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Abstract A renormalizable theory of gravity is obtained if
the dimension-less 4-derivative kinetic term of the graviton,
which classically suffers from negative unbounded energy,
admits a sensible quantization. We find that a 4-derivative
degree of freedom involves a canonical coordinate with
unusual time-inversion parity, and that a correspondingly
unusual representation must be employed for the relative
quantum operator. The resulting theory has positive energy
eigenvalues, normalizable wavefunctions, unitary evolution
in a negative-norm configuration space. We present a formal-
ism for quantum mechanics with a generic norm.
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1 Introduction

Newton invented classical mechanics putting two time
derivatives in his equation F = mẍ , which corresponds to a
kinetic energy with two time derivatives,mẋ2/2. Later Ostro-
gradski proved a no-go theorem: non-degenerate classical
systems with more than two time derivatives contain arbi-
trarily negative energies and develop fatal run-away instabil-
ities [1]. Classically, they do not make sense.

The discovery that nature is relativistic and quantum
opened the quest for an extension of Newtonian gravity. A

a e-mail: alberto.salvio@cern.ch

century ago Einstein and Hilbert found the classical the-
ory of relativistic gravity. However, its quantum version is
not renormalizable in 3+1 space-time dimensions. Sticking
to the observed number of space-time dimensions, a renor-
malizable extension of general relativity is found by adding
terms quadratic in the curvature tensor to the Einstein–Hilbert
Lagrangian, such that the graviton acquires a 4-derivative
kinetic term. Stelle proposed and dismissed this extension
[2] (see also [3–13]).

Recently the Higgs mass hierarchy problem brought inter-
est to dimension-less theories. In this context, gravitons
must have dimension 0 (being a dimension-less metric) and
therebymusthave a 4-derivative kinetic term. If these theories
could make sense at the quantum level, despite the negative
classical energy, a great deal would be gained: relativistic
quantum gravity, plus hierarchies among dynamically gen-
erated mass scales [12], plus inflation [14,15].

Quantization can eliminate arbitrarily negative classical
energies. The following example is well known: the classical
relativistic spin 1/2 field is described by a spinor �(x) with
Dirac Lagrangian L = �̄(i /∂ − m)� containing one time
derivative. Treating � as a classical field (as initially pro-
posed by Schrödinger), and inserting the plane-wave expan-
sion

�(x) =
∫

d3 p

(2π)3
√

2Ep
[ap,su p,se

−i p·x + b†
p,svp,se

i p·x ]
(1)

in the Hamiltonian one finds negative energies in half of the
configurations space:1

H =
∫

d3 p

(2π)3 Ep[a†
p,sap,s − bp,sb

†
p,s],

Ep =
√
m2 + �p2 (2)

1 Unlike in the case of the hydrogen atom emphasized by Woodard
[16,17], where the instability eliminated by quantum mechanics occurs
only in one point of the configuration space.

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208026204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4079-8&domain=pdf
mailto:alberto.salvio@cern.ch


227 Page 2 of 15 Eur. Phys. J. C (2016) 76 :227

This classical arbitrarily negative energy is avoided by quan-
tization with anti-commutators, if the vacuum state is appro-
priately chosen. Indeed, the two-state solution to {b, b†} = 1
shows that one can switch annihilation with creation oper-
ators by choosing the vacuum to be the state with lower
energy.

The spin 0 and spin 1 relativistic fields (described by
dimension-1 fields with two derivatives) do not have this
issue: the negative-frequency solutions to the Klein–Gordon
equation correspond to Hamiltonians with positive energy.

The general lesson is that quantization depends on the
number of time derivatives.

The goal of this study is describing if/how systems with
four derivatives can be quantized obtaining a consistent the-
ory, in particular of quantum gravity. We will find that a
unique structure emerges, which again involves switching
annihilation and creation operators.

This will bring us into the territory of negative-norm
quanta, avoided like a plague by serious theorists that call
them ‘ghosts’, and explored only by notorious crackpots such
as Dirac [18], Pauli [19], Heisenberg [20], Pais, Uhlenbeck
[21], Lee, Wick [22,23], Cutkosky [24], Coleman [25], Feyn-
man [26], Gross [27], Hawking [28,29], ’t Hooft [30,31] and
others, also more recently [32–52]. These works sometimes
contain bizarre and confusing statements and obsolete moti-
vations, together with interesting ideas and ad hoc prescrip-
tions.

This paper is structured as follows. In Sect. 2 we review
the canonical Ostrogradski formalism. In Sect. 3 we present
negative-norm quantum mechanics, the negative-norm har-
monic oscillator (Sect. 3.3), and the associated negative-norm
representation of a canonical coordinate (Sect. 3.4), with
unusual parity under time-inversion T . In Sect. 4 we recall
that a 4-derivative degree of freedom q(t) is described by
two canonical coordinates: q1 = q and q2 = q̇. While q1 is
T -even as usual, q2 is T -odd: we argue that thereby it nat-
urally follows the negative-norm representation. The result-
ing quantum theory is unitary: time evolution preserves the
negative norm. The path integral formulation is discussed in
Sect. 5. In Sect. 6 we discuss the interacting theory, outline
the extension to quantum field theory, and discuss the issue of
giving a sensible interpretation to negative norms, via a pos-
tulate that generalizes the Born rule. Conclusions are given
in Sect. 7.

2 The Ostrogradski classical canonical formalism

Let us now introduce the main issues in the simplest relevant
case. Our final goal will be 4-derivative gravity; however, the
graviton components can be Fourier expanded into modes
with given momentum and four time derivatives, and at lead-
ing order in the perturbative expansion one has decoupled

harmonic oscillators. So, we start considering a single mode
q(t), described by the Lagrangian

L = − q̈2

2
+ (ω2

1 + ω2
2)
q̇2

2
− ω2

1ω
2
2
q2

2
− V (q)

= −1

2
q

(
d2

dt2 + ω2
1

) (
d2

dt2 + ω2
2

)
q − V (q)

+ total derivatives.

where V (q) is some interaction. We assume real ω1, ω2,
because we are interested in ghosts (negative kinetic and
potential energy), not in tachyonic instabilities (potential
unstable with respect to the kinetic term). The − sign means
that the ghost is the state with larger ω; we choose ω1 > ω2

and do not explicitly discuss here the degenerate case ω1 =
ω2.

Ostrogradski introduced an auxiliary coordinate q2 that
allows one to describe the 4-derivative oscillator in canoni-
cal Hamiltonian form (see also ref. [21] for a review of this
method):

q1 = q, p1 = δL

δq̇1
= (ω2

1 + ω2
2)q̇ + ...

q ,

q2 = λq̇, p2 = δL

δq̇2
= − q̈

λ
,

(3)

where for a generic variable x we have introduced the varia-
tional derivative

δL

δx
= ∂L

∂x
− d

dt

∂L

∂ ẋ
+ d2

dt2

∂L

∂ ẍ
+ · · · . (4)

While Ostrogradski assumed λ = 1, we introduced an arbi-
trary constant λ. The system in Eq. (3) can be solved for q
and its time derivatives,

q = q1, q̇ = q2

λ
, q̈ = −λp2,

...
q = p1 − (ω2

1 + ω2
2)
q2

λ
, (5)

and the Hamiltonian turns out to be

H =
2∑

i=1

pi q̇i − L = p1q2

λ
− λ2

2
p2

2 − ω2
1 + ω2

2

2λ2 q2
2

+ ω2
1ω

2
2

2
q2

1 + V (q1). (6)

In view of its first term, the classical Hamiltonian H has
no minimal energy configuration: this is the essence of the
Ostrogradski no-go classical theorem. Using the Poisson
parentheses { , } one computes the Hamiltonian equations
of motion:
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⎧⎪⎨
⎪⎩
q̇1 = {q1, H} = ∂H

∂p1
= q2

λ
, ṗ1 = {p1, H} = − ∂H

∂q1
= −ω2

1ω
2
2q1 − V ′(q1),

q̇2 = {q2, H} = ∂H
∂p2

= −λ2 p2, ṗ2 = {p2, H} = − ∂H
∂q2

= − p1
λ

+ ω2
1+ω2

2
λ2 q2.

