
On Effective Classification of Strings with Wavelets

Charu C. Aggarwal
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

charu@us.ibm.com

ABSTRACT
In recent years, the technological advances in mapping genes
have made it increasingly easy to store and use a wide va-
riety of biological data. Such data are usually in the form
of very long strings for which it is di�cult to determine the
most relevant features for a classi�cation task. For exam-
ple, a typical DNA string may be millions of characters long,
and there may be thousands of such strings in a database.
In many cases, the classi�cation behavior of the data may be
hidden in the compositional behavior of certain segments of
the string which cannot be easily determined apriori. An-
other problem which complicates the classi�cation task is
that in some cases the classi�cation behavior is re
ected in
global behavior of the string, whereas in others it is re
ected
in local patterns. Given the enormous variation in the be-
havior of the strings over di�erent data sets, it is useful to
develop an approach which is sensitive to both the global and
local behavior of the strings for the purpose of classi�cation.
For this purpose, we will exploit the multi-resolution prop-
erty of wavelet decomposition in order to create a scheme
which can mine classi�cation characteristics at di�erent lev-
els of granularity. The resulting scheme turns out to be very
e�ective in practice on a wide range of problems.

1. INTRODUCTION
In recent years, it has become increasingly easy to store

and record a wide variety of string data for a number of
applications. Examples of such data include proteins which
often contain long sequences of amino acids. Another class
of data which are closely related to strings are time series
or sequential data in which sequences of events are stored in
strings [11]. A number of approaches for traditional prob-
lems such as clustering, indexing and subpattern identi�-
cation have also been developed for this domain [3, 9, 10,
13].
An important data mining problem is that of classi�ca-

tion. The classi�cation problem has been widely studied in
the data mining, arti�cial intelligence and machine learn-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’02 Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007 ...$5.00.

ing communities and is de�ned as follows: we have a set
of records called the training data, in which each record is
labeled with a class. This training data is used to construct
a model which relates the features in the data records to
the class label. For a given record for which the class label
is unknown, this model may be used to predict its class la-
bel. This problem often arises in the context of customer
pro�ling, target marketing, medical diagnosis, and speech
recognition. Examples of techniques which are often used
for classi�cation in the data mining domain include decision
trees, rule based classi�ers, nearest neighbor techniques and
neural networks [5, 6, 7, 8]. A detailed survey of classi�ca-
tion methods may be found in [8].
The string domain provides some interesting applications

of the classi�cation problem. An important example is the
biological domain in which large amounts of data have be-
come available in the last few years. Applications of DNA
matching and identi�cation include the �elds of archeology,
forensics and medicine [5]. Other examples include sequen-
tial data for event classi�cation, and classi�cation of cus-
tomer data for user pro�ling. In many of these cases, the
resulting strings are quite long and vary from a few hundred
symbols to the thousands. For applications in which the
strings are very long, the classi�cation problem turns out to
be very perplexing in pratice. In most cases, both the global
and local composition of the proteins may in
uence its clas-
si�cation behavior. For example, a typical protein sequence
may contain thousands of amino acids, which are drawn
from the �xed alphabet � = f�1 : : : �lg = fA;C; T; Gg.
In most cases, the compositional behavior of the sequence
in certain subportions may signi�cantly a�ect the physical
characteristics of the corresponding protein. In other cases,
certain kinds of proteins may show local or periodic presence
of di�erent kinds of amino acids. These characteristics may
be hard to distinguish at the global level and signi�cantly
complicate the classi�cation process. Since each sequence
may contain thousands of characters, it is also a di�cult and
complex problem of �nding the most discriminatory compo-
sitions at the correct level of detail and granularity. This is
true for a large number of applications in which the classi�-
cation behavior of the relevant strings can only be accurately
determined by taking both the compositional and positional
behavior of the constituents into account.
The preferred method for string classi�cation is that of the

nearest neighbor technique based on the edit distance [4]. In
this method, the class label of the nearest neighbor to the
test instance is reported as the relevant label. This technique
has several drawbacks: (1) The edit distance turns out to be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208028805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(5)

(8, 6, 2, 3, 4, 6, 6, 5) 1

-0.5

-1

0.5

(7, 2.5, 5, 5.5) 2.25

-0.25

-0.25(4.75, 5.25)

5

Figure 1: Illustration of the Wavelet Decomposition

di�cult to compute in practice. Furthermore, the system is
di�cult to implement e�ciently since a function such as the
edit distance is not e�ectively indexable. This restricts the
applicability of the method for very large scale applications.
(2) Locality in the feature space for long strings of vari-
able length is rarely a good measurement of locality in class
behavior. For example, two strings of very di�erent lengths
may have similar classi�cation characteristics because of cer-
tain important local combinations of symbols. However, the
edit distance between such strings is likely to be at least
as large as the the di�erence in their length. Therefore, it
is useful to create a technique which can mine such local
combinations of patterns e�ectively. Also, in many biologi-
cal applications, only sample string fragments are available
rather than the entire strings. In such cases, global char-
acteristics tend to be an especially poor indicator of the
classi�cation behavior. (3) The distance based classi�er has
an overwhelming dependence on the exact positioning of the
alphabets in the strings. This dependence results in an in-
ability to capture important compositional characteristics of
the strings. For example, in a biological application, certain
broad classes of proteins may have similar composition but
may often vary considerably in the exact ordering of the
characters depending upon the particular subclass that the
protein may belong to. Such behavior cannot be captured
well by distance based classi�ers.
The wavelet decomposition technique has recently been

