Real arith-
metic is used to make an estimate of the first digit in the
quotient and a new dividend produced by multiplication
and subtraction. This makes use of the same modulo
SQRT(rad) decomposition and accumulate procedure
as for multiplication so as to ensure normalisation at
all times without the risk of integer overflow. Division
of any value by zero results in an indeterminate value,
ind, being returned.

4. Logical comparisons

The treatment of the logical relations in the presence
of these exception values needs some thought. In re-
ality such a number system needs a trivalent logic to
properly express comparisons. What is the result of
an ind<ovf comparison? Since ind represents an
indeterminate value of unknown sign or magnitude the
answer could be either true or false, perhaps maybe!
However, overloads of the “less-than” operator must
return true or false – there is no available representa-
tion in the LOGICAL datatype value set for “maybe”.
Therefore we need to define a conventional set of re-
sponses. What we have done is to simply use the spe-
cific representations and performed the comparisons as
if these were normalised values. We have also said
that since an indeterminate value is basically an inex-
act zero (unknown sign and very high uncertainty of
magnitude) for logical comparisons we will treat these

also as zero. The signed exception values are compared
strictly according to their representation. This makes
+unk > +ovf > +x >+unf, etc. The following
table shows the detailed results for the operation <.

It should be noted that we need elemental overloads
of these logical relation operators producing simple
LOGICAL results since such array comparisons are
likely to be used to produce mask arrays for WHERE
statements or other similar array contexts. Again in
the absence of an exception handling system we must
define valid outcomes for all possible operand values,
no matter how strange the result.

Similar tables are available for each of the other rela-
tional operations and these are included in the module
documentation [7].

5. Additional facilities

A small number of the basic relevant intrinsic func-
tions are also provided as generic elemental overloads.
The functions, ABS and SIGN extend the obvious op-
erations to NUMBER values.

Input conversions are provided by one of two
generic versions of a function NUM. If invoked with an
INTEGER argument the equivalent NUMBER value is
returned. If invoked with a character string argument
where the string denotes a real value in either fixed-
or floating-point form, the equivalent NUMBER value is
returned.

Output is performed by three procedures, CHAR,
EFCHAR, and FFCHAR. An overload for the CHAR
function for a NUMBER argument produces a charac-
ter string denoting a floating-point real. This function
performs an exact conversion regardless of the current
working precision. The other two functions produce
character strings denoting the NUMBER value, the first
in E-format and the second in F-format; the width and
number of decimal places retained are provided as ad-
ditional arguments.
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Exceptional value comparison by relational operation <

A<B -unk -ovf -6.86 -unf 0.0 +unf +2.50 +ovf +unk ind

-unk FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
-ovf FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

-6.86 FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
-unf FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
0.0 FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

+unf FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
+2.50 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
+ovf FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
+unk FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
ind FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

A version of the INT function converts from a
NUMBER value to the equivalent INTEGER by trunca-
tion toward zero.

The base module does not provide overloads for
the elementary mathematical functions such as SQRT,
LOG, EXP, etc.. These are being provided via a sepa-
rate dependent module that is under development [8].
This base module plus additional facilities provided by
separate but dependent modules was a deliberate de-
sign. Since, it is very much easier to produce efficient
dependent modules if these can access the details of the
number representation directly the component structure
of the datatype and the parameters of the representation
are all PUBLIC. Fortran 95 only supports two levels
of access control, fully private to the module or public
to all using programs. It would be useful in situations
like this to have an intermediate restricted access which
would make representation details visible to dependent
modules but hidden from normal user programs.

6. Performance

The performance of the package is difficult to pre-
dict in detail because of the large number of factors
involved. The performance of the various operations is
in general dependent on the current working precision.
However, if operations are performed with operands
that do not require the full length of storage, the algo-
rithms used will automatically adjust. The time taken
to perform an operation will depend on the actual stored
length of the operands as well as the working preci-
sion. In the case of addition and subtraction it will
also depend to some extent on the relative magnitudes
of the operands; if the two operands have very differ-
ent exponents the “shift” to align the significands will
possibly reduce the number of digit sums that need to
be done. Nevertheless, for a large number of uses the
package will be employed with primarily “full-length”
values. Timing tests have been done using such full-

length operands of commensurate magnitudes. The re-
sults are presented as functions of the working preci-
sion. These show the expected theoretical behaviour.
The addition/subtraction performance is essentially lin-
ear in its dependence on precision, and multiplication
and division are quadratic.

The tests consisted of timing two loops that differ
only by the second including an additional operation
of the sort being tested. An array of possible operands
is constructed with the digits chosen as random inte-
gers less than rad in magnitude. Each number so con-
structed is of full length but all have the same exponent.
The control loop generates a random index, which is
used to select the operand and this is assigned to another
array element, also selected at random. This stops any
clever optimiser avoiding actually executing the loop.
The main timing loop is identical to the control loop
except that the assignment now includes an additional
execution of the chosen operation. The essential code
fragment for a test of multiplication is shown in Fig. 1.

These loops are repeated for a number of different
precisions. The tests were run on a number of different
PCs with different clock speeds but using the same NA-
Software Fplus compiler. The results normalised for
clock speed are quite reproducible. Timings were done
for samples of sufficient size to provide approximately
10% accuracy for the measured operation times. In
units of “clock-ticks” the performance measured was,
for addition/subtraction,

Cost per operation = 760 + 7.4 *acc

for multiplication

Cost per operation = 760 + 75*acc
+ 3.9*acc**2

for division

Cost per operation = 1800 + 110*acc
+ 4.4*acc**2
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type(NUMBER) :: A(20),B(20),C 

 

. . . 