(7)

For any λ they imply the classical Lagrangian equation of
motion. Setting V = 0, it is

(
d2

dt2 + ω2
1

) (
d2

dt2 + ω2
2

)
q

= d4q

dt4 + (ω2
1 + ω2

2)
d2q

dt2 + ω2
1ω

2
2q = 0. (8)

The corresponding classical solution, for given initial condi-
tions q0, q̇0, q̈0,

...
q 0 at t = 0, is

q(t) = −ω2
2q0 + q̈0

ω2
1 − ω2

2

cos(ω1t) + ω2
1q0 + q̈0

ω2
1 − ω2

2

cos(ω2t)

− ω2
2q̇0 + ...

q 0

ω1(ω
2
1 − ω2

2)
sin(ω1t) + ω2

1q̇0 + ...
q 0

ω2(ω
2
1 − ω2

2)
sin(ω2t).

(9)

This is a well-behaved oscillator without run-away issues
because the positive-energy and negative-energy components
are decoupled. Run-away solutions appear when they interact
through a generic interaction, such as a V �= 0.

2.1 Quantizing the Ostrogradski Hamiltonian

The classical equation differs from the usual 2-derivative
equation d(q + i p)/dt = iω(q + i p), so that, trying to
quantize the theory, we do not define the usual annihilation
operator ai ∝ qi + i pi . Rather, it is convenient to define the
operators ai as the coefficients of a given frequency:

q(t) = a1e−iω1t + a2e−iω2t + h.c. (10)

The a1, a2 can be expressed in terms of canonical Hamilto-
nian coordinates:

a1 = λω1ω
2
2q1 − iω2

1q2 + i p1λ − ω1 p2λ
2

2λω1(ω
2
2 − ω2

1)
, (11)

a2 = λω2
1ω2q1 − iω2

2q2 + i p1λ − ω2 p2λ
2

2λω2(ω
2
1 − ω2

2)
. (12)

Using the canonical quantization [qi , p j ] = iδi j one finds
the commutation relations for the ai :

[ã1, ã
†
1] = −1, [ã2, ã

†
2] = 1,

all other commutators vanish. (13)

having normalized ã1 =
√

2ω1(ω
2
1 − ω2

2)a1 and ã2 =√
2ω2(ω

2
1 − ω2

2)a2. The Hamiltonian is

H = −ω1
ã1ã

†
1 + ã†

1 ã1

2
+ ω2

ã2ã
†
2 + ã†

2 ã2

2
. (14)

The state 1 with higher frequency ω1 > ω2 is a ghost.
As better discussed later in Sect. 3.3, this system can be

quantized in two different ways:

1. Positive norm, negative energy One redefines ã′
1 = ã†

1 ,

such that it has the usual commutation [ã′
1, ã

′†
1 ] = 1.

The vacuum state |0̃〉 is defined as usual by ã′
1|0̃〉 = 0

and ã2|0̃〉 = 0. By solving this condition as a differential
equation for ψ0̃(q1, q2) = 〈q1, q2|0̃〉 with pi = −i∂/∂qi
one obtains the ground-state wavefunction:

ψ0̃(q1, q2) = exp

(
−q2

1ω1ω2 + q2
2/λ2

2
(ω1 − ω2)

+ iq1
q2

λ
ω1ω2

)
. (15)

2. Negative norm, positive energy The vacuum is now
defined asa1|0〉 = 0 anda2|0〉 = 0. Using pi = −i∂/∂qi
one obtains the ground-state wavefunction

ψ0(q1, q2) ∝ exp

(
−q2

1ω1ω2 + q2
2/λ2

2
(ω1 + ω2)

− iq1
q2

λ
ω1ω2

)
. (16)

If λ = 1 the situation is bad, as emphasized by [16,17]: the
positive-norm quantization gives a normalizable wavefunc-
tion ψ0̃ but negative energies; the negative-norm quantiza-
tion gives a ground-state wavefunction not normalizable in
q2 = q̇ . Excited states have the same problem.

However, as we will show in Sect. 4, consistency requires
the negative-norm Dirac–Pauli representation of a canonical
coordinate which roughly amounts to choosing an imaginary
λ, e.g. λ = −i . One then obtains positive energy, negative
norm, and a wavefunction ψ0(q1, q2) normalizable in q1 and
q2 = −i q̇ . As we will now discuss, despite the strange i
factor, q̇ = iq2 as well as the Ostrogradski Hamiltonian
H = iq2 p1 + · · · = q̇ p1 + · · · is self-adjoint, so that time
evolution is unitary.
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3 Quantum mechanics with negative norm

We here discuss quantum mechanics with negative norm
from a general point of view. Negative-norm states require
putting some minus sign here and there. It is convenient
to be more general and consider a Hilbert-like space with
generic, possibly negative, constant norm (called Krein space
by mathematicians) and develop a basis-independent formal-
ism. This will let us to clarify confusions, in particular about
self-adjoint operators that are represented (in some basis)
by non-hermitian matrices, allowing us to understand the
unusual imaginary λ introduced in the previous section.

We follow the notations used in general relativity, rewrit-
ing the quantum-state metric as 〈n|m〉 = ηnm and defining
the inverse metric (η)nm ≡ (η−1)nm , the contravariant ket
|n〉 = ηnm |m〉 such that 〈n|m〉 = ηnm and 〈n|m〉 = δnm =
〈n|m〉. Summations over repeated indices are implicit. As
usual, bras denote complex conjugate of kets.

A generic state |ψ〉 can be expanded in either the ‘covari-
ant’ or the ‘contravariant’ basis:

ψn ≡ 〈n|ψ〉, ψn ≡ 〈n|ψ〉. (17)

Then

|ψ〉 = ψn|n〉 = ψn|n〉. (18)

A generic linear operator A can be written as a matrix in 4
different ways:

Anm ≡ 〈n|A|m〉, Anm ≡ 〈n|A|m〉, An
m ≡ 〈n|A|m〉,

An
m ≡ 〈n|A|m〉. (19)

Then

A = Anm |n〉〈m | = Anm |n〉〈m | = An
m |n〉〈m | = An

m |n〉〈m |.
(20)

The components of the matrices are related by An
m =

ηnn′ An′
m′ηm

′m , which is an iso-spectral transformation: the
eigenvalues do not change because the matrix A gets left-
multiplied by η and right-multiplied by its inverse.

The unity operator is represented by 1nm = ηnm and
1nm = ηnm and expanded as

1 = ηnm |n〉〈m | = ηnm |n〉〈m | = |n〉〈n| = |n〉〈n|. (21)

Operator multiplication becomes, in components, (AB)nm =
Ann′ηn

′m′
Bm′m . Expectation values are given by 〈ψ |A|ψ〉/

〈ψ |ψ〉.
The adjoint A† of an operator A is defined, as usual, as

the operator such that |ψ ′〉 = A|ψ〉 implies 〈ψ ′| = 〈ψ |A†.
Thereby for generic matrix elements one has 〈ψ2|A†|ψ1〉 ≡
〈ψ1|A|ψ2〉∗, and the relation for the components

(A†)nm = A∗
mn i.e. (A†)nm = Amn∗

i.e. (A†)n
m = (Am

n)
∗. (22)

The covariant components of a self-adjoint operator A sat-
isfy the usual condition: a self-adjoint operator is described
by a hermitian matrix, Anm . The same result holds for
the contravariant matrix Anm . The mixed components sat-
isfy a different condition, where complex conjugation is
supplemented by an iso-spectral transformation: An

m =
(ηA∗T η−1)n

m .2

A self-adjoint operator, A† = A has real expectation val-
ues 〈ψ |A|ψ〉/〈ψ |ψ〉, although the matrix Am

n that repre-
sents it can be anti-hermitian.