recognized as a useful tool for a number of database ap-
plications. A comprehensive overview of the wavelet tech-
nique may be found in [17]. An important property of the
wavelet technique is that it creates a hierarchical decompo-

sition of the data which can capture trends at varying levels
of granularity. As we shall see in this paper, this creates a
string classi�cation system which uses important and non-
obvious discriminatory characteristics in the classi�cation
process. While the wavelet technique helps considerably in
the creation of a system which provides multi-resolution in-
sight into the data characteristics, we combine it with a rule
based technique in order to make the classi�er sensitive to
particular local characteristics of the strings.
This paper is organized as follows. In the remainder of

this section, we will discuss the contributions of this pa-
per, notations and background of the wavelet decomposition
technique. In section 2, we will discuss how to use this tech-
nique in order to build an e�ective rule based classi�er for
the data. In section 3, we will discuss the empirical results.
Section 4 contains the conclusions and summary.

1.1 Contributions of this Paper
This paper discusses an e�ective wavelet based technique

for string classi�cation. This wavelet based approach pro-
vides the ability to isolate the most discriminatory composi-
tions of the strings at varying levels of analysis. In addition,
a rule based approach to the problem ensures that the local
compositional characteristics of the strings are used during
the classi�cation process. The result is a system which is
not only much more e�ective than the currently used near-
est neighbor classi�er, but is also signi�cantly more e�cient
during the classi�cation process.

1.2 Background and Notations
In order to facilitate further development of the ideas in

Table 1: An Example of Wavelet Coe�cient Computation

Granularity (Order k) Averages DWT Coe�cients
� values values

k = 4 (8, 6, 2, 3, 4, 6, 6, 5) -
k = 3 (7, 2.5, 5, 5.5) (1, -0.5,-1, 0.5)
k = 2 (4.75, 5.25) (2.25, -0.25)
k = 1 (5) (-0.25)

this paper, we will introduce some notations and de�nitions.
We assume that the training data set D contains N strings,
such that the length of the ith string is denoted by di. We
assume that each of the N strings is drawn from the alpha-
bet � = f�1 : : : �lg. We also assume that associated with
each record in the data set D, we have one of a set of k
class labels drawn from C1 : : : Ck. The classi�cation model
is constructed using the records in the database D along
with their corresponding class labels.

1.3 Wavelet Decomposition and Modifications
for String Domain

In the method discussed in this paper, we will utilize a
method which we refer to as the Haar Wavelet. We will also
discuss a brief algorithmic overview of the method used in
order to generate the Haar coe�cients from a given record
and the modi�cations necessary for their use in a string do-
main containing sequences which are drawn from a �xed
alphabet.
The basic idea in the wavelet technique is to create a de-

composition of the data characteristics into a set of wavelet
functions and basis functions. The property of the wavelet
method is that the higher order coe�cients of the decom-
position illustrate the broad trends in the data, whereas the
more localized trends are captured by the lower order coef-
�cients.
We assume for ease in description that the length q of

the series is a power of 2. The Haar Wavelet decomposi-
tion de�nes 2k�1 coe�cients of order k. Each of these 2k�1

coe�cients corresponds to a contiguous portion of the time
series of length q=2k�1. The ith of these 2k�1 coe�cients
corresponds to the segment in the series starting from posi-
tion (i� 1) � q=2k�1+1 to position i � q=2k�1. Let us denote
this coe�cient by ik and the corresponding time series seg-
ment by Sik. At the same time, let us de�ne the average
value of the �rst half of the Sik by aik and the second half
by bik. Then, the value of

i
k is given by (aik � bik)=2. More

formally, if �i
k denote the average value of the Sik, then the

value of ik can be de�ned recursively as follows:

 ik = (�2�i�1
k+1 � �2�i

k+1)=2 (1)

The set of Haar coe�cients is de�ned by the 	i
k coe�cients

of order 1 to log2(q). In addition, the global average �1
1 is

required for the purpose of perfect reconstruction. We note
that the coe�cients of di�erent order provide an understand-
ing of the major trends in the data at a particular level of
granularity. For example, the coe�cient ik is half the quan-
tity by which the �rst half of the segment Sik is larger than
the second half of the same segment. Since larger values of
k correspond to geometrically reducing segment sizes, one
can obtain an understanding of the basic trends at di�erent
levels of granularity.

