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Abstract. We present the construction of an infinite dimensional Banach manifold of
quantum mechanical states on a Hilbert space H using different types of small pertur-
bations of a given Hamiltonian H0. We provide the manifold with a flat connection,
called the exponential connection, and comment on the possibility of introducing the
dual mixture connection

INTRODUCTION

In finite dimensional quantum information geometry, the set upon which the
geometric structures are defined is simply the set of all (invertible) density matrices
on a finite dimensional Hilbert space [3]. Already in the definition of the underlying
set in infinite dimensions, we need to be slightly more careful and take a more
restrictive set than just that of all (invertible) density operators. The reason for
this is that, if we modify a given state in the set with a small perturbation, we
want the perturbed state to have the same properties as the original one.
Let Cp, 0 < p < 1, denote the set of compact operators A : H 7→ H such that

|A|p ∈ C1, where C1 is the set of trace-class operators onH. Define C<1 :=
⋃

0<p<1 Cp.
We take the underlying set of the quantum information manifold to beM = C<1∩Σ
where Σ ⊆ C1 denotes the set of density operators. This guarantees that, if ρ0 ∈ M,
there exists a β0 < 1 such that ρβ0

0 is a density as well as ρ0 itself. This set has an
affine structure induced from the linear structure of each Cp in the following way:
let ρ1 ∈ Cp1 ∩Σ and ρ2 ∈ Cp2 ∩Σ; take p = max{p1, p2}, then ρ1, ρ2 ∈ Cp ∩Σ, since
p ≤ q implies Cp ⊆ Cq [4]; define “λρ1 + (1 − λ)ρ2, 0 ≤ λ ≤ 1” as the usual sum
of operators in Cp. This is called the (−1)-affine structure. However, this is not
the affine structure we use to define a flat connection on the manifold. Instead, we
equipM with an exponential affine structure and then define the natural connection
associated with it.
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To each ρ0 ∈ Cβ0
∩Σ, β0 < 1, let H0 = − log ρ0+cI ≥ I be a self-adjoint operator

with domain D(H0) such that ρ0 = Z−1
0 e−H0 = e−(H0+Ψ0).

The idea is to perturb the Hamiltonian H0, obtaining a new Hamiltonian HX

and then construct a neighbourhood of the point ρ0 consisting of the perturbed
states ρX . The perturbations considered are of three different types, and that is
the content of the next section.

PERTURBATIONS

The most general class of perturbations we use are the form bounded pertur-
bations. Given a positive self-adjoint operator H with associated form qH and
form domain Q(H), we say that a symmetric quadratic form X (or the symmetric
sesquiform obtained from it by polarization) is qH-bounded if

i. Q(H) ⊂ Q(X) and

ii. there exist positive constants a and b such that |X(ψ, ψ)| ≤ aqH(ψ, ψ) +
b(ψ, ψ), for all ψ ∈ Q(H).

Although form bounded perturbations are of much interest in the study of
Schrödinger operators for a variety of quantum systems, they provide very little
regularity for the quantum information manifold. In [7], Streater was able to show
that the manifold constructed using then has Lipschitz structure. However, more
regularity is needed if we want to define a metric on it by, say, the second deriva-
tive of the free energy. This led to the idea of looking at the more restrictive case
of operator bounded perturbations. Given operators H and X defined on dense
domains D(H) and D(X) in a Hilbert space H, we say that X is H-bounded if

i. D(H) ⊂ D(X) and

ii. there exist positive constants a and b such that ‖Xψ‖ ≤ a ‖Hψ‖+ b ‖ψ‖, for
all ψ ∈ D(H).