The mixed components directly enter into the eigenvector
equation A|ψ〉 = Aψ |ψ〉:

An
mψm = Anm′ηm

′mψm = Aψψn or

An
mψm = ηnn

′
An′mψm = Aψψn (23)

where Aψ is the eigenvalue. Let us now consider a self-
adjoint operator H (later it will be the Hamiltonian), with
eigenstates |En〉 and eigenvalues En . The identity

〈En|H |Em〉 = 〈En|Em〉Em = E∗
n 〈En|Em〉 (24)

tells that H can have three different kinds of eigenstates:

+) orthogonal eigenstates 〈En|Em〉 = 0 with real En and
norm 〈En|En〉 = +1;
−) orthogonal eigenstates 〈En|Em〉 = 0 with real En and
norm 〈En|En〉 = −1;
0) pairs of complex conjugated eigenvalues, En = E∗

m
with 〈En|Em〉 �= 0 and zero norm, 〈En|En〉 = 0.

In the classical analog, the latter possibility corresponds to
a ghost which is also a tachyon, which is a different kind of
instability, to be avoided even in absence of ghosts.

It is often convenient to choose a basis of eigenstates of
H : |n〉 = |En〉. The associated contravariant states |n〉 then
satisfy H |n〉 = E∗

n |n〉. In this basis the space splits into two
sectors: positive norm and negative norm, plus the possible
pairs of zero-norm states. The two sectors experience a joint
dynamics only if the initial state has a quantum entanglement
among them.

3.1 Unitary time evolution

The evolution equation i∂t |ψ〉 = H |ψ〉 becomes

i
∂

∂t
ψn = Hnmηmm′

ψm′ or i
∂

∂t
ψn = ηnn

′
Hn′mψm . (25)

2 Here T denotes the matrix transpose; ∗ denotes complex conjugation;
† denotes the adjoint operation, which generalizes the usual hermitian
conjugation and reduces to it in the positive-norm case. We never use †
to denote hermitian conjugation of a matrix.
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The norm of any state |ψ(t)〉 is conserved by time evolution
if H is self-adjoint:

i
∂

∂t
〈ψ ′(t)|ψ(t)〉 = 〈ψ ′|H − H†|ψ〉 = 0. (26)

A self-adjoint Hamiltonian H leads to unitary time evolution.
The explicit solution can be written as |ψ(t)〉 = U (t)|ψ(0)〉
with U (t) = T e−i

∫
H(t) dt , where T is the usual time-

ordering. In components,

ψn(t) = Un
mψm(0) = Unm′ηm

′mψm′(0) or

ψn(t) = Un
mψm(0) = ηnn

′
Un′mψm(0). (27)

Having written generic-metric quantum mechanics in
an abstract formalism that resembles as much as possi-
ble the usual positive-norm formalism, let us now empha-
size the key differences. For simplicity, let us consider a
time-independent H . One can then expand U = e−i Ht =∑∞

n=0(−i Ht)n/n!.

• Writing U in mixed components, Un
m is the naive expo-

nentiation of the matrix Hn
m . However, the mixed com-

ponents of a self-adjoint H do not form a hermitian
matrix. Rather, the self-adjoint condition in Eq. (22) dic-
tates that they are hermitian up to an iso-spectral trans-
formation.

• The covariant components of a self-adjoint H satisfy the
usual Hermiticity H∗

nm = Hmn . However, the covariant
components Unm are not given by the naive matrix expo-
nentiation of Hnm . Rather, extra metric factors appear to
covariantize the expansion:

Unm = ηnm + ηnn′(−i Ht)n
′m′

ηm′m

+ 1

2
ηnn′(−i Ht)n

′r ′
ηr ′s′(−i Ht)s

′m′
ηm′m + · · ·

(28)

Correspondingly, the unitarity condition U †U = 1
written in covariant components is U∗

n′nη
n′m′

Um′m =
ηnm , while in mixed components one gets the usual
Uk∗

n Uk
m = δnm .

Practical computations often employ perturbation the-
ory, which can now easily be generalized to generic norm.
Decomposing H = H0 + V (t), the interaction picture is
related to the Schrödinger picture as AI = ei H0t Ae−i H0t

where A is any operator (including V ). Time evolution is
given by

UI (ti , t f ) = T e−i
∫ t f
ti

dt VI (t) = 1 − i
∫ t f

ti
dt ′ VI (t

′)

−
∫ t f

ti
dt ′

∫ t ′

ti
dt ′′ VI (t

′)VI (t
′′) + · · · . (29)

The above explicit form of UI shows that the energy con-
served by quantum evolution (up to the usual quantum uncer-
tainty 
t 
E ≥ h̄) are the eigenvalues of H . Let us consider
for example a time-independent interaction V and an initial
state and a final state which are energy eigenstates with eigen-
values Ei and E f . Defining V f

i = 〈 f |V |i 〉, at first order one
has

|〈 f |U |i 〉|2 �
∣∣∣∣
∫ t

0
dt ′ ei(E f −Ei )t ′V f

i

∣∣∣∣
2

= 4|V f
i |2

|E f − Ei |2 sin2 (E f − Ei )t

2
t→∞� 2π t |V f

i |2δ(E f − Ei ). (30)

This means that energy conservation reads E f = Ei , up
to the usual quantum uncertainty 1/(t f − ti ). Higher order
corrections give the usual sum over intermediate quasi-on-
shell states.

3.2 Example: the indefinite-norm two-state system

Let us consider a two-state system: |+〉 with positive unit
norm, and |−〉 with negative unit norm. Without loss of gen-
erality, by redefining the relative phase of the two states and
adding a constant overall energy, one can trivially write the
most generic self-adjoint Hamiltonian as

H = 1

2

( |+〉 |−〉
〈+| ER −i EI

〈−| i EI ER

)
= 1

2

( |+〉 |−〉
〈+| ER i EI

〈−| i EI −ER

)
(31)

having used |±〉 = ±|±〉. We see that the Hnm components
are hermitian, unlike the Hn

m components. The eigenvalues

of H are E± = ±E with E =
√
E2
R − E2

I /2. The corre-
sponding eigenstates are

|E+〉 =
√

γ + 1

2
|+〉 − i

√
γ − 1

2
|−〉,

|E−〉 = i

√
γ − 1

2
|+〉 +

√
γ + 1

2
|−〉, (32)

where γ = 1/

√
1 − E2

I /E
2
R is a ‘boost factor’ that substi-

tutes the usual mixing angle.

• If EI < ER the eigenvalues of H are real, the orthogonal
eigenvectors satisfy 〈E±|E±〉 = ±1, and tend to get closer
to the ‘light-cone’ of zero-norm states as EI increases.
The components of U = e−i Ht oscillate in time:

U =
( |+〉 |−〉

〈+| cos(Et) − iγ sin(Et)
√

γ 2 − 1 sin(Et)
〈−| √

γ 2 − 1 sin(Et) cos(Et) + iγ sin(Et)

)
.

(33)
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The unusual feature is that |〈±|U |±〉|2 oscillates between
1 and γ 2 ≥ 1.

• In the critical case, ER = EI , such that γ = ∞, the two
eigenstates become degenerate with energy E = 0. The
two eigenvectors also become degenerate, and parallel to
the zero-norm state ∝ |+〉+ i |−〉. The evolution operator
is

U =
( |+〉 |−〉

〈+| 1 − i ERt/2 ERt/2
〈−| ERt/2 1 + i ERt/2

)
. (34)

This exemplifies a more general result: zero-norm eigen-
states with complex eigenvalues appear when, increasing
the interaction, a level crossing between a positive-norm
and a negative-norm eigenstate takes place; the Hamilto-
nian becomes degenerate at the critical transition.

• If the interaction EI is strong enough, EI > ER , one
has a pair of complex conjugated eigenvalues, with zero-
norm eigenvectors that satisfy 〈E+|E−〉 = 1 and describe
tachyonic ghosts: their time-evolution factor e−i E±t also
contains a real exponential, in analogy to tachyonic states
present in positive-norm theories. In the extreme limit
EI � ER the eigenvalues of H are ±i EI /2, and the
time evolution operator is

U =
( |+〉 |−〉

〈+| cosh(EI t/2) sinh(EI t/2)

〈−| sinh(EI t/2) cosh(EI t/2)

)
. (35)

This runaway happens whenever H has a pair of complex
eigenvalues E+ = E∗−, as clear writing time evolution in
terms of energy eigenstates, |ψ(t)〉 = ψ E+e−i E+t |E+〉 +
ψ E−e−i E−t |E−〉. Both the norm of |ψ(t)〉 and the real expec-
tation value of H are preserved by time evolution:

〈ψ(t)|H |ψ(t)〉
〈ψ(t)|ψ(t)〉 = E+ψ E+ψ E−∗ + c.c.

