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Abstract The proposal of pilgrim dark energy is based on
the speculation that phantom-like dark energy (with strong
enough resistive force) can prevent black hole formation in
the universe. We explore this phenomenon in the loop quan-
tum cosmology framework by taking pilgrim dark energy
with a Hubble horizon. We evaluate the cosmological param-
eters such as the Hubble parameter, the equation of state
parameter, the squared speed of sound, and also cosmolog-
ical planes like ωϑ–ω′

ϑ and r–s on the basis of the pilgrim
dark energy parameter (u) and the interacting parameter (d2).
It is found that the values of the Hubble parameter lie in
the range 74+0.005

−0.005. It is mentioned here that the equation
of state parameter lies within the ranges −1 ∓ 0.00005 for
u = 2, 1 and (−1.12,−1), (−5,−1) for u = −1,−2,
respectively. Also, the ωϑ–ω′

ϑ planes provide a �CDM limit,
and freezing and thawing regions for all cases of u. It is
also interesting to mention here that the ωϑ–ω′

ϑ planes lie
in the range (ωϑ = −1.13+0.24

−0.25, ω′
ϑ < 1.32). In addition,

the r–s planes also correspond to �CDM for all cases of
u. Finally, it is remarked that all the above constraints of
the cosmological parameters (corresponding to u = ±2,±1
and d2 = 0.2+1

−1) show consistency with different observa-
tional data like Planck, WP, BAO, H0, SNLS, and nine-year
WMAP.

1 Introduction

The expansion of the universe with acceleration occurs in two
eras: inflation and late-time (or recent) accelerating expan-
sion. The discovery of the accelerated expansion of the uni-
verse and other evidence related to the existence of an early-
time acceleration after the Big Bang called the inflation [1,2]
suggest the presence of ‘dark’ fluids different from stan-
dard matter and radiation at the cosmological level. After
the big bang, an unimaginable hot and dense point, there
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occurred an incredible burst of expansion with acceleration
which is called inflation. However, after the inflationary era,
the universe began to decelerate with expansion through the
radiation and matter dominated phases. The recent acceler-
ated expansion of the universe is one of the biggest achieve-
ments in the subject of cosmology [3–7]. This expansion
phenomenon follows through a mysterious form of force
called dark energy (DE). However, the nature of DE is
still unknown. Different researchers have tried to explore its
nature as regards various aspects theoretically and observa-
tionally.

General relativity laid down the foundation of modern
cosmology; it proposed the cosmological constant (homo-
geneous energy density) as a pioneer candidate of DE. The
cosmological constant represents the vacuum energy having
a positive (constant) energy density and a negative pressure,
which accelerates the expansion of the universe. However,
it has two severe issues [8]: one is the fine tuning prob-
lem, which is related to its inconsistent values (obtained by
using observational and theoretical approaches). Its obser-
vational and theoretical values are approximately equal to
10−47 and 1074, respectively, indicating a difference of the
order of 10121 between these two values. Hence, in order to
explain the current cosmic acceleration through the cosmo-
logical constant, we must find a tiny value of cosmological
constant compatible with observations.

The second problem is that the fractional energy densities
of DE and DM are comparable at the present time when the
universe undergoes accelerated expansion. Thus, two alter-
natives, i.e., dynamical DE models and modified (or extra
dimensional) theories of gravity, have been used extensively
for describing the present status of the universe. In the first
approach, the modification of the matter part of the Ein-
stein field equations takes place by specifying different forms
of the energy-momentum tensor, including quintessence, k-
essence, and perfect fluid models [9]. The perfect fluid mod-
els with a specific form of equation of state (EoS) include
the Chaplygin gas family [10–12], holographic [13,14], new
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agegraphic [15], polytropic gas [16], and pilgrim [17–19] DE
models.