For both form bounded and operator bounded perturbations, the infimum of such
a is called the relative bound of X (with respect to H or with respect to qH ,
accordingly). If a < 1, the perturbation is said to be small.
Operator bounded perturbations are also used in the study of Schrödinger oper-

ators for quite a broad range of quantum systems [6], with the additional property
of providing enough regularity for the manifold M to have an analytic free energy,
for instance.
The following lemma tells us how to characterise operator bounded and form

bounded perturbations in terms of certain norms. Before we state it, we need to
say what we mean by a form multiplied from both sides by operators. Suppose
that X is a quadratic form with domain Q(X) and A,B are operators on H such



that A∗ and B are densely defined. Suppose further that A∗ : D(A∗) → Q(X) and
B : D(B) → Q(X). Then the expression AXB means the form defined by

φ, ψ 7→ X(A∗φ,Bψ), φ ∈ D(A∗), ψ ∈ D(B).

Consider now the case where H0 ≥ I is a self-adjoint operator with domain D(H0),

quadratic form q0 and form domain Q0 = D(H
1/2
0 ), and let R0 = H−1

0 be its
resolvent at the origin.

Lemma 1 A symmetric operator X : D(H0) → H is H0-bounded if and only if

‖XR0‖ < ∞. Analogously, a symmetric quadratic form X defined on Q0 is q0-

bounded if and only if R
1/2
0 XR

1/2
0 is a bounded symmetric form defined everywhere.

Moreover, if
∥∥∥R1/2

0 XR
1/2
0

∥∥∥ < ∞ then the relative bound a of X with respect to q0

satisfies a ≤
∥∥∥R1/2

0 XR
1/2
0

∥∥∥.

The set Tω(0) of all H0-bounded symmetric operators X is a Banach space with
norm ‖X‖ω(0) := ‖XR0‖, since the map A 7→ AH0 from B(H) onto Tω(0) is an
isometry. The set T0(0) of all q0-bounded symmetric forms X is also a Banach

space with norm ‖X‖0(0) :=
∥∥∥R1/2

0 XR
1/2
0

∥∥∥, since the map A 7→ H
1/2
0 AH

1/2
0 from

the set of all bounded self-adjoint operators on H onto T0(0) is again an isometry.
Motivated by Banach space interpolation theory, let us consider, for ε ∈ (0, 1/2),

the set Tε(0) of all symmetric forms X with D(H
1

2
−ε

0 ) ⊂ Q(X) and such that

‖X‖ε(0) :=

∥∥∥∥R
1

2
+ε

0 XR
1

2
−ε

0

∥∥∥∥ is finite. Then the map A 7→ H
1

2
−ε

0 AH
1

2
+ε

0 is an isometry

from the set of all bounded self-adjoint operators on H onto Tε(0). Hence Tε(0) is
a Banach space with the ε-norm ‖ · ‖ε(0). Such an X will be called a ε-bounded
perturbation and it is shown to interpolate between the extreme cases of form
bounded perturbations, for which ε = 0, and operator bounded perturbations for
which ε = 1/2.

Lemma 2 For fixed symmetric X, ‖X‖ε is a monotonically increasing function of

ε ∈ [0, 1/2].

In the next section, we carry out the programme of using these perturbations to
obtain the hoods in the manifold. In what follows, we write T(·)(0) to indicate that
we can use any of the three Banach spaces Tω(0), T0(0) or Tε(0).

CONSTRUCTION OF THE MANIFOLD

The two technical tools used in the construction of our manifold are the following.

Theorem 3 (KLMN) Let H0 be a positive self-adjoint operator with quadratic

form q0 and form domain Q0; let X be a q0-small symmetric quadratic form. Then

there exists a unique self-adjoint operator HX with form domain Q0 such that

〈H
1/2
X φ,H

1/2
X ψ〉 = q0(φ, ψ) +X(φ, ψ), φ, ψ ∈ Q0.



Moreover, HX is bounded below by −b.

Lemma 4 (Streater 98) Let X be a q0-small with bound a < 1 − β0. Denote by

HX the unique operator given by the KLMN theorem. Then exp(−βHX) is of trace
class for all β > βX = β0/(1− a).