ψ E+ψ E−∗ + c.c.
. (36)

3.3 The negative-norm harmonic oscillator

We here study the concrete system that lies at the basis of
perturbative Quantum Field Theory: the harmonic oscillator.
As discussed by Lee and Wick [22,23] it admits two inequiv-
alent quantizations: positive norm, and indefinite norm.

Let us first recall the standard oscillator, described (up to
irrelevant constants) by the Hamiltonian H = 1

2 (p2 + q2)

with [q, p] = i . Defining

a = q + i p√
2

, a† = q − i p√
2

(37)

one has [a, a†] = 1 and H = (aa† + a†a)/2.

Let us next consider a more general system described by
the following Hamiltonian and commutation relations:

H = sH
a†a + aa†

2
, [a, a†] = s. (38)

For s = sH = 1 this reduces to the usual oscillator. We now
show that s = sH = −1 defines another consistent positive-
energy theory. The symbol a† here indicates the adjoint of a,
which generalizes the Hermitian conjugate to negative norm.

We again define the vacuum as a|0〉 = 0 and the excited
states as |n〉 = a†|n−1〉/√n = (a†)n|0〉/√n!. Its inverse
is a|n〉 = s

√
n|n−1〉. The state metric is ηnm ≡ 〈m |n〉 =

snδnm . The norm is determined by the dynamics, and odd
states have negative norm for s = −1. The inverse metric is
ηnm = s−nδnm and the contravariant states are |n〉 = s−n|n〉.
In components one has

a =

⎛
⎜⎜⎜⎜⎜⎝

|0〉 |1〉 |2〉 |3〉 · · ·
〈0| 0 s 0 0 · · ·
〈1| 0 0

√
2s2 0 · · ·

〈2| 0 0 0
√

3s3 · · ·
〈3| 0 0 0 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

|0〉 |1〉 |2〉 |3〉 · · ·
〈0| 0 1 0 0 · · ·
〈1| 0 0

√
2 0 · · ·

〈2| 0 0 0
√

3 · · ·
〈3| 0 0 0 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

(39)

a† =

⎛
⎜⎜⎜⎜⎜⎝

|0〉 |1〉 |2〉 |3〉 · · ·
〈0| 0 0 0 0 · · ·
〈1| s 0 0 0 · · ·
〈2| 0

√
2s2 0 0 · · ·

〈3| 0 0
√

3s3 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

= s

⎛
⎜⎜⎜⎜⎜⎝

|0〉 |1〉 |2〉 |3〉 · · ·
〈0| 0 0 0 0 · · ·
〈1| 1 0 0 0 · · ·
〈2| 0

√
2 0 0 · · ·

〈3| 0 0
√

3 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

(40)

In components the commutation relations read

[a, a†]nm = (a · η · a† − a† · η · a)nm = sn+1δnm

= sηnm i.e. [a, a†] = s
∑
n

|n〉〈n| = s1 (41)
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and the Hamiltonian is

Hnm =
(
n + 1

2

)
sH s

n+1δnm = Enηnm

i.e. H =
∞∑
n=0

En|n〉〈n| (42)

where En = (n + 1
2 )ssH are the Hamiltonian eigenvalues,

H |n〉 = En|n〉. We see that positive-energy eigenvalues are
obtained for s = sH = 1 (the usual case with positive H and
positive norm), but also for s = sH = −1 (negative H and
negative norm).

Concerning the negative-norm case, s = −1, notice that
the harmonic oscillator does not predict tachyonic ghosts
with zero norm. Furthermore the matrix elements anm are not
the hermitian conjugates of (a†)n

m , such that the operators
q = (a + a†)/

√
2 and p = i(a† − a)/

√
2 are represented

by matrices qnm and pnm which are not Hermitian. This is
why various authors who look at these matrices improperly
speak of ‘anti-Hermitian’ operators. Nevertheless, q and p
are self-adjoint operators. We will now find their coordinate
representation.

3.4 The negative-norm coordinate representation

Starting from the harmonic oscillator, we now describe a
more general representation of a pair of canonical coordi-
nate variables q, p. Parity flips q → −q and p → −p.
In the harmonic oscillator case, this means a → −a and
a† → −a†: so eigenstates |n〉 with even (odd) n are even
(odd) under parity. In the negative-norm quantization, states
with odd n also have negative norm. Going to the coordinate
wavefunction representation (we use the notation x for the
coordinate, which later will become field space), this means
that the norm is

〈ψ ′|ψ〉 =
∫

dx [ψ ′∗
even(x)ψeven(x) − ψ ′∗

odd(x)ψodd(x)]

=
∫

dx ψ ′∗(x)ψ(−x). (43)

The corresponding unit operator is 1 = ∫
dx | − x〉〈x |.

Switching to the formalism appropriate for generic norm, one
has the norm 〈x ′ |x 〉 = δ(x + x ′). Thereby the contravariant
state is |x 〉 = |−x 〉 and it satisfies the usual 〈x ′ |x 〉 = δ(x−x ′).
As already discussed in the text surrounding Eq. (17), a state
can be expanded as |ψ〉 = ∫

dx ψ(x )|x 〉 = ∫
dx ψ(x )|x 〉

with ψ(x ) = 〈x |ψ〉 and ψ(x ) = 〈x |ψ〉 = ψ(−x ).
What is emerging from the harmonic oscillator computa-

tion is a more general structure: a coordinate space represen-
tation of a pair q, p of conjugated canonical variables that
differs from the usual positive-norm representation

q|x〉 = x |x〉, p|x〉 = +i
d

dx
|x〉, (44)

which implies 〈x |p|ψ〉 = (−id/dx)ψ(x) so that it satisfies
〈x |[q, p]|ψ〉 = i〈x |ψ〉.

The negative-norm coordinate representation, originally
discussed by Dirac [18] and Pauli [19], is

q|x 〉 = i x |x 〉, p|x 〉 = + d

dx
|x 〉. (45)

Although q looks anti-hermitian, taking into account the
extra i as well as the negative norm, these unusual features
combine to form a self-adjoint q:

〈x ′ |q†|x 〉 = 〈x |q|x ′ 〉∗ = [i x ′δ(x + x ′)]∗
= i xδ(x + x ′) = 〈x ′ |q|x 〉. (46)

This means that 〈ψ |q|ψ〉 = ∫
dq ψ∗(−q)iq ψ(q) is real. A

similar result holds for p. When acting on wavefunctions one
has 〈x |q|ψ〉 = −i xψ(x ) and 〈x |p|ψ〉 = (+d/dx)ψ(x ), giv-
ing the desired [q, p] = i commutator. Defining momentum
eigenstates as p|p〉 = i p|p〉 one finds 〈q |p〉 = ei pq/

√
2π ,

〈p′ |p〉 = δ(p + p′). The operator q acts as 〈q |q|p〉 =
(−d/dp)〈q |p〉. One can again define |p〉 = |−p〉 such that
1 = ∫

dp |p〉〈p|.
The i factor that differentiates the usual representation

from the Dirac–Pauli representation has an impact on the
time-inversion parity. As usual, a positive-energy spectrum
requires that the time inversion symmetry is anti-unitary.
Then, in the Dirac–Pauli quantization q is naturally T -odd
and p is naturally T -even (while the opposite holds in the
usual quantization, unless T is defined adding ad hoc extra
signs). This will play a key role in Sect. 4.