The gravitational modification results in modified theories
of gravity which involve some invariants depending upon par-
ticular features such as curvature, torsion, scalars, etc. These
theories involve f (R) theory [20–22] where f is a general
differentiable function of the curvature scalar R. Another one
is generalized teleparallel gravity, f (T ) theory [23–25], con-
tributing in the gravitational interaction through the torsion
scalar T . Others are Brans–Dicke theory, using a scalar field
[26], Gauss–Bonnet theory and its modified version involv-
ing the Gauss–Bonnet invariant G [27,28], f (R, T ) theory
where T is the trace of the energy-momentum tensor [29],
etc. The dynamical DE models are the outcome of a geomet-
rical modification.

The holographic DE (HDE) has become an attractive DE
model nowadays, which is developed in the context of quan-
tum gravity and widely used in solving the cosmological
problems. The main idea of this model has come from the
holographic principle which is stated thus: the number of
degrees of freedom of a physical system should scale with its
bounding area rather than its volume [30]. With the help of
this principle, a relationship between ultraviolet and infrared
(IR) cutoffs has been proposed by suggesting that the size of
a system should not exceed the size associated with the mass
of a black hole (BH) [31]. By using this relationship, Li [14]
developed the HDE density as follows:

ρ� = 3n2m2
plL

−2,

here,n,mpl, L indicate the HDE constant, the reduced Planck
constant, and the IR cutoff, respectively. On the basis of the
compatibility of HDE with the present day observations, dif-
ferent IR cutoffs have been proposed, including Hubble, par-
ticle, event horizons, conformal age of the universe, Ricci
scalar, Granda–Oliveros and higher derivative of the Hubble
parameter [14,32–35], etc.

As Cohen et al. [31] suggested, the bound of the energy
density contradicts the idea of formation of BHs in quantum
gravity. It is suggested that the formation of a BH can be
avoided through an appropriate repulsive force which resists
the phenomenon of matter collapse. This force can only pro-
vide phantom DE in spite of other phases of DE like vacuum
and quintessence DE. By keeping in mind this phenomenon,
Wei [17] has suggested the DE model called pilgrim DE
(PDE) by the speculation that phantom DE possesses a large
negative pressure as compared to the quintessence DE which
helps in violating the null energy condition and possibly pre-
vents the formation of BHs. In the past, many applications
of phantom DE existed in the literature. For instance, phan-
tom DE also plays an important role in wormhole physics
where the event horizon can be avoided due to its presence
[36–39].

Also, it plays a role in the reduction of mass due to its
accretion process onto a BH. Much work has been done to
support this through a Chaplygin gas family [40–46]. It was
also argued in the context of the scalar field that the BH area
reduces up to 50 % through phantom scalar field accretion
onto it [47]. According to Sun [48], the mass of a BH tends
to zero when the universe approaches a big rip singularity.
It was also suggested that BHs might not exist in the uni-
verse in the presence of quintessence-like DE which violates
only the strong energy condition [49,50]. However, all this
does not correspond to reality because quintessence DE does
not contain enough resistive force to avoid the formation
of BHs.

The above discussion has motivated Wei [17] in develop-
ing the PDE model. He analyzed this model with a Hubble
horizon as regards different theoretical as well as observa-
tional aspects. Also, Saridakis et al. [51–59] have discussed
the widely known crossing of phantom divide line, and the
quintom as well as phantom-like nature of the universe in
different frameworks. They found interesting results in this
respect. Recently, we have investigated this model by taking
different IR cutoffs in flat as well as non-flat FRW universe
with different cosmological parameters as well as cosmolog-
ical planes [18,19]. This model has also been investigated in
different modified gravities [60–62]. In the present paper, we
check the role of PDE in loop quantum cosmology (LQC).
We develop different cosmological parameters and planes.
The format of the paper is as follows. In the next section, we
provide the basic equations corresponding to PDE models.
Also, we discuss the Hubble parameter, the EoS parameter,
and the squared speed of sound in Sect. 3. Section 4 explores
ωϑ–ω′

ϑ as well as statefinders planes. In the last section, we
summarize our results.

