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SUMMARY

Theory and design of a conventional sliding mode controller (CSMC) and a dynamical sliding mode
controller (DSMC) are discussed and compared. The controllers are applicable to uncertain nonlinear
MIMO systems. Emphasis is put on handling of unmodelled dynamics, tuning of controller parameters,
suppression of chattering, and robust tracking performance. Experiments are performed with a mechanical
manipulator. Errors in the model of this manipulator are due to, amongst other things, neglected flexibilities.
It is concluded that for this set-up the robustness to these model-reality differences is approximately the
same for both controllers, while nominal performance is best for the CSMC. ( 1998 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Dynamic systems are controlled in order to follow a prescribed trajectory with a certain accuracy.
The control is often based on a mathematical model of the system. This model is never an exact
representation of reality, since modelling errors are inevitable. Moreover, one can use a simplified
model on purpose. In this article, the unmodelled dynamics error is of primary interest, i.e., the
error due to unmodelled modes, unmodelled actuator and sensor dynamics, neglected time
delays, etc.

The erroneous model and the demand for high performance require the controller to be robust.
One class of robust controllers, sliding mode controllers (SMC), is based on variable structure
control, see Reference 1. These controllers can be used if the inaccuracies in the model structure
are bounded with known bounds. However, an SMC has some disadvantages, related to
chattering of the control input signal. Often this phenomenon is undesirable, since it causes
excessive control action leading to increased wear of the actuators and to excitation of unmodel-
led dynamics.
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Chattering can be avoided, for instance, by the ‘boundary layer modification’ of Slotine and
Li.2 Unfortunately, then robustness and performance are impaired in comparison with the
unmodified SMC. Another approach to avoid chattering is proposed by Bartolini,3 Sira-
Ramı́rez,4 and Bartolini and Pydynowski.5 Their idea is to use a derivative of the control law as
a discontinuous forcing action. The resulting dynamical sliding mode controller (DSMC) should
produce substantially smoothed input signals, at the same time maintaining the favourable
features of the conventional SMC.

In this paper, the robustness to unmodelled dynamics and the performance of the conventional
SMC with boundary layer modification (CSMC) and of the DSMC are investigated. Sufficient
conditions for the controller gains to guarantee stability in the presence of modelling errors are
developed. To avoid conservative designs, requirements for each individual input are derived.
Until now, this topic has been given only limited attention in the literature. Guidelines for tuning
the controllers are derived and explained. Both CSMC and DSMC are implemented as sampled
data controllers in an experimental nonlinear MIMO system. To avoid offsets in the mean of the
tracking error of the DSMC, the control law as proposed by Bartolini3 is modified. Robustness in
the sense of sensitivity of the closed-loop performance to modelling errors2 is investigated and the
results are compared for both controllers.

The paper has the following structure. Section 2 gives some preliminaries and fixes the
notation. Section 3 and Section 4 present the CSMC and the DSMC, respectively. The robust
performance of the controllers is investigated by experiments as discussed in Section 5. Finally, in
Section 6 the main conclusions are drawn.

2. PRELIMINARIES

We restrict ourselves to nonlinear, affine MIMO systems. It is assumed that the controller design
model is feedback linearizable, so its relative degree r equals its order n.2 Only square systems are
considered, i.e., the number m of inputs u

i
equals the number of outputs y

i
to be controlled.

The design model can be written in normal form as
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and the functions fK
i
(x) and BK

ij
(x) are differentiable at least once. This model has vector relative

degree [n
1

n
2
2 n

m
] and total relative degree r"+m

i/1
n
i
. The assumption r"n implies the

absence of internal dynamics.
The real system is seen as a system of order n**n, but with the same vector relative degree. If

n*'n, internal dynamics plays a role in the real system. It is assumed that the internal dynamics
of the real system is stable. The interesting part of this system then is described in normal form by
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xR @"q(x*)#Q(x*)u
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where the state vector x*3Rn* of the real system is

x*"[xT x@T]T ; x@"[x@
n`1

2x@
n*

]T

and f (x*), B (x*) are differentiable at least once.
For compactness of notation, design model (1) and the real system (2) are written in ‘controlla-

bility canonical form’ as2

design model: y(n)"fK (x)#BK (x)u (3)

real system: y(n)"f (x*)#B (x*)u (4)

where the vector y(n) is defined by

y(n)"[y(n1)
1

y(n2)
2

2 y(nm)
m

]T

It is assumed that the square matrix BK (x) is locally regular around x.
The descriptions in (3) and (4) give rise to the definition of the following modelling errors,

caused by unmodelled dynamics, parameter errors, etc.:

*f (x*)"f (x*)!fK (x); *B(x*)"B (x*)!BK (x)

We assume that *f (x*) and *B