We are now ready to come back to the harmonic oscil-
lator. Inserting into the condition 〈x |a|0〉 = 0 the standard
positive-norm representation such that a = (q + i p)/

√
2 =

(x + s d/dx)/
√

2 gives a differential equation which implies
the ground-state wavefunction ψ0(x) ∝ e−sx2/2. This is nor-
malizable for s = 1 (positive norm) and non-normalizable
for s = −1, where s was defined in Eq. (38). This prob-
lem was emphasized e.g. by Woodard [16,17] who thereby
dismissed the negative-norm quantization as purely formal.
However, the problem arises because the positive-norm rep-
resentation of q, p was used together with the negative-norm
oscillator: the problem is just a manifestation of the incon-
sistency of the assumptions. Consistency requires that the
negative-norm harmonic oscillator must be accompanied by
the negative-norm Dirac–Pauli coordinate space representa-
tion of the self-adjoint q, p operators, Eq. (45). Then the con-
dition 〈x |a|0〉 = 0 leads to a normalizable wavefunction for
the ground state ψ0 ∝ e−x2/2, as well as for the excited states.
The Dirac–Pauli choice thereby provides a self-consistent
description of the negative-norm oscillator. Furthermore, as
discussed in the next section, in the 4-derivative case the
Dirac–Pauli representation is required by simple considera-
tions.
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Table 1 Coordinate representations of a pair of canonical variables [q, p] = i , and the associated ground-state wavefunctions for the positive-energy
harmonic oscillator

Norm 〈x |q|ψ〉 T -parity 〈x |p|ψ〉 T -parity Harmonic oscillator with E > 0

Positive xψ(x) Even −i dψ/dx Odd ψ0(q) ∝ e−q2/2 and H = + 1
2 (q2 + p2)

Indefinite −i xψ(x) Odd dψ/dx Even ψ0(q) ∝ e−q2/2 and H = − 1
2 (q2 + p2)

4 For four derivatives Dirac–Pauli is desirable

As discussed in the previous section, and as summarized in
Table 1, quantum mechanics has two faces: a canonical coor-
dinate can be represented

(i) in the usual way with positive norm;
(ii) in the Dirac–Pauli way, with negative norm, Eq. (45).

As we now show, for theories with four derivatives the
latter quantization choice (which, in the gravitational case,
corresponds to a renormalizable theory with positive energy)
is desirable.

A single 4-derivative real coordinate q(t) contains two
degrees of freedom. In the Ostrogradski procedure (Sect. 2)
one rewrites the theory as a Hamiltonian system of two
canonical coordinates, q1 = q and q2 = λq̇ . The key new
feature that arises in 4-derivative theories is that q̇ becomes
an extra canonical coordinate. In the classical theory q2 is
just an auxiliary variable, and λ is an irrelevant constant:
Ostrogradski used λ = 1.

In the quantum theory, q1 and q2 are operators that allow
one to define the basis |q1, q2〉. We now show that the usual
quantization must be used for q1 and that the Dirac–Pauli
quantization must be chosen for q2, which is equivalent to
(and more transparent than) fixing an imaginary λ and using
the canonical representation.

As usual, the operator q1 = q is invariant under time-
reversal t → −t , and thereby it can follow the usual T -even
representation. On the other hand, the operator q̇ is T -odd,
because of the time derivative: the time-inversion operator T
transforms it as T q̇T−1 = −q̇ . This is the novel key feature.

Taking into account that T is anti-unitary, one can equiva-
lently define a usualT -even coordinateq2 = λq̇1 by choosing
an imaginary λ.3 However, it is simpler to forget the λ fac-

3 Alternative routes lead to the same conclusion. For example, one can
use the T -even q̈ (instead of q̇) as second canonical coordinate. In
the Ostrogradski formalism q̈ = −p2 is a momentum. So again one
gets a canonical coordinate with unusual T -parity (normally a momen-
tum is T -odd). In general, the invariance of the commutation relation
[q2, p2] = i under the anti-unitary time-inversion implies that q2 and p2
have opposite T -parities. One can switch q2 ↔ p2 in order to restore
their usual T -parities: but their commutator changes sign, implying
again negative-norm quantization. This is indeed what happens in the
auxiliary variable formalism, used in various forms in the literature

tors and just declare that the self-adjoint operator q̇ is T -odd
and thereby it follows the T -odd Dirac–Pauli representation.
Then the Ostrogradski Hamiltonian of Eq. (6) is T -even. The
states satisfy T |q, q̇〉 = |q, q̇〉 since q̇ has imaginary eigen-
values and since T is anti-unitary.

The strange extra factor of i has been justified from first
principles. With hindsight, it was not so strange. After all,
it is well known that the self-adjoint spatial gradient is i �∇
rather than �∇. In a relativistic theory, one could have guessed
that similarly the self-adjoint time derivative is i∂/∂t rather
than ∂/∂t . Loosely speaking, while from a classical perspec-

Footnote 3 continued
as an alternative to the canonical Ostrogradski formalism (see e.g. [28,
29,32,49]). This formalism is convenient when dealing with quantum
field theory instead of quantum mechanics with a finite number of
degrees of freedom. In order to facilitate the contact, we summarize
the auxiliary variable formalism below. Restarting from the Lagrangian
in Eq. (3), we add zero as a perfect square containing an auxiliary vari-
able a:

L = L + 1

2

[
q̈ + (ω2

1 + ω2
2)
q

2
− a

2

]2

. (47)

Expanding the square cancels both the second-order and the fourth-
order kinetic terms for q leaving

L = −aq̈

2
+ (ω2

1 − ω2
2)

2 q
2

8
− (ω2

1 + ω2
2)
aq

4
+ a2

8
− V (q). (48)

Going to the free theory V = 0, we can diagonalize the kinetic and
mass term through the field redefinition

⎧⎨
⎩
a =

√
ω2

1 − ω2
2(q̃2 − q̃1)

q = (q̃2 + q̃1)/

√
ω2

1 − ω2
2

i.e.

q̃1,2 = q

2

√
ω2

1 − ω2
2 ∓ a

2
√

ω2
1 − ω2

2

(49)

obtaining two decoupled oscillators,

L =
˙̃q2
2 − ω2

2 q̃
2
2

2
−

˙̃q2
1 − ω2

1 q̃
2
1

2
. (50)

From its classical solution, a = 2q̈+ (ω2
1 +ω2

2)q, we see that a roughly
corresponds to the Ostrogradski p2. Furthermore, inserting such clas-
sical solution in Eq. (49) one recovers the formalism used in [28,29]

q̃2 = q̈ + ω2
1q√

ω2
1 − ω2

2

, q̃1 = − q̈ + ω2
2q√

ω2
1 − ω2

2

. (51)
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tive q̇ was the natural auxiliary variable, from a quantum
perspective the natural extra coordinate operator is i q̇ .4

Using the Heisenberg representation, one has q(t) =
U †(t)q(0)U (t) and q̇ = −i[q, H ] = U †(t)q̇(0)U (t) with
unitary U , so q(t) keeps real eigenvalues and q̇(t) keeps
imaginary eigenvalues at any t (these statements are not con-
tradictory, given that q(t) also depends on p1(0) and p2(0)).

4.1 The frequency eigenstates

We conclude this section by computing what the Dirac–Pauli
representation adopted for q2 = q̇ implies for the frequency
eigenstates. We restart from the Hamiltonian Eq. (6) and
bring it in diagonal form,

H = −1

2

(
p̃2

1 λ̃2 + ω2
1
q̃2

1

λ̃2

)
+ 1

2
( p̃2

2 + ω2
2q̃

2
2 ) (52)

through the canonical transformation

q1 = q̃2 − λ̃ p̃1/ω1√
ω2

1 − ω2
2

,
q2

λ
= p̃2 − ω1q̃1/λ̃√

ω2
1 − ω2

2

,

p1 = ω1
ω1 p̃2 − ω2

2q̃1/λ̃√
ω2

1 − ω2
2

, p2λ = ω2
2q̃2 − ω1λ̃ p̃1√

ω2
1 − ω2

2

, (53)

which satisfies q1 p1 − q2 p2 = p̃2q̃2 − p̃1q̃1. For the sake
of generality, we here allow for generic factors λ and λ̃. The
non-vanishing commutators, [q̃1, p̃1] = i and [q̃2, p̃2] = i ,
can be rewritten in terms of ã2 = √

ω2/2(q̃2+i p̃2/ω2) and of
ã1 = √

ω1/2(q̃1/λ̃−i λ̃ p̃1/ω1) reproducing the Hamiltonian
of Eq. (14) and the commutators of Eq. (13). The ground-state
wave function is easily computed imposing 〈q̃1, q̃2|ã1,2|0〉 =
0 finding

ψ0(q̃1, q̃2) ∝ exp

[
−ω2

q̃2
2

2
+ ω1

q̃2
1

2λ̃2

]
. (54)

For λ̃ = 1 it is not normalizable [43,44]. It is normalizable
if instead |Im λ̃| > |Re λ̃|.