We note that this de�nition of the Haar wavelet makes it
very easy to compute by a sequence of averaging and dif-
ferencing operations. In Table 1, we have illustrated how
the wavelet coe�cients are computed for the case of the se-
quence (8; 6; 2; 3; 4; 6; 6; 5). This decomposition is illustrated
in graphical form in Figure 1.
We note that the de�nition discussed above is for the case

of a quantitative time series. In order to extend this method
to strings de�ned over the discrete alphabet � = f�1 : : : �lg,
we associate a set of l coe�cients for each region in the hier-
archical decomposition. Therefore, analogous to the values
of �i

k and
i
k in the decomposition, we de�ne the coe�cients

�i
k(j) and

i
k(j) for j 2 f1 : : : lg. Here the value of �

i
k(j) is

de�ned as the fraction of positions in Sjk which contain the
symbol �j . Therefore, we have:

lX

j=1

�i
k(j) = 1 (2)

Correspondingly, the value of ik(j) is de�ned as follows:

 ik(j) = (�2�i�1
k+1 (j)��2�i

k+1(j))=2 (3)

We note that the value of ik(j) is half the di�erence in the
fraction of the presence of the symbol �j in the �rst and
second half of segment Sik. We also note two properties of
the wavelet decomposition:
(1) The number of wavelet coe�cients is l times the size of
the string. For each string symbol we have as many coe�-
cients as the length of the string.
(2) Each wavelet coe�cient lies between �1 and +1. Note
that a given position can be interpreted in terms of the dif-
ferences in fractional compositions of two intervals.

2. THE WAVELET CLASSIFICATION TECH-
NIQUE

The aim of the wavelet representation is to develop a tech-
nique which is sensitive to the some of the di�culties in
performing e�ective classi�cation in string applications. For
example, two strings in a biological domain may show sim-
ilar classi�cation not just on the position of the characters,
but also in their compositional behavior. At the same time,
we do not want to completely ignore the ordering informa-
tion since it may be relevant to the classi�cation.
Since lower order features in the wavelet decomposition

encode the global composition of long segments of the string,
it is possible to characterize the global compositional be-
havior of large substrings by using a combination of a small
number of features. In addition, by using ordered combi-
nations of higher order wavelet coe�cients, it is possible to
�nd very local sets of patterns which are highly indicative

Algorithm WavRules(Training Database:D;
minimum support: s, minimum con�dence: c,
Maximum Gap: maxgap);

begin
W 0 = CreateWavRepresentation(D);
R = CreateRules(W 0 , s, c, maxgap);
(R0; defaultclass) = ReorderRules(R, W 0);

end

Figure 2: The Training Phase of the Wavelet Clas-
si�er

Algorithm CreateWavRepresentation(Database: D);
begin
W 0 = fg;
for each string in DF determine wavelet coe�cients
as described in subsection 1.3;
Create a set of � ranges covering values from �0:5 to +0:5;
f Thus, the ith range corresponds to values between
�0:5 + (i� 1)=� and �0:5 + i=� for i 2 f1; : : : �g g;
for each coe�cient in each string in D, replace
it with the interval in which it lies and
add the resulting string to W 0;

return(W 0);
end

Figure 3: Determining the Wavelet Representation

of class behavior. In this section, we will discuss a classi-
�er which builds on these representational advantages of the
wavelet technique.
The overall training phase is illustrated in Figure 2. We

assume that the input to the algorithm is the set of N strings
in the database D, a minimum support s, a minimum con-
�dence c, and a parameter called maxgap which quanti�es
non-relevant lengths of strings in the classi�cation process.
We will discuss these parameters in more detail slightly later.
The training process of the classi�er works in three phases.

(1) In the �rst phase, the wavelet representation of the data
is constructed. This is discretized in order to create a binary
representation which is necessary for an e�ective rule based
classi�er. This process is denoted by the subroutine Cre-
ateWavRepresentation in Figure 2. (2) In the second phase
we determine the set of ordered compositional rules which
are most indicative of class behavior. The beauty of com-
positional rules is that they leverage the
exibility of the
wavelet decomposition process in order to identify combina-
tions of both composition as well as the ordering behavior
of the segments in order to model the class discrimination in
the data. Such ordered compositional behavior identi�es a
local region of the string in which the corresponding trends
occur. The length of this local region is heavily dependent
on the detail level of the corresponding wavelet coe�cients.
This essentially de�nes the level of granularity of the cor-
responding classi�cation rules. This process is denoted by
the procedure CreateRules in Figure 2. (3) Once these com-
positional rules have been constructed, we prune them in
order to reduce over�tting and improve the e�ectiveness of
the classi�cation model. This procedure is denoted by Re-
orderRules in Figure 2. These rules are then used in order
to classify individual test instances. In the next subsections,

Algorithm CreateRules(Wavelet Transformed Database: W 0,
Minimum Support: s Minimum Con�dence: c,

Maximum Gap: maxgap);
begin
for gap = 0 to maxgap do
begin
Determine all 2-patterns which have interval gap
between them, and which satisfy the required
minimum support s;

f We denote this set by L2(gap)g;
end;
C2 = [maxgap

gap=0 L2(gap);
k = 2;
while Lk is not null do;
begin
Determine Ck+1 by performing self join on Lk;
Use database W 0 to �nd support counts of each
candidate in Ck+1;