2 Loop quantum cosmology and pilgrim dark energy

Nowadays, the DE phenomenon has widely been discussed
in the context of LQC to describe the quantum effects on our
universe. The LQC is an interesting and attractive applica-
tion of the loop quantum gravity in the cosmological frame-
work and it possesses the properties of a non-perturbative
and background independent quantization of gravity [63–
68]. In recent years, many DE models have been studied in
the scenario of LQC [69,70]. Jamil et al. [71] have explored
the cosmic coincidence problem phenomenon of modern
cosmology by taking a modified Chaplygin gas coupled to
dark matter. Also, some authors found that the future sin-
gularity appearing in the standard FRW cosmology can be
avoided by loop quantum effects [72]. Chakraborty et al. [73]
have made an observational study of the modified Chaplygin
gas in LQC. Here, we develop the basic scenario of inter-
acting PDE (with Hubble horzion) with cold dark matter
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(CDM) in LQC. The equation of motion in LQC has the
form

H2 = 1

3m2
pl

ρ

(
1 − ρ

ρc

)
, (1)

where ρ indicates the sum of CDM and PDE densities, i.e.,

ρ = ρm + ρϑ . Also, ρc =
√

3
16π2γ 3G2h̄

represents the crit-
ical loop quantum density, γ stands for the dimensionless
Barbero–Immirzi parameter. It is predicted that the big bang,
big rip, and other future singularities at the semi classical
regime can be avoided in LQC. Moreover, the modification in
standard FRW cosmology due to LQC becomes more dom-
inant and the universe begins to bounce and then oscillate
forever.

It is argued that phantom DE with a strong negative pres-
sure can push the universe toward the big rip singularity
where all the physical objects lose the gravitational bounds
and finally get dispersed. The PDE model is also developed
in favor of this scenario; it is defined as

ρϑ = 3n2m4−u
pl L−u, (2)

here u represents the PDE parameter. Wei explored the PDE
model in different possible theoretical and observational
ways to find the BH free phantom universe with a Hubble
horizon (L = H−1) through the PDE parameter. The above
equation becomes

ρϑ = 3n2m4−u
pl Hu . (3)

In the present work, we also choose PDE with a Hubble hori-
zon, which is the pioneer IR cutoff. Initially, it is plagued
by the problem that its EoS parameter provides a behavior
inconsistent with the present status of the universe [14]. This
deficiency has been settled on with the passage of time by
pointing out that HDE with this IR cutoff can explain the
present scenario of the universe in the presence of the inter-
action with DM [74,75]. Also, the results of different cos-
mological parameters have been established through differ-
ent observational schemes by choosing a HDE model with a
Hubble scale [76,77]. Sheykhi [78] has discussed this model
by taking the interaction with CDM and pointed out that such
a model possesses the ability to explain the present scenario
of the universe.

Moreover, we take an interaction between PDE with CDM
which has the following form:

ρ̇m + 3Hρm = �, ρ̇ϑ + 3Hρϑ(1 + ωϑ) = −�, (4)

where � is of a dynamical nature and appears as an inter-
action term between CDM and PDE. Different forms of this
interaction term have been proposed, out of which we use
the following form:

� = 3d2Hρm, (5)

where d2 is an interacting constant which stands for the inter-
action parameter and exchanges the energy between CDM
and DE components. This form of the interaction term has
been explored for energy transfer through different cosmo-
logical constraints. The sign of the coupling constant decides
the decay of energies; either DE decays into CDM (when the
interacting parameter is positive) or CDM decays into DE
(when the interacting parameter is negative). The present
analysis of different aspects implies that the phenomenon
of DE decays into CDM is more acceptable and favors the
observational data. Hence, Eqs. (4) and (5) give

ρm = ρm0a
3(d2−1). (6)

Also, by taking the derivative of ρϑ (with Hubble horizon)
with respect to x = ln a, we get

ρ′
ϑ = uρϑ

Ḣ

H2 . (7)

3 Cosmological parameters in LQC

In this section, we will discuss the physical significance of
cosmological parameters corresponding to PDE with a Hub-
ble horizon in the LQC scenario.