The Dirac–Pauli representation for q2, p2 corresponds to
imaginary λ. Imposing that q2, p1 are T -odd and that q1, p2

are T -even (i.e. that q2 and p2 have the unusual T parity)
implies that q̃1, p̃2 are T -odd and that q̃2, p̃1 are T -even (i.e.
that the canonical coordinates of the negative-norm mode

4 The possibility of converting a non-normalizable wavefunction ψ0 ∝
ez

2/2 into a normalizable one by restricting z = x + iy to the imaginary
axis, rather than along the real axis, was presented as an ad hoc recipe to
get something sensible in earlier works by Bender and Mannheim [33–
42]. At the technical level, their approach differs from ours because they
added an i factor to the variable q, rather than to q̇ . Our approach fol-
lows from general considerations, and it has the advantage that q, p and
thereby the Hamiltonian are self-adjoint (although their matrix repre-
sentations look anti-hermitian), such that the generalization to an inter-
acting theory will be immediate (Sect. 6.1).

q̃1 and p̃1 have the unusual T parity). This is obtained for
imaginary λ̃.

As a check, let us connect the q1, q2 basis with the q̃1, q̃2

basis for generic λ and λ̃. It is convenient to start from the
T -odd basis q̃1, p̃2, in which the ground-state wavefunction
is

ψ0(q̃1, p̃2) ∝ exp

[
− p̃2

2

2ω2
+ ω1

q̃2
1

2λ̃2

]
. (55)

Next, the transition to the T -odd variables p1, q2 is simply

〈p1, q2|q̃1, p̃2〉 ∝ δ

⎛
⎝ q̃1

λ̃
− p1 − q2ω

2
1/λ

ω1

√
ω2

1 − ω2
2

⎞
⎠

× δ

⎛
⎝ p̃2 − p1 − q2ω

2
2/λ√

ω2
1 − ω2

2

⎞
⎠ . (56)

Inserting the change of variables dictated by the δ functions
into ψ0(q̃1, p̃2) one obtains

ψ0(p1, q2)

∝ exp

[
− p2

1 + 2ω1ω2 p1q2/λ − ω1ω2(ω
2
1 + ω1ω2 + ω2

2)(q2/λ)2

2ω1ω2(ω1 + ω2)

]

(57)

where q2 and p1 are both complex and linked by Re p1 =
ω2

1Re (q2/λ) and Im p1 = −ω2
2Im (q2/λ). ψ0 can be trivially

analytically continued to real p1, q2. For λ = ±i it remains
a bounded Gaussian. Finally, one performs the Fourier trans-
form from p1 to q1, obtaining from ψ0(p1, q2) the ground-
state wavefunction ψ0(q1, q2), which agrees with Eq. (16).
The same equality holds for excited states, which can be
computed acting with creation operators on the ground state.

In the limit ω1 = ω2 one gets the critical situation
described in Sect. 3.2.

5 Path-integral quantization

We now present the path-integral quantization of the same
4-derivative theory.

5.1 Path integral for generic norm

Our generic-norm formalism makes easy to write down the
equivalent path integral formalism, an issue already consid-
ered in [27]. Inserting 1 = ∫

dq |q〉〈q | at intermediate times
tm = ti + m dt one has

〈q f ,t f |qi ,ti 〉 =
∏
m

∫
dqm〈qm+1,tm+1 |qm ,tm 〉. (58)
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Each step 〈qm+1,tm+1 |qm ,tm 〉 can be evaluated as

〈qm+1 |e−i Hdt |qm 〉 =
∫

dpm 〈qm+1 |pm 〉〈pm |e−i Hdt |qm 〉

=
∫

dpm
2π

ei[pm (qm+1−qm )−Hcldt], (59)

having defined

Hcl ≡ 〈p|H |q〉
〈p|q〉 (60)

and using 〈q |p〉 = ei pq/
√

2π and 〈p|q〉 = e−i pq/
√

2π . The
final result is the path integral

〈q f ,t f |qi ,ti 〉 =
∫

Dq Dp ei
∫

dt[pq̇−Hcl]

where Dq Dp = lim
dt→0

∏
m

dqmdpm
2π

(61)

and with boundary conditions q(ti ) = qi , q(t f ) = q f .

5.2 Path integral for 4-derivative quantum theories

Applying the generic path integral of Eq. (61) to the 4-
derivative oscillator in the canonical Ostrogradski formalism,
one gets the transition amplitude

〈q1 f ,q2 f ,t f |q1i ,q2i ,ti 〉 ∝
∫

Dq1Dp1Dq2Dp2

× exp

[
i
∫

dt [p1q̇1 + p2q̇2 − Hcl + J1q1 + J2q2]

]

(62)

where for generality we added currents J1,2 (such that acting
with functional derivatives with respect to them one can form
more general matrix elements of time-ordered operators; J1

is T -even and J2 is T -odd). The Dirac–Pauli representation
for q̇ manifests in two ways:

1. A propagator with an unusual − in its external state.

Rewriting the transition amplitude in the usual positive-
norm formalism, it acquires an usual − sign, becoming
〈q f ,−q̇ f , t f |qi , q̇i , ti 〉. In the limit t f → ti one has
〈q f ,q̇ f |qi ,q̇i 〉 = δ(q f − qi )δ(q̇ f − q̇i ), so that the unusual
− sign is equivalent to the Dirac–Pauli negative norm.5 Fur-
thermore, the T -odd nature of q̇ is hardwired in the path

5 In the limit dt = t f − ti → 0 the classical action becomes

Scl � 6

dt3

(
q f − qi − dt

q̇i + q̇ f

2

)2

+ (q̇ f − q̇i )2

2 dt
+ · · · (63)

which is minimal for a motion with constant speed (q̇i +
q̇ f )/2. The classical action satisfies S(q f , q̇ f , t f ; qi , q̇i , ti ) =
−S(qi , q̇i , ti ; q f , q̇ f , t f ) as well as Scl(q f , q̇ f , t f ; qi , q̇i , ti ) =
−Scl(q f ,−q̇ f , ti ; q f ,−q̇i , ti ).

integral, as a geometrical feature. For each trajectory q(t)
with boundary conditions q(ti, f ) = qi, f and q̇(ti, f ) = q̇i, f
the time-inverted trajectory has the same action and the fol-
lowing boundary conditions:

qi → q f , q f → qi , q̇i → −q̇ f , q̇ f → −q̇i . (64)

Thereby the propagator given by the path integral satisfies
the identity

〈q f ,−q̇ f , t f |qi , q̇i , ti 〉 = 〈qi , q̇i , t f |q f ,−q̇ f , ti 〉 (65)

which is equivalent to the operator identity 〈ψ f |ψi 〉 =
〈Tψi |Tψ f 〉 given that T |q, q̇, t〉 = |q, q̇,−t〉.

2. An unusual classical Hamiltonian.

Inserting the Ostrogradski Hamiltonian of Eq. (6) in the
generic path integral of Eq. (61) one gets the following clas-
sical Hamiltonian:

Hcl = 〈p1,p2 |H |q1,q2〉
〈p1,p2 |q1,q2〉

= i p1q2 + p2
2

2
+ ω2

1 + ω2
2

2
q2

2 + ω2
1ω

2
2

2
q2

1 + V (q1).

(66)

This is the same as Eq. (6) with λ = −i . Hcl can be com-
plex because q2, p2, in the Dirac–Pauli representation, have
complex eigenvalues.6 Thanks to the unusual i , it is invariant
under time-reversal.