Assign Lk+1 as the set of candidates with support
greater than s;

k = k + 1;
end

L = [
(k+1)
i=1 Li;

for each pattern in P 2 L and class Ci, generate the
rule P) Ci if the corresponding rule has
minimum con�dence c;

f We note that the class labels of records in database W 0

are needed for calculation of the con�dence of patterns; g
f We denote the corresponding rule set by R; g
return(R);

end

Figure 4: E�ective Creation of the Wavelet Rules

Algorithm TruncateRules(Original Rule Set: R,
Transformed Database: W 0);

begin
Order rules in R in sequence of decreasing con�dence;
for each data point x 2 W 0 �nd highest

precedence rule covered by it;
if consequent of rule is same as class label of x then
mark rule and delete x from W 0;

R0 = Set of all marked rules in R;
f The rules in R0 are stored in order of precedence; g
defaultclass = Majority Class from remaining data W 0;
return(R0, defaultclass);

end

Figure 5: E�ective Pruning of the Wavelet Rules

Algorithm Classify(TestInstance: T , Rules: R0,
Default Class: defaultclass);

begin
Transform test instance T into wavelet representation TW ;
Find highest precedence rule for which TW is a subpattern

of the antecedent of the rule R;
if no such class exists return(defaultclass);
else return class in consequent of R;

end

Figure 6: The classi�cation procedure for the
wavelet method

we will describe the details of each of these phases.

2.1 Creation of the Wavelet Representation
This procedure is denoted by CreateWavRepresentation

and is described in Figure 3. In the �rst step, we deter-
mine the wavelet coe�cients of the strings in D. We note
that wavelet coe�cients of di�erent orders correspond to in-
tervals which may possibly subsume one another. Each of
these coe�cients is then discretized into � intervals. Specif-
ically, we create a set of � ranges covering the values from
�0:5 to +0:5. Thus, the ith range corresponds to values
between �0:5 + (i � 1)=� and �0:5 + i=�. The reason for
the use of this range is that each wavelet coe�cient is half
the di�erence of the fractional composition of the current
interval with that of an adjacent interval. Thus, all coe�-
cients lie in the range (�0:5; 0:5). The only exception are
the l wavelet coe�cients corresponding to �1

1(j) which are
the global averages across the decomposition. These coe�-
cients are separately discretized into � intervals between 0
and 1. We shall refer to the resulting string as the discretized
wavelet decomposition.

2.2 Creation of the Rules for the Wavelet Rep-
resentation

In this section, we will discuss the process of rule con-
struction for the wavelet representation. While the wavelet
representation provides an overview of the variations in com-
positional characteristics at di�erent levels of granularity, it
is useful to isolate localized regions in the data where dis-
criminatory variations in compositional behavior occur. For
this purpose, we will de�ne the concept of a compositional
pattern:

Definition 2.1. A compositional pattern O < v1; id1 >
g1 < v2; id2 > g2 : : : gk�1 < vk; idk > is an alternating se-
quence of discretized coe�cient values < v1; id1 > : : : <
vk; idk > and string gaps g1 : : : gk�1 which satisfy the follow-
ing properties: (1) We assume that each wavelet coe�cient
in the string belongs to detail order O. Thus, this re
ects
the level of detail or granularity of each wavelet coe�cient
in the pattern. (2) The value vi is an interval number from
1 through �. (3) The value idi is a number from 1 through
l corresponding to the particular alphabet �idi from � which
the wavelet coe�cient belongs to. (3) The value gi is the
gap between the end of the interval for < vi; idi > and the
beginning of the interval for < vi+1; idi+1 > in terms of the
number of unit interval lengths of detail order O.

We note that the above de�nition ensures that each element
of the compositional pattern is derived from the same level

of granularity of the wavelet decomposition.
Although the above de�nition of compositional pattern

assumes uniform granularity, this is not the case for the
discretized wavelet representation W of a given string in
the original database. For ease of abstraction,1 we will as-
sume that each string is broken up into substrings of uniform
granularity of the decomposition. Thus, for the ith string
of length di, this will create log2(di) such strings of di�er-
ing levels of granularity. The string of level j is denoted by
W (j) for j 2 f1 : : : log2(di)g. Each such string W (j) con-
tains information corresponding to 2j�1 coe�cients of order
j for each of l symbols f�1 : : : �lg. Thus, the length of W (j)
is l � 2j�1. For further abstraction, we will break up the
string W (j) into the individual coe�cients of each symbol
�k, and denote this string by W k(j). This string W k(j) is
an ordered sequence of the form v1 : : : v2j�1 . Here, the value
vr is an integer from 1 through � which corresponds to the
discretized value of the rth wavelet coe�cient ofW k(j). We
note that an interesting tradeo� exists between the ordering
information and the compositional behavior retained in the
strings of di�erent orders. String wavelet representations of
higher orders (high values of j inW (j)) retain greater order-
ing and local compositional information. On the other hand,
strings of lower orders provide a better global overview of
the variations in compositional behavior. Depending upon
the particular data set, the classi�cation characteristics of
the strings could be hidden in either.