3.1 Hubble parameter

In order to check the behavior of the Hubble parameter in this
framework, we differentiate Eq. (1) with respect to t , and on
inserting (6) and (7), it yields

Ḣ(a)

H(a)2 = −3	m0H2
0 a

3(d2−1)

H2(a)

×
[

2

1 − 6ρ−1
c (n2Hu(a) + 	m0H2

0 a
3(d2−1))

−un2H(a)u−2
]
. (8)

In the above expression, we use the dimensionless den-
sity parameter 	m0 = ρm0

3m2
pH

2
0

(we use this parameter in

all the following expressions as well as in our plots). We
solve the above differential equation (8) numerically by using
Eqs. (1)–(7) in terms of H and plot it against the scale
factor a for four different values of u = 2, 1,−1,−2, as
shown in Fig. 1. The initial condition of H is taken as
H0 = H [a0] = H [1] � 74, 	m0 = 0.27 as mentioned
in the Planck observations [79]. It can be observed that the
trajectories of the Hubble parameter H(a) attain the values
approximately corresponding to 74+0.005

−0.005.
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Fig. 1 Plot of H versus a for PDE in LQC with u = 2, 1,−1,−2

3.2 Equation of state parameter

In order to obtain the EoS parameter, we substitute Eqs. (5),
(6), (7), and (8) in the continuity equation (4). It follows that

ωϑ = −1 − d2	m0H2
0 a

3(d2−1)

n2Hu(a)

+
[

2

1 − 6ρ−1
c (n2Hu(a) + 	m0H2

0 a
3(d2−1))

−un2H(a)u−2
]
u	m0H2

0 a
3(d2−1)

H2(a)
. (9)

To plot this parameter, H(a) is taken numerically. The plots
of the EoS parameter versus a are shown in Fig. 2 for four
different values of u. In the first plot (u = 2), the trajectory of
ωϑ starts from the phantom region, and with the passage of
time it approaches the �CDM limit for the interacting cases
d2 = 0.2, 0.3. However, it remains in the phantom region for
the interacting case d2 = 0.4. In the case of u = 1 (second
plot), the trajectories of the EoS parameter remain in the
quintessence region for d2 = 0.4, while they approach (from
the quintessence region) the �CDM limit for the other two
cases of d2. For u = −1,−2 (lower left and right plots), the
EoS starts from the phantom case with a comparatively high
value and goes toward the �CDM limit for d2 = 0.2, 0.3
and always remains in the phantom range for the other d2.

3.3 The square speed of sound

In order to analyze the stability of the PDE model in this
scenario, we extract the squared speed of sound, which is
given by

υ2
s = ṗϑ

ρ̇ϑ

= p′
ϑ

ρ′
ϑ

, (10)

where the pressure corresponds to PDE only. Differentiating
the relation pϑ = ρϑωϑ with respect to ln a and dividing by
ρ′

ϑ , we get

p′
ϑ

ρ′
ϑ

= ωϑ + ρϑ

ρ′
ϑ

ω′
ϑ . (11)

In order to get the expression of υ2
s , we evaluate the derivative

of ωϑ with respect to x = ln a by using Eqs. (7), (8), and (9)
as follows:

ω′
ϑ = (3H(a)4)−1a−4+3d2

ρm0(a
−3+3d2

d4ρm0u
2

−(3(−1 + d2)d4H(a)4−u) × n−2

−3(−1 + d2)u2n2H(a)1+u

−a−3+3d2
ρm0(−3 + u)u3n4H(a)−3+2u

+(6a6(−1+d2)uρcH(a)3(ρc−6n2H(a)u))(2a3d2
ρm0
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Fig. 2 Plot of ωϑ versus a for PDE in LQC with u = 2, 1,−1,−2