The construction of the neighbourhood of ρ0 goes as follows. In T(·)(0), take
X such that ‖X‖(·(0) < 1 − β0. Since ‖X‖0(0) ≤ ‖X‖(·)(0) < 1 − β0, X is also
q0-bounded with bound a0 less than 1− β0. The KLMN theorem then tells us that
there exists a unique semi-bounded self-adjoint operator HX with form qX = q0+X
and form domain QX = Q0. We write HX = H0+X for this operator and consider
the state ρX = Z−1

X e−(H0+X) = Z−1
X e−(H0+X+ΨX)

Then, from lemma 4, ρX ∈ CβX
∩ Σ, where βX = β0

1−a0
< 1. If we add to HX a

multiple of the identity, we can still have the same state ρX , by simply adjusting
the partition function ZX ; so we can always assume that, for the perturbed state,
we have HX ≥ I. We take as a hood M0 of ρ0 the set of all such states, that is,
M0 = {ρX : ‖X‖(·)(0) < 1− β0}.
To give a topology to M0, we first introduce in T(·)(0) the equivalence relation

X ∼ Y iff X−Y = αI for some α ∈ R, precisely because ρX = ρX+αI , as remarked
above. We then identify ρX in M0 with the line {Y ∈ T(·)(0) : Y = X+αI, α ∈ R}
in T(·)(0)/ ∼. This is a bijection from M0 onto the subset of T(·)(0)/ ∼ defined

by
{
{X + αI}α∈R : ‖X‖(·)(0) < 1− β0

}
. The topology in M0 is then given by

transfer of structure. Now that M0 is a (Hausdorff) topological space, we want
to parametrise it by an open set in a Banach space. As in the classical case [5],
we choose the Banach subspace of centred variables in T(·)(0); in our terms, per-
turbations with zero mean (the ‘scores’). The only problem is that, when X is
not an operator, it is not immediately clear what its mean in the state ρ0 should
be, let alone the question of whether or not it is finite. To deal with this, define
the regularised mean of X ∈ T(·)(0) in the state ρ0 as ρ0 ·X := Tr(ρλ0Xρ

1−λ
0 ), for

0 < λ < 1.
Since ρ0 ∈ Cβ0

∩ Σ and X is q0-bounded, lemma 5 of [7] ensures that ρ0 ·X
is finite and independent of λ. It was a shown there that ρ0 ·X is a continuous
map from T0(0) to R, because its bound contained a factor ‖X‖0(0). Exactly the
same proof shows that ρ0 ·X is a continuous map from T(·)(0) to R. Thus the set

T̂(·)(0) :=
{
X ∈ T(·)(0) : ρ0 ·X = 0

}
is a closed subspace of T(·)(0) and so is a Banach

space with the norm ‖·‖ε restricted to it. We notice that for the case of operator
bounded perturbations, the regularised mean of X coincides with the usual mean
Tr(ρ0X).
To each ρX ∈ M0, consider the point in the line {X + αI}α∈R with

α = −ρ0 ·X . Write X̂ = X − ρ0 ·X for this point. The map ρX 7→ X̂
is a homeomorphism between M0 and the open subset of T̂(·)(0) defined by{
X̂ : X̂ = X − ρ0 ·X, ‖X‖(·) < 1− β0

}
. The map ρX 7→ X̂ is then a global chart

for the Banach manifold M0 modeled by T̂(·)(0). The tangent space at ρ0 is given



by T̂(·)(0), with the curve
{
ρ(λ) = Z−1

λXe
−(H0+λX), λ ∈ [−δ, δ]