Definition 2.2. A compositional pattern O < v1; id1 >
g1 < v2; id2 > g2 : : : gk�1 < vk; idk > is a substring of a
given string W , if a sequence of positions i; i+g1 : : : i+gk�1
can be found such that: (1) The ith position of W id1(O) is
v1. (2) For each q 2 f2 : : : kg, the i + gq�1th position in
W idq (O) is vq.

For a given level of detail, a compositional pattern is a sub-
string of W if it shares similarity in the local compositional
variations with W . Now, we will de�ne the support of a
compositional pattern.

Definition 2.3. The support of a compositional pattern
is de�ned as the fraction of strings in the database which
contain it as a substring.

We note that not all compositional patterns of a particular
support are equally important for the classi�cation process.
Compositional patterns which have high propensity to be-
long to particular class are distributed unevenly across the
di�erent classes. Therefore, we de�ne the class con�dence
of a compositional pattern.

Definition 2.4. The con�dence of a compositional pat-
tern P for the class Ci is de�ned as the percentage of trans-
actions containing the pattern P which also contain the class
Ci.

We shall henceforth refer to compositional patterns which
have support s and con�dence above the fraction c for any
class as (c; s)-compositions. A (c; s)-composition P for the
class Ci automatically induces the rule P) Ci. Our aim
is to �nd all the compositional patterns which induce the
di�erent classes in the data.

1In the actual implementation, only one string is maintained
for e�ciency. Our description eases understanding of the
implementation.

The compositional patterns are generated using a two
phase iterative process. In the �rst phase all the compo-
sitional patterns of length two are generated. The remain-
ing compositional patterns are then generated iteratively in
a level wise fashion. The overall process for generation of
compositional patterns is illustrated in Figure 4. In order to
generate patterns of length two, we use an iterative process
in which we �nd patterns which have gaps starting from 0
to maxgap. For each particular value of the gap, this pro-
cess is similar to that of �nding 2-itemsets in databases.
In this case, we however ensure that both the elements of
the pattern are wavelet coe�cients of the same order. Once
such patterns of length two have been found, we use them in
order to generate k-patterns by using an iterative method-
ology. In each iteration, we use joins in order to generate
(k + 1)-candidates from pairs of k-patterns. Let us assume
that the set of all patterns of length k which have support
at least s are denoted by Lk. In order to decide whether a
pair of patterns P1 =< v11 ; id

1
1 > g11 : : : g

1
k�1 < v1k; id

1
k > and

P2 =< v21 ; id
2
1 > g21 : : : g

2
k�1 < v2k; id

2
k > are candidates for a

join, they must satisfy the following properties:

� Both patterns must be of the same order.

� After removing the leftmost value and gap < v11 ; id
1
l >

g11 from P1 and the rightmost gap and value g2k�1 <
v2k; id

2
k > from P2, the exact sequence of values and

gaps in both the pruned patterns P 0

1 and P 0

2 are the
same.

We shall denote this common segment in the two patterns
as P = P 0

1 = P 0

2. Then, upon performing the join operation
on the two patterns, we obtain the new pattern < v11 ; id

1
1 >

P < v2k; id
2
k >. All possible such (k+1)-candidates are then

generated. We denote these candidate patterns by Ck+1.
We prune these patterns by using an analogous trick to that
which is used by the Apriori method [2]. Speci�cally, all
k-subset patterns of each member of Ck+1 must be frequent
and present in Lk. Otherwise, it cannot have the required
support and must be pruned from Ck+1. All those patterns
in Ck+1 which have support greater than s are retained. This
set of patterns Lk+1 are the frequent (k+1)-patterns. This
process continues in bottom up fashion until at some level,
the set Lk is empty. Once all the frequent patterns are
generated, we use them to generate the rules at the user-
speci�ed level of con�dence. For each frequent pattern P 2
Li and class Ci, the rule P) Ci is generated is it has
the desired minimum con�dence c. We denote the �nal set
of rules generated by R. The formal pseudocode for the
creation of rules is illustrated in Figure 4.

2.3 Rule Ordering and Pruning
Once these rules have been generated, we need to use

them in order to actually classify the records. In order to
do so, we �nd which rules are �red by a given test instance.
In some cases, these rules may be con
icting, as a result
of which it becomes necessary to develop precedence crite-
ria. The criteria and algorithms developed for rule prece-
dence and pruning share some common characteristics with
those developed in [21] for the multidimensional classi�ca-
tion problem. Given two rules R1 and R2, the rule R1 has
higher precedence than R2 if:

� The con�dence of R1 is greater than that of R2.

� In the event that the con�dences are the same, the
support of R1 is greater than that of R2.

� In the event that the supports and con�dences are the
same, the length of the compositional pattern for R1

is lower than that of R2.