−a3ρc + 6a3 × n2H(a)u)−2

+(2a3d2
d4ρm0uρcH(a)2−u)

×(n2(2a3d2
ρm0 − a3ρc + 6a3n2H(a)u))−2

+(2a3d2
ρm0u

2ρcn
2H(a)−1+u(−(−4 + u)(2a3d2

ρm0

−a3ρc) + 24a3n2H(a)u))(2a3d2
ρm0 − a3ρc

+6a3n2H(a)u)−2 + (4a3+3d2 × ρm0uρ
2
c H(a)

×(2a3d2
ρm0−a3ρc+6a3(1+u)n2H(a)u))(2a3d2

ρm0

−a3ρc + 6a3n2H(a)u)−3). (12)

Finally, we obtain squared speed of sound as follows:

υ2
s = 1

3
(−3 − (a−3+3d2

d2ρm0H(a)−u)n−2

+(a−3+3d2
ρm0u(−un2 × H(a)−2+u

+2ρc(−2a−3+3d2
d+ρc − 6n2H(a)u)−1)) × H−2(a)

−(a−3+3d2
d2ρm0u

2 − (3(−1 + d2)d2H(a)4−u)n−2

−3(−1 + d2)u2n2H(a)1+u − a−3+3d2
ρm0

×(−3 + u)u3n4H(a)−3+2u

+(6a6(−1 + d2)uρcH(a)3(ρc − 6n2H(a)u))

×(2a3d2
ρm0 − a3α + 6a3n2H(a)u)−2

+(2a3d2
d2ρm0uρcH(a)2−u)(n2(2a3d2

ρm0 − a3ρc

+6a3n2H(a)u))−1

+(2a3d2
ρm0u

2ρcn
2H(a)−1+u(−(−4 + u)(2a3d2

ρm0

−a3ρc) + 24a3n2H(a)u))(2a3d2
ρm0 − a3ρc

+6a3n2H(a)u)−2 + (4a3+3d2
ρm0uρ

2
c H(a)

×(2a3d2
ρm0 − a3ρc + 6a3(1 + u)n2H(a)u))(2a3d2

×ρm0 − a3ρc + 6a3n2H(a)u)−3)

×(auH(a)3(−un2H(a)−2+u

+(2ρc)(−2a−3+3d2
ρm0 + ρc − 6n2H(a)u)−1))−1).

The plots of squared speed of sound versus a for three
different values of d2 and four values of u = 2, 1,−1,−2
are shown in Fig. 3. It can be observed from the plots that
the squared speed of sound remains positive for all cases of
u and d2, which exhibits the stability of the PDE in LQC
scenario.

4 Cosmological planes in LQC

Here, we will discuss the physical significance of the cosmo-
logical planes corresponding to PDE with a Hubble horizon
in the LQC scenario.

4.1 ωϑ–ω′
ϑ analysis

Here, we find the regions on the ωϑ–ω′
ϑ plane; (ω′

ϑ repre-
sents the evolution of ωϑ ) as defined by Caldwell and Linder
[80] for the models under consideration. The models can be
categorized in two different classes: the thawing and freezing
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Fig. 3 Plot of υ2
s versus a for PDE in LQC with u = 2, 1,−1,−2

regions on the ωϑ–ω′
ϑ plane. The thawing models describe

the region ω′
ϑ > 0 when ωϑ < 0 and the freezing mod-

els represent the region ω′
ϑ < 0 when ωϑ < 0. Initially,

this phenomenon was applied for analyzing the behavior of
the quintessence model and one found that the corresponding
area occupied on the ωϑ–ω′

ϑ plane describes the thawing and
freezing regions. In order to plot ωϑ–ω′

ϑ , we use Eqs. (9) and
(12).

We also construct the ωϑ–ω′
ϑ plane for the PDE model

with different values of u in LQC as shown in Fig. 4. In
all cases of u and d2, the ωϑ–ω′

ϑ plane corresponds to the
�CDM limit, i.e., (ωϑ, ω′

ϑ) = (−1, 0). Also, the ωϑ–ω′
ϑ

plane shows the thawing regions for the cases u = 2,−1,−2
and corresponds to the freezing region for the case u = 1.