! fill A and C with full precision random values 

. . . 

 

  call TIMER(t1) 

  DO j=1,count 

    k=IRAND(1,20) 

    m=IRAND(1,20) 

    B(k)=A(m)       ! simple assignment 

  ENDDO 

  call TIMER(t2) 

  td = t2-t1 

  call TIMER(t1) 

  DO j=1,count 

    k=IRAND(1,20) 

    m=IRAND(1,20) 

    B(k)=A(m)*C     ! assignment with extra operation 

  ENDDO 

  call TIMER(t2) 

  tp=t2-t1 

  t=(tp-td)/count   ! time in seconds of adding one extra * operation 

Fig. 1.

where acc is the current working precision in decimal
digits. This means that on a 400 MHz PC at 200D one
multiplication takes approximately 430 microseconds.

It should be noted that although the precise values of
the coefficients in such timings are quite reproducible
over a range of clock speeds, they are likely to be
somewhat compiler dependent. A processor system
that does not support garbage collection is likely to
have unreliable performance since long run times could
be caused by memory problems. However, the form
of precision dependence is entirely a function of the
algorithms used.

If both operands are “exact”, the time taken to per-
form the operation is going to depend on the effective
lengths of the operands, na and nb, and separately on
the current precision. In fact, if the result is also ex-
act within the current precision, the current precision
will be all but irrelevant. In particular, in the impor-
tant special case of multiplication by a simple integer
the dependence automatically reverts to being linear in
current precision.

It should be noted that for this representation for
NUMBER values the package will leak memory. As
a result it can cause problems on a system that does

not support garbage collection. This problem virtually
disappears on a system supporting the proposed Fortran
2000 extension that allows allocatable components. In
this case the pointer significand component is replaced
by an allocatable array component, and there are some
minor consequent changes to the algorithm code. The
package has an almost identical user interface in this
version and, as well as being more robust in its memory
management it is somewhat more efficient in execution.

7. Example use

An example of the use of the module is shown below.
This merely employs the scalar versions of the opera-
tors and is neither the most sophisticated of algorithms
nor a particularly robust or efficient implementation.
It does illustrate how easy it is to work with variable
precision quantities using a facility of this sort. The ex-
ample is the classic one of calculating π to an arbitrary
user-selected number of decimal places. The value of
π is calculated using the well-known Machin identity,

π/4 = 4arctan(1/5)− arctan(1/239)
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PROGRAM EXAMPLE_PI 
! calculates PI to a user requested number of decimal digits using 
! the Machin identity PI/4 = 4 arctan(1/5) - arctan(1/239) 
! the arctan values are obtained by summing the Taylor series 
  USE VARIABLE_PRECISION_ARITHMETIC 
  IMPLICIT NONE 
  type(NUMBER) :: pi,atb5,atb239,mzsq,rn 
  INTEGER :: acc,n 
  WRITE(*,ADVANCE='NO',FMT='(A)')"Input the desired number of digits for PI?"
  READ(*,FMT='(I10)') acc 
  n=PRECISION(acc) ! working precision set to provide  
                   ! at least acc decimal digits 
  ! calculate arctan(1/5) 
  rn=NUM("0.2") 
  mzsq=NUM("-0.04")   
  atb5=rn 
  n=1 
  DO ! until sum converges 
    rn = (NUM(2*n-1)*mzsq)*rn/NUM(2*n+1) 
    IF(atb5%exp-rn%exp > ndig) EXIT ! remaining terms too small to  
                                    ! effect the sum  
    atb5=atb5 + rn 
    n=n+1 
  ENDDO 
  ! calculate arctan(1/239) 
  rn=NUM(1)/NUM(239)  atb239=rn 
  n=1 
  DO ! until sum converges 
    rn = NUM(2*n-1)*rn/NUM(-57121*(2*n+1)) ! 57121= 239*239 
    IF(atb239%exp-rn%exp > ndig) EXIT ! remaining terms too small to effect 
                                      ! the sum  
    atb239=atb239 + rn 
    n=n+1 
  ENDDO 
  pi=NUM(16)*atb5 - NUM(4)*atb239 
  WRITE(*,FMT='(A)') FFCHAR(pi,acc+5,acc-1) 
END PROGRAM EXAMPLE_PI 

 

Fig. 2.

The arctan values can be conveniently calculated to
any desired accuracy by summing the necessary num-
ber of terms in the Taylor series

arctan(z) =
N∑

n=0

Rn + E

where

Rn = (−1)nz2n+1/2n+ 1

and

E � |RN+1|
The code implementing this example is shown in

Fig. 2.
It should be noted that the output is quite simple and

will cause a buffer overflow on most systems if the
accuracy requested is too large. The FFCHAR proce-
dure produces a result that is the value expressed as a
character string in Fw.d format where w=acc+5 and
d=acc-1. A more complex and robust method of out-
put could be produced but this would only make for a
more obscure example.

On a 400 MHz PC this program produces 1000 digits
in 5 seconds and 2000 in 25 seconds, further indicat-
ing that the algorithms are dominated by the times for
multiply/divide which are O(ndig2).
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