We assume that the rules in R are sorted in the order
of their precedence. In order to prune the rule set, we will
analyze the coverage behavior of this rule set in conjunction
with the precedence. A data point x is said to be covered
by a rule, when the antecedent of the rule is a subpattern of
the wavelet transformed representation of x. A data point
is said to be consistent with a rule, when the class label in
the consequent of that rule is the same as the label of the
data point x.
We initialize the �nal rule set F to the null set fg. For

each record x in the data set D, we examine the rules in R
in the order of precedence, starting at the highest. We �nd
the �rst rule R0 from R which covers x. Then, we check
whether R0 is consistent with x. If so, then it is marked.
Otherwise, the data point x is removed from D. We repeat
this process for each of the data points. At the end of this
procedure, a truncated database remains, along with the
rules in R which have now been marked. We retain only the
marked rules from R in the �nal rule set, while maintain-
ing their original order of precedence. The majority class
in the truncated data set is denoted as defaultclass. The
ordered set of rules together with the default class form the
model which is used for the classi�cation of individual test
instances. The procedure for the reordering and pruning of
rules is illustrated in Figure 5.
Once these rules have been generated, the classi�cation

of test instances is relatively straightforward. The order of
precedence of the rule set along with the defaultclass pro-
vides a classi�cation algorithm. For each test instance T , we
�rst determine its wavelet transformed representation. We
used the transformed representation to determine the high-
est precedence rule which covers the test instance T . The
class label in the consequent of this rule is reported as the
class of T . If no rule covers the test instance T , then default-
class is reported as the class label. The formal pseudocode
for the classi�cation procedure is illustrated in Figure 6.

3. EMPIRICAL RESULTS
We tested the system on an AIX 4.1.4 system with 200 MB

of main memory. We generated two di�erent kinds of data
sets in order to demonstrate the e�ectiveness of the method
over a wide range of problems. We tested the algorithm with
two di�erent types of data sets:

� The mouse data set: We generated this data set by
querying the Entrez database. The strings were nu-
cleotide sequences from the mouse genome. We gener-
ated a total of 173 sequences2, each of which was la-
beled as intron or exon. Each pattern in the database
was created from the four symbols � = fA;C; T; Gg.
We denote this data set as MGS (Mouse Genome Set).
In addition, in order to test the reliability of the sys-
tem to incomplete sequences, we created fragmented
sequences by sampling subsequences from each pat-
tern. Each element was included or excluded from its

2We note that this is a small subset of the total number of
such patterns present in the Entrez database.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
66

68

70

72

74

76

78

80

82

84

86

Fragmentation Rate

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

WavRule Classifier
Nearest Neighbor Classifier
DirectRule Classifier

Figure 7: E�ects of increasing fragmentation on
Mouse Genome Data Set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
55

60

65

70

75

80

Fragmentation Rate

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

WavRule Classifier
Nearest Neighbor Classifier
DirectRule Classifier

Figure 8: E�ects of increasing fragmentation on
Web Access Data Set (WAS1)

base pattern with equal probability of 0:5, and the or-
der was maintained.

� The web access data set: This data set was created
by sampling web pages from a proxy traces. Each se-
quence was drawn from the alphabet � = fibm; otherg
depending upon the whether the page accessed be-
longed to the ibm.com domain or not. The sequences
were labeled morning or evening, depending upon the
time of access of the �rst web page in the sequence. We
had two traces from which we generated two data sets
which we will henceforth refer to as WAS1 and WAS2
respectively. These data sets contained 521 and 644
sequences respectively. As in the case of the mouse
data set, we created fragmented version of the data
sets, which we refer to as WAS1-F and WAS2-F re-
spectively.

As a baseline for e�ectiveness, we tested the nearest neigh-
bor classi�er using global alignment [4]. In addition, in or-
der to test the e�ectiveness of the wavelet decomposition
itself, we used a classi�er which used exactly the same algo-
rithm as discussed above except that it used the raw strings

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
55

60

65

70

75

80

85

Fragmentation Rate

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

WavRule Classifier
Nearest Neighbor Classifier
DirectRule Classifier

Figure 9: E�ects of increasing fragmentation on
Web Access Data Set (WAS2)

rather than the transformed database in order to generate
the patterns. Thus, in this case, each generated patterns
was of the form s1g1s2g2 : : : gk�1sk. Here, each si belongs
to � = f�1 : : : �lg and gi is a gap of length equal to 0 or
more alphabets. We note that the only di�erence is that in
this case, there is no concept of the \order" of a pattern.
Thus, the same rule generation algorithm was implemented,
except for the di�erence in how joins were computed in or-
der to determine the candidate patterns. We will henceforth
refer to this algorithm as the DirectRule method.
In Table 2 we have illustrated the results obtained by

using the di�erent methods on the six data sets. For the
WavRule method, each string was truncated to the near-
est power of 2 in order to facilitate the implementation of
the wavelet decomposition. In order to account the possi-
ble e�ects of information loss from the truncation, we used
the original string was used for the other methods. In each
case, we set the support so as to mine the top 1000 patterns
from the data. At the same time, a con�dence threshold
of 90% was used in order to determine the actual rules. It
is clear that in each case, the WavRule method was signif-
icantly more e�ective than both the nearest neighbor and
DirectRule classi�ers. The nearest neighbor classi�er per-
formed quite poorly for the case of the web access data sets
as compared to the mouse genome data sets. In both the
mouse genome and the web access data sets, the classi�-
cation accuracy of the nearest neighbor classi�er was sig-
ni�cantly worse for the fragmented data set as compared
to the unfragmented data. It is interesting to note that in
both cases, the nearest neighbor classi�er was better than
the DirectRule method only for the unfragmented versions.
The reason for this was that the modi�ed data set re
ected
only some of the substring fragments from the data. A near-
est neighbor technique was mislead to a greater extent by
the fragmentation process because it reduced the reliability
of the global objective function signi�cantly. On the other
hand, both theWavRule and DirectRule classi�ers were able
to identify local subpatterns which were relatively una�ected
by the fragmentation. In both cases, the DirectRule classi-
�er was not as accurate as the nearest neighbor classi�er
before the fragmentation, but the relative performance of
the two classi�ers was reversed after the fragmentation. On