}
having tangent vector

X̂ = X − ρ0 ·X .
We extend our manifold by adding new patches compatible with M0. The idea

is to construct a chart around each perturbed state ρX as we did around ρ0. Let
ρX ∈ M0 with Hamiltonian HX ≥ I and consider the Banach space T(·)(X) of all
symmetric forms Y such that the norm ‖Y ‖(·)(X) is finite, where the expression for
this norm is the same as ‖Y ‖(·)(0) but with all the Hamiltonians replaced by HX .
Then we repeat exactly the same process, namely, take sufficiently small Y (with
‖Y ‖(·)(X) < 1−βX), obtain from the KLMN theorem the Hamiltonian HX=Y with
form qX+Y = qX + Y = q0 +X + Y and form domain QX+Y = QX = Q0 and take
the hood of X to be the set MX of all states of the form ρX+Y = Z−1

X+Y e
−HX+Y =

Z−1
X+Y e

−(H0+X+Y ). The topology and coordinates for MX are then introduced in a
completely similar fashion.
We then turn to the union of M0 and MX . We need to show that our two pre-

vious charts are compatible in the overlapping region M0 ∩MX . For the case of
form bounded and operator bounded perturbations, the equivalence of the norms
is achieved by a straightforward series of operator identities [7,8]. For the case of
ε-bounded perturbations, the argument is more subtle and involves careful con-
sideration of the domains of the operators. Nevertheless, the result still follows
[2].

Theorem 5 ‖ · ‖ε(X) and ‖ · ‖ε(0) are equivalent norms.

We can repeat the construction again, starting from any point in M0
⋃
MX . We

then obtain the following definition.

Definition 6 The information manifold M(H0) defined by H0 consists of all states

obtainable in a finite numbers of steps, by extending M0 as explained above.

AFFINE GEOMETRY IN M(H0)

The set A =
{
X̂ ∈ T̂(·)(0) : X̂ = X − ρ0 ·X, ‖X‖(·)(0) < 1− β0

}
is a convex sub-

set of the Banach space T̂(·)(0) and so has an affine structure coming from its linear
structure. We provide M0 with an affine structure induced from A using the patch
X̂ 7→ ρX and call this the canonical or (+1)-affine structure. The (+1)-convex
mixture of ρX and ρY in M0 is then ρλX+(1−λ)Y , (0 ≤ λ ≤ 1) , which differs from
the previously defined (−1)-convex mixture λρX + (1− λ)ρY .

Given two points ρX and ρY inM0 and their tangent spaces T̂ε(X) and T̂ε(Y ), we

define the (+1)-parallel transport UL of (Z − ρX ·Z) ∈ T̂ε(X) along any continuous

path L connecting ρX and ρY in the manifold to be the point (Z − ρY ·Z) ∈ T̂ε(Y ).
Clearly UL is independent of L by construction, thus the (+1)-affine connection is
flat. We see that the (+1)-parallel transport just moves the representative point in
the line {Z + αI}α∈R from one hyperplane to another.



DISCUSSION

The manifold M(H0) constructed here does not cover the whole set M at once.
It could not possibly do so, since our small perturbations do not change the domain
of the original Hamiltonian H0, and certainly M contains states defined by Hamil-
tonians with plenty of different domains. Also, although we can reach far removed
points with a finite number of small perturbations, we can not move in arbitrary
directions. For instance, we cannot reach X = −H0 as the result of our perturba-
tions, since the identity is not an operator of trace class. To cover M entirely, we
have to start at several different points. The whole manifold thus obtained consists
of several disconnected parts, pointing towards positive directions with respect to
the given Hamiltonians.
Finally, it is clear that λρX + (1 − λ)ρY , for, say, ρX , ρY ∈ M0, defines a new

state in the underlying set M. Nonetheless, we were not yet able to prove that it
belongs to the neighbourhood of the original states. This is the main obstacle to
define a mixture connection in our manifold and thence develop a quantum version
of Amari’s duality theory [1]. One possibility is to change the definition of the
neighbourhoods altogether and use, for instance, the condition that states in the
same neighbourhood all have finite relative entropy with respect to each other,
besides having finite von Neumann entropy.
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