4.2 Statefinder parameters

The statefinder parameters are defined as follows [81]:

r =
...
a

aH3 , s = r − 1

3
(
q − 1

2

) , (13)

where q is the deceleration parameter, defined as

q = − ä

aH2 = −
(

1 + Ḣ

H2

)
. (14)

Combining the Hubble and deceleration parameters, the
statefinders are expressed as

r = 2q2 + q − q̇

H
, s = r − 1

3(q − 1
2 )

. (15)

These parameters are dimensionless and possess the abil-
ity to explain the current accelerated scenario. These param-
eters have geometrical diagnostic due to their total depen-
dence on the expansion factor. The statefinders are useful in
the sense that we can find the distance of a given DE model
from the �CDM limit. The well-known regions described by
these cosmological parameters are as follows: (r, s) = (1, 0)

indicates the �CDM limit, (r, s) = (1, 1) shows the CDM
limit, while s > 0 and r < 1 represent the region of the phan-
tom and quintessence DE eras. Following Refs. [18,19], we
insert Eq. (8) to find q which is used in Eq. 15 and obtain the
following form of the statefinders:

r = 1 + 1

2
a−3+3d2

ρm0(−u2n2Ha−3+u − (d4H(a)−u)n−2

+(2uρc)(H(a)(−2a−3+3d2
ρm0 + ρc − 6n2H(a)u))−1)

×(−3 − (a−3+3d2
d4ρm0H(a)−u)n−2

+(a−3+3d2
ρm0u(−un2H(a)−2+u + (2ρc)

×(−2a−3+3d2
ρm0 + ρc − 6n2H(a)u)−1))H(a)−1

−(3a3−3d2
H(a)ω′

ϑ)(ρm0u(−un2H(a)−2+u

+(2ρc)(−2a−3+3d2
ρm0 + ρc − 6n2H(a)u)−1))−1)

(16)
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Fig. 4 Plot of ωϑ –ω′
ϑ for PDE in LQC with u = 2, 1,−1,−2
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Fig. 5 Plot of r–s for PDE in LQC with u = 2, 1,−1,−2
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Table 1 Summary of the observational data on H0

H0 Observational schemes References

73.8 ± 2.4 Cepheids + SNe Ia [88]

74.3 ± 1.5 Carnegie HP [89]

72.3 ± 2.0 WMAP + eCMB + BAO + H0 [90]

71.0 ± 1.3 WMAP + eCMB + BAO + H0 + SNe Ia [90]

Table 2 Summary of the observational data on ωϑ0

ωϑ0 Observational schemes Refrences

−1.13+0.24
−0.25 Planck + WP + BAO [79]

−1.09 ± 0.17 Planck+WP + Union 2.1 [79]

−1.13+0.13
−0.14 Planck + WP + SNLS [79]

−1.24+0.18
−0.19 WMAP + eCMB + BAO + H0 + SNe Ia [79]

−1.073+0.090
−0.089 WMAP + eCMB + BAO + H0 [90]

−1.084 ± 0.063 WMAP + eCMB + BAO + H0 + SNe [90]

and

s = 1

9
a−3+3d2

ρm0(−u2n2H(a)−3+u − (d4H(a)−u)n−2

+(2uρc)(H(a)(−2a−3+3d2
ρm0 + ρc

−6n2H(a)u))−1)(−3 − (a−3+3d2
d4ρm0H(a)−u)

×n−2 + (a−3+3d2
ρm0u(−un2H(a)−2+u

+(2ρc)(−2a(−3 + 3d2)ρm0 + ρc − 6n2H(a)u)−1))H(a)−1

−(3a3−3d2
H(a)ω′

ϑ)(ρm0u(−un2H(a)−2+u

+(2ρc)(−2a−3+3d2
ρm0 + ρc − 6n2H(a)u)−1))−1).