Table 2: Classi�cation Accuracy Results

Data Set WavRule Accuracy NN Classi�er DirectRule Accuracy

MGS 84:7% 78:1% 76:3%
MGS-F 80:3% 71:1% 73:5%
WAS1 79:6% 75:4% 72:4%
WAS1-F 76:5% 64:1% 68:3%
WAS2 80:3% 74:4% 73:3%
WAS2-F 77:1% 63:2% 67:5%

Table 3: E�ciency Results

Data Set WavRule Classi�cation NN Classi�cation WavRule
Speed/Record Speed/Record (Training Time)

MGS 0.05 sec 8.2 sec 120.3 sec
MGS-F 0.03 sec 2.9 sec 89.9 sec
WAS1 0.07 sec 1.3 sec 35.3 sec
WAS1-F 0.05 sec 0.5 sec 20.4 sec
WAS2 0.06 sec 1.4 sec 44.7 sec
WAS2-F 0.04 sec 0.9 sec 33.3 sec

Table 4: Statistics of Patterns Found
Data Average Pattern Average Pattern Pattern Order
Set Length Order Variance

MGS 3.1 2.5 1.3
MGS-F 2.7 2.3 1.4
WAS1 2.6 2.3 1.2
WAS1-F 2.2 2.4 1.5
WAS2 2.5 2.4 1.6
WAS2-F 2.1 2.3 1.7

the other hand, the DirectRule method did not use the ad-
vantages of the Wavelet representation in identifying useful
compositional characteristics of the data. As a result, in
each case it could not match the e�ectiveness of theWavRule
classi�er in spite of its similarities to the latter in all other
respects. In Table 4, we have illustrated the statistics of the
average pattern length and order in the antecedent of the
rules which was used to classify the test instances. While
the pattern lengths are relatively short, they are often of
varying orders. This tends to indicate two facts: (1) The
classi�cation behavior was hidden in small local regions of
the string. (2) The classi�cation behavior is often created
by compositional behavior at di�erent levels of granularity,
since the most discriminatory patterns vary considerably in
order. We note that neither the nearest neighbor classi-
�er nor the DirectRule method is capable of providing such
insight. In particular, the nearest neighbor classi�er was
unable to achieve either of the above two goals.
In order to test the robustness of the WavRule classi�er

further, we tested the data at varying levels of fragmen-
tation. We de�ne f as the fraction of the symbols which
are sampled from the string in order to create the subse-
quences of these strings. In Figure 7, we have illustrated
the accuracy of all classi�ers with increasing fragmentation
rate of the strings for the mouse data set. It is clear that
with increasing fragmentation rate, the WavRule classi�er
outperforms the nearest neighbor classi�er by an increasing
margin. The di�erences are particularly pronounced in the
case of the web data sets as illustrated in Figures 8 and 9.
In all cases, even the DirectRule classi�er performed better
than the nearest neighbor classi�er at higher fragmentation
rates. The reason for the poor performance of the nearest
neighbor classi�er was that the lengths of the sequences were
quite small in the case of the web data set. Small amounts of
fragmentation were able to change the order of the distances
su�ciently so that the methodology was no longer e�ective.
This con�rms the fact that the WavRule method is signi�-
cantly more robust than the nearest neighbor classi�er. The
reason for this is its combination of a compositional and po-
sitional technique for classi�cation which continues to retain
its robustness over di�erent kinds of data sets.

3.1 Efficiency of the Classification Process
We note that the nearest neighbor classi�er is somewhat

cumbersome because it requires the calculation of the edit
distance between the strings from scratch. Since this dis-
tance calculation requires a dynamic programming algorithm,
the time complexity of the most e�cient algorithm is worse
than quadratic in the average pattern length. Furthermore,
because of the lack of suitable nearest neighbor indexes for
complex distance functions such as the edit distance, the
nearest neighbor algorithm needs to compute this value over
all strings in the database sequentially. This leads to a
database size dependent time for testing. The tradeo�s in
the case of the WavRule classi�er are somewhat di�erent.
While the WavRule classi�er is extremely e�cient in clas-
si�cation of test instances by several orders of magnitude,
it requires an additional time for training which is not re-
quired by the nearest neighbor classi�er. However, we note
that this training time cost is incurred only once, after which
the model can be e�ciently used for any number of test in-
stances. In Table 3, we have illustrated the running time for
classi�cation of individual test instances for each of the two

methods. The classi�cation time per record was determined
by averaging the speed over a set of 100 records. In each
case, the classi�cation process of the WavRule method was
two orders of magnitude faster. The di�erences were partic-
ularly signi�cant in the mouse genome data set because of
the fact that the pattern lengths were much longer. For the
same reason, the nearest neighbor classi�cation algorithm
was much more ine�cient on the unfragmented versions of
the data sets. We note that these di�erences are in spite of
the small database sizes. For larger training databases, the
nearest neighbor classi�er would show increasing classi�ca-
tion time, whereas the WavRule method would continue to
show similar e�ciency per test instance. When the number
of test instances are also large, then the nearest neighbor
classi�er would become an unattractive option. Table 3 also
illustrates the training time of theWavRule classi�er. About
98% of this time was utilized in the pattern generation pro-
cess. The underlying training algorithm scales linearly with
database size because of the natural database scan-based im-
plementation. While this time cannot be directly compared
to the instance-speci�c testing time of the nearest neighbor
classi�er, it is clear that the time per training instance is
also signi�cantly lower than the classi�cation time of the
nearest neighbor classi�er.

4. CONCLUSIONS AND SUMMARY
In this paper, we discussed a technique for e�ectively

leveraging the advantages of the wavelet representation tech-
nique in order to construct an e�ective classi�er for strings.
The beauty of string centered wavelet decomposition is that
it can be combined with rule based methods in order to use
both the composition and the ordering information at vary-
ing levels of locality and granularity. As a result, strings
of varying lengths can be classi�ed e�ectively using this
method. We illustrated the advantages of our wavelet based
classi�er over the nearest neighbor classi�cation method.

5. REFERENCES
[1] R. Agrawal, K.-I. Lin, H. Sawhney, K. Shim. Fast
Similarity Search in the presence of noise, scaling, and
translation in time series databases. VLDB Conference,
1995.

[2] R. Agrawal, R. Srikant. Fast Algorithms for �nding
association rules. VLDB Conference, 1994.

[3] R. Agrawal, R. Srikant. Mining Sequential Patterns.
ICDE Conference, 1995.

[4] M. Deshpande, G. Karypis. Evaluation of Techniques
for Classifying Biological Sequences. Technical report,
TR 01-33, University of Minnesota, 2001.

[5] R. Duda, P. Hart. Pattern Analysis and scene analysis,
Wiley 1973.

[6] J. Gehrke, V. Ganti, R. Ramakrishnan, W.-Y. Loh.
BOAT: Optimistic Decision Tree Construction.
SIGMOD Conference, 1999.

[7] J. Gehrke, R. Ramakrishnan, V. Ganti. Rainforest- A
Framework for Fast Decision Tree Construction of Large
Data Sets. VLDB Conference, 1998.

[8] J, Gehrke, W.-Y. Loh, R. Ramakrishnan. Data Mining
with Decision Trees. ACM SIGKDD Conference
Tutorial, 1999.

[9] V. Guralnik, G. Karypis. A Scalable Algorithm for
Clustering Sequential Data. ICDM Conference, 2001.

[10] V. Guralnik, J. Srivastava. Event detection from time
series data. KDD Conference, 1999.

[11] D. Gus�eld. Algorithms on Strings, Trees and
Sequences. Press Syndicate of the University of
Cambridge, 1997.

[12] J. Han, G. Dong, Y. Yin. E�cient Mining of partial
periodic patterns in time series databases. ICDE
Conference, 1999.

[13] H. Jagadish, N. Koudas, S. Muthukrishnan. Mining
Deviants in a Time Series Database. VLDB Conference,
1999.

[14] H. Jagadish, N. Koudas, S. Muthukrishnan. On
E�ective Multidimensional Indexing of Strings.
SIGMOD Conference, 2000.

[15] M. James. Classi�cation Algorithms, Wiley, 1985.

[16] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[17] D. A. Keim, M. Heczko. Wavelets and their
Applications in Databases. ICDE Conference, 2001.

[18] E. J. Keogh, M. J. Pazzini. An enhanced
representation of time series data which allows fast and
accurate classi�cation, clustering and relevance feedback.
KDD Conference, 1998.

[19] E. Keogh, P. Smyth. A probabilistic approach to
pattern matching in time-series databases. KDD
Conference, 1997.

[20] E. Keogh, K. Chakrabarti, S. Mehrotra, M. Pazzini.
Locally Adaptive Dimensionality Reduction for Indexing
Large Time Series Databases. SIGMOD Conference,
2001.

[21] B. Liu, W. Hsu, Y. Ma. Integrating Classi�cation and
Association Rule Mining. KDD Conference, 1998.

[22] S. Manganaris. Learning to Classify Sensor Data.
TR-CS-95-10, Vanderbilt University, March 1995.

[23] T. Oates. Identifying distinctive subsequences in
multivariate time series by clustering. KDD Conference,
1999.

[24] C. Perng, H. Wang, S. Zhang, S. Parker. Landmarks:
A new model for similarity-based pattern querying in
time-series databases, ICDE Conference, 2000.