Let us now try to evaluate the path integral. As usual,
one can perform the Gaussian Dp1Dp2 path integrals. The
Dp1 path integral formally gives the Dirac delta function
δ(q2 − λq̇1), allowing to eliminate the Dq2 path integral,
leaving

〈q f ,q̇ f ,t f |qi ,q̇i ,ti 〉
∝

∫
Dq exp

[
i
∫

dt [L (q) + J1q + J2λq̇]

]
, (67)

whereL coincides with the original 4-derivative Lagrangian.
By partial integration, the source term for q̇ can be trans-
formed into a source for q or for q̈ (like in the auxiliary-field
method). This computation however has three problems:

1. The Dp1 path integral is, in general, divergent. Thereby
the subsequent result is only formal.

2. The δ(q2 − λq̇1) always vanishes if q1 and q2 are real.
Thereby the Dq2 path integral is only formal.

3. Once interactions are turned on, the Lagrangian admits
classical runaway solutions, reflected in the path integral.

Given that the theory is well defined in the operator formal-
ism, somehow this path integral must have a sense.

6 The classical Hamiltonian is real if one instead uses the equivalent
oscillator basis q̃1, q̃2, p̃1, p̃2 of Eq. (53).
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5.3 Euclidean path integral for 4-derivative quantum
theories

A sensible path integral is found by starting from Eq. (62) and
continuing it to Euclidean time, i t = tE , such that dq/dt =
i dq/dtE i.e. q̇ = iq ′. One gets the Euclidean path integral

〈q1 f ,q2 f ,tE f |q1i ,q2i ,tEi 〉 ∝
∫

Dq1Dq2Dp1Dp2

× exp

[∫
dtE (i p1q

′
1 + i p2q

′
2 − Hcl + J1q1 + J2q2)

]
.

(68)

Now the Dp1 integral is convergent and gives δ(q2 − q ′
1),

such that the Dq2 path integral just fixes q2 = q ′
1. Next, the

remaining terms in Hcl are a sum of positive squares so all
other integrals are convergent. Performing them one finds the
Lagrangian Euclidean path integral:

〈q f ,q ′
f ,tE f |qi ,q ′

i ,tEi
〉 ∝

∫
Dq exp

[
−

∫
dtE

[
LE (q) + J1q + J2q

′]]

(69)

where the classical Euclidean Lagrangian corresponding to
Eq. (3) is

LE = 1

2

(
d2q

dt2
E

)2

+ ω2
1 + ω2

2

2

(
dq

dtE

)2

+ ω2
1ω

2
2

2
q2 + V (q).

(70)

Let us now check the result. The classical free solution is

q(tE ) = a1e−ω1tE + a2e−ω2tE + b1eω1tE + b2eω2tE . (71)

It already contains runaway exponentials, characteristic of
any Euclidean theory. Interactions compatible with the posi-
tivity of the action lead to an equally good path integral. By
imposing the boundary conditions q = q ′ = 0 at tEi = −∞
and evaluating the classical action, one finds the normalizable
ground-state wave function

〈q, q ′, tE = 0|0, 0, tE = −∞〉
∝ exp

[
−q2ω1ω2 + q ′2

2
(ω1 + ω2) + qq ′ω1ω2

]
. (72)

This agrees with the ground-state wavefunction ψ0(q1, q2) in
Eq. (16), which was computed in the Dirac–Pauli formalism
in Minkowski space, after identifying q = q1 and q ′ = q2. In
other words, q ′ = dq/dtE = −idq/dt coincides with q2, as
computed for λ = −i . The novel feature introduced by four
derivatives is that q ′ must not be continued into an imaginary
−i q̇ (which would give divergent wavefunctions), because it
already describes the T -odd variable q2, which contains the
Dirac–Pauli i factor of Eq. (45).7 The final result is that the

7 Hawking and Hertog [28,29] found a non-normalizable Minkowskian
wavefunction because they expressed Eq. (72) in terms of q̇ , which is

Minkowskian theory is an unusual analytic continuation of
the Euclidean theory.

6 Interactions, quantum field theory, probability

Summarizing, we so far considered a 4-derivative harmonic
oscillator. One might think that we achieved nothing [43,44].
After all, a classical 4-derivative harmonic oscillator has no
runaway problems, see Eq. (9), given that it splits into two
decoupled oscillators, one with negative energy and one with
positive energy. The classical trouble starts when they inter-
act. In this section we will explain that we have achieved
instead something useful in an interacting quantum field the-
ory.

6.1 Adding interactions

The quantum formalism was so far developed for the har-
monic oscillator (which corresponds to the modes of a free
4-derivative quantum field theory), finding that the quantum
theory has a positive-energy spectrum and no runaway behav-
iors. Adding interactions, the quantum interacting inherits all
these good properties, as long as interactions are perturba-
tive and as long as the interacting Hamiltonian H remains
self-adjoint.

The second issue was the main obstacle to past attempts of
adding ad hoc unusual i factors in order to make the quantum
free theory consistent [33–42] (normalizable wavefunctions
and unitary evolution with negative norm and positive energy
eigenvalues): adding extra complex factors can render inter-
actions complex, ruining the theory [43,44].

In our approach the only extra i factor arose from a princi-
pal reason: q̇ is a T -odd coordinate that follows the negative-
norm Dirac–Pauli representation. This satisfies all the proper-
ties of quantum mechanics, as generalized to negative norms:
q̇ itself is self-adjoint, like q and q̈ . Thereby any interaction
which is a real function of them is self-adjoint. Our procedure
immediately generalizes to the interacting case (in agravity
[12] all interactions are dictated by general covariance).

The perturbativity assumption means that, as long as the
energy spectrum of the free oscillator gets slightly distorted
by interactions, the energy eigenvalues will remain real and
bounded from below (strongly interacting theories could also
be good; however, they seem not needed for the physical
application to agravity [12]).

Footnote 7 continued
not the canonical coordinate q2 appropriate for 4-derivative theories.
Their proposal of integrating out q̇ in the Euclidean before perform-
ing the analytic continuation to the Minkowskian is not necessary: the
Minkowskian wavefunctions are normalizable if the appropriate ana-
lytic continuation is performed.
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One might worry that, even if all energy eigenvalues
are positive, the theory possesses negative-norm states with
〈ψ |H |ψ〉 < 0. Equation (29) shows how transition ampli-
tudes can be computed trough perturbation theory: we see
that the energy eigenvalues are the quantity that enters into
the conservation of energy. Thereby a theory where all eigen-
values of H (of H0 in the perturbative expansion) are pos-
itive is consistent. As usual, perturbative computations can
be systematized in terms of the propagator. By expressing
q = q1 in terms of the annihilation and creation operators
ai , a

†
i through Eqs. (11) and (12) and using the commutation

relations [ãi , ã†
i ] = si we find the propagator

〈0|Tq(t)q(t ′)|0〉
= 〈0|θ(t − t ′)q(t)q(t ′) + θ(t ′ − t)q(t ′)q(t)|0〉 (73a)

= 1

ω2
1 − ω2

2

∑
i

si
2ωi

[eiωi (t−t ′)θ(t ′ − t)

+ eiωi (t ′−t)θ(t − t ′)] (73b)

= i
1

ω2
1 − ω2

2

∫
dE

2π

∑
i

si e−i E(t−t ′)

E2 − ω2
i + iε

(73c)

=
∫

dE

2π

−i e−i E(t−t ′)

(E2 − ω2
1 + iε)(E2 − ω2

2 + iε)
, (73d)

where ε is a small positive quantity and we used s1 = −1
and s2 = 1 in the last step.

One might worry that, using the Heisenberg picture, oper-
ators satisfy the time evolution equation Ȧ = −i[A, H ],
which looks dangerously similar to the classical equation of
motion, as given by Poisson parentheses, which has runaway
solutions. However, the quantum solutions are equal to the
classical solutions only in a free theory. In general operators
are not numbers, and the difference (in particular, the Dirac–
Pauli representation) manifests when non-linear interactions
are present. As is well known, the Heisenberg equations are
in general solved by A(t) = U †(t)A(0)U (t). So, all good
properties of negative-norm states found in the Schrödinger
picture remain valid in the Heisenberg picture, given that they
are equivalent.

6.2 Extension to quantum field theory

As is well known, a single harmonic-oscillator degree of
freedom q(t) is the building block for a field such as
φ(t, x, y, z) or gμν(t, x, y, z). The expansion of a field
in Fourier modes with given momentum works in the 4-
derivative case similarly to the 2-derivative case. As long
as, at the end, we are only interested in S-matrix elements,
all the detailed structure of the quantum mechanical the-
ory, such as the wavefunctions, gets hidden behind the com-

mutation relations of Eq. (13), which hold separately for
each mode. The usual iε prescription for the field prop-
agator dictates that amplitudes can be analytically contin-
ued from the Euclidean case. Details will be presented else-
where.

One would like to claim that quantum field theory inher-
its all good properties of quantum mechanics also when
negative norms are present. However, while in quantum
mechanics interactions can easily satisfy the condition that
avoids ‘tachyonic ghosts’ (namely, the interaction strength
between two opposite-norm states must be smaller than their
energy difference as discussed in Sect. 3.2), any interesting
quantum field theory leads to situations that might violate
this condition. The simplest situation where this occurs is
the decay of a ghost (for example a massive spin 2 gravi-
ton at rest), which can be degenerate with a multi-particle
state (for example two photons going in opposite direc-
tions with energy equal to half of the ghost mass), such
that the interaction, no matter how small, can be smaller
than the energy difference. Actually, the ghost is degener-
ate with an infinite number of similar states, such that an
appropriate limit procedure is needed: in the positive-norm
case, entropic considerations allow to interpret this situa-
tion as particle decay. A 4-derivative kinetic term �(p) =
−(p2 − m2

1)(p
2 − m2

2) acquires a positive imaginary part.
We will explore if ‘ghost decay’ can be interpreted like
in [32].

6.3 Ghost does not play dice?

So far we carefully avoided talking about probabilities.
The theory is unitary in a negative-norm space. Thereby

the only remaining difficulty is assigning an interpretation to
states that entangle positive-norm components with negative-
norm components. The Copenhagen interpretation added
an extra ingredient external to the deterministic formalism
of quantum mechanics: the Born postulate, according to
which:

“when an observable corresponding to a self-adjoint
operator A is measured in a state |ψ〉, the result is an
eigenvalue An of A with probability

Pn = 〈ψ |�n|ψ〉
〈ψ |ψ〉 where �n = |n〉〈n|

〈n|n〉 (74)

is the projector over the eigenstate |n〉 of A”.

For positive norms, these Pn satisfy the probability rules 0 ≤
Pn ≤ 1 and

∑
n Pn = 1; the average value of A satisfies

〈ψ |A|ψ〉/〈ψ |ψ〉 = ∑
n An Pn .

At the moment we do not have a satisfactory general-
ization to indefinite norm. Even worse, the Born postulate is
unsatisfactory by itself, given that it describes a non-local col-
lapse of the wavefunction [53–55]. In order to make progress,
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one needs to operate close to the heart of quantum mechanics.
As is well known this presents fatal risks: physicists tend to
become philosophers. We conclude by listing some interpre-
tations of quantum mechanics, equivalent to the Copenhagen
interpretation, which could lead to a satisfactory indefinitive-
norm quantum mechanics.

1. Feynman clarified the ontological basis of the Born pos-
tulate: it agrees with experiments, so ‘shut up and com-
pute’. All experiments have so far been performed with
positive-norm states. The negative-norm graviton pre-
dicted by agravity is beyond the reach of present exper-
iments. On the one hand, this is good because it means
that Einstein’s general relativity is recovered at large dis-
tances; on the other hand, however, we do not have exper-
imental guidance. Lee and Wick proposed that the inter-
pretation issue is bypassed, given that in quantum field
theory we can only observe asymptotic states, which are
made of positive-norm quanta [22,23]. The Lee–Wick
idea may be applied to the gravitational theory proposed
by Stelle [2], as discussed in [6,56].

2. Any self-adjoint Hamiltonian H gives unitary evolution
with respect to many different norms, since each energy
eigenstate evolves picking just a phase. Defining ghost
parity G to be the metrics in the special basis of energy
eigenstates and |ψ 〉 = G−1|ψ 〉, a possible generalization
of the Born postulate to generic norm is (see also [33–42])

Pn = 〈ψ |�n|ψ 〉 where �n = |n〉〈n|. (75)

The example of Sect. 3.2 gets converted into normal oscil-
lations with mixing angle sin2 2θ = E2

I /E
2
R . However,

〈ψ |A|ψ 〉 is real but does not have a probabilistic interpre-
tation, while 〈ψ |A|ψ 〉 has a probabilistic interpretation
but can be complex.

3. Various authors claim that the Born postulate is just an
emergent phenomenon (somehow like friction) that fol-
lows from the fundamental deterministic equations when
applied to complex systems in view of spontaneous deco-
herence [57–59].

4. Cramer [60,61] proposed a “transactional interpreta-
tion”, claiming that EPR non-locality results from a can-
cellation of advanced and retarded waves, in a time-
symmetric set-up (see also [62]) inspired by the analo-
gous formulation of classical electro-dynamics proposed
by Dirac and Feynman–Wheeler. The 〈ψ ′|ψ〉 amplitude
in the Dirac–Pauli coordinate representation supports the
interpretation as being the overlap of a wave ψ moving
forward in time with a wave ψ ′ moving backwards in
time.

We plan to further investigate such issues.

7 Conclusions (so far)

We presented the quantization of 4-derivative theories, find-
ing that a unique structure emerges. We can summarize it as
follows.

Quantum mechanics has its usual visible face, where a
coordinate operator q is represented as q|x〉 = x |x〉. But
quantum mechanics also has a hidden face, where q|x〉 =
i x |x〉, as first pointed out by Dirac and Pauli. Both q and p of
a canonical pair [q, p] = i are self-adjoint in both represen-
tations. The main difference is that the usual representation
implies positive norms and q is naturally even under time
reflection T , while the DP representation leads to states with
indefinite norm and to a naturally T -odd q (in view of the i
factor and of the fact that T is anti-unitary).

The Ostrogradski formulation of a 4-derivative degree of
freedom q(t) (summarized in Sect. 2) employs two canonical
coordinates: q1 = q and q2 = q̇ . For the first time we have
observed that q1, which is T -even, naturally follows the usual
representation, while q2, which is T -odd, naturally follows
the Dirac–Pauli negative-norm quantization. This leads to a
sensible quantum theory with positive energies and normal-
izable wavefunctions, as discussed in Sect. 4.

In Sect. 3 we presented a new formalism appropriate for
generic-norm quantum mechanics, introducing ‘covariant’
|n〉 and ‘contravariant’ |n〉 basis states. This clarifies why a
self-adjoint linear operator can be represented by a matrix
that, in some basis, is not hermitian. A self-adjoint Hamil-
tonian leads to unitary time evolution, in the sense that the
negative norm is preserved. Given that q, q̇, q̈, . . . are self-
adjoint, a Hamiltonian which is a generic real function of
them is self-adjoint, leading to sensible interacting quantum
theory provided that one avoids tachyons, an observation that
was previously overlooked. The usual condition that the the-
ory should be free of tachyons is generalized to negative-
norm quantum mechanics.

In Sect. 5 we presented the path integral formulation of
negative-norm quantum mechanics. The classical Hamilto-
nian becomes complex. Another new result of this paper
is the proof that the normalizable wavefunctions found in
the operator formalism are recovered from the path integral
after performing naive manipulations over ill-defined objects
and/or analytic continuations. In particular, the version of the
path integral in Euclidean time tE = i t is well defined, and
reproduces the usual wavefunctions taking into account that
dq/dtE already coincides with the Dirac–Pauli q̇ .

The fact that (1) our approach leads to normalizable wave-
functions and (2) these wavefunctions can also be deduced
from a well-defined Euclidean path integral clearly show that
the right quantization for q̇ is the Dirac–Pauli one.

Two issues must be addressed before these results can be
used to obtain a predictive renormalizable quantum theory of
gravity: generalization to quantum field theory, and general-
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ization of the Born probabilistic interpretation to negative
norms.
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