(17)

We also develop the r–s planes corresponding to the present
cosmological scenario for different values of u as shown in
Fig. 5. The r–s region corresponds to the �CDM limit for
all cases of u.

5 Concluding remarks

In the LQC framework, cosmological implications have been
discussed with the help of various interaction terms between
different DE models and DM. Up to now, most of the work
has been done in the direction of an analysis of the dynam-

ics of interacting DE models and evolution of the universe
through the EoS parameter [82–87]. In this work, we analyze
the versatile cosmological scenario and construct the possi-
ble constraints of the PDE parameter u where it agrees with
the PDE phenomenon. We have considered the scenario of an
interacting PDE with a Hubble horizon in LQC framework.
For this purpose, we have constructed the Hubble parameter,
the EoS parameter, the squared speed of sound, ωϑ–ω′

ϑ , and
the r–s planes numerically. We have discussed these parame-
ters corresponding to the four values of u = 2, 1,−1,−2 and
the three values of d2 = 0.2, 0.3, 0.4. We have observed that
the trajectories of the Hubble parameter H(a) for all cases
of u approximately attain the values 74+0.005

−0.005 (Fig. 1). The
obtained range of H(a) shows consistency with the observa-
tional data [79,88,89] as shown in Table 1.

Moreover, the EoS parameter also shows consistency with
the present day observations. For instance, the trajectory of
ωϑ exhibits the ranges −1 − 0.0050 and −1 + 0.00005 for
the cases u = 2, 1, as shown in the upper plots of Fig. 2.
For u = −1,−2 (lower plots), the EoS parameter lies in
the ranges (−1.12,−1) and (−5,−1), respectively. These
constraints on the EoS parameter are compatible with the
constraints as obtained by Ade et al. [79] (Planck data) and
nine-year WMAP observational data as shown in Table 2.
It can also be observed from Fig. 3 that the squared speed
of sound remains positive for all cases of u and d2, which
exhibits the stability of the PDE in the LQC scenario.

We have also observed that the ωϑ–ω′
ϑ plane corresponds

to the �CDM limit, i.e., (ωϑ, ω′
ϑ) = (−1, 0) in all cases of

u and d2. Also, the ωϑ–ω′
ϑ plane shows thawing regions for

the cases u = 2,−1,−2 (Fig. 4) and a freezing region for
the case u = 1. In the present case, the trajectories of ω′

ϑ

against ωϑ also meet the observational constraints (Table 3)
for all cases of the interacting parameter as shown in Fig. 4.
Hence, the ωϑ–ω′

ϑ plane provides a behavior consistent with
the present day observations in all cases of u. Also, r–s cor-
responds to the �CDM limit for all cases of u.

Moreover, on the basis of a discussion as regards the
behavior of EoS parameter, we can suggest that the formation
of BHs can be avoided through this framework of PDE with
u = 2,−1,−2 and it gives support to the idea of Wei [17].
Also, the �CDM limit has been obtained in all mentioned
cases of u and d2 through viable cosmological parameters
such as ωϑ , ωϑ–ω′

ϑ , and r–s, which exhibits the credibil-
ity of the chosen constraints. Finally, it is remarked that all

Table 3 Summary of the
observational data on ωϑ –ω′

ϑ
ωϑ0 ω′

ϑ0 Observational schemes References

−1.13+0.24
−0.25 <1.32 Planck + WP + BAO [79]

−1.34 ± 0.18 0.85 ± 0.47 WMAP + eCAMB + BAO + H0 [90]

−1.17+0.13
−0.12 0.85+0.50

−0.49 WMAP + eCAMB + BAO + H0+SNe [90]
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the cosmological parameters corresponding to PDE with the
constraints u = ±2,±1 and d2 = 0.2+1

−1 in the scenario
of LQC shows compatibility with the current well-known
observational data [79,88–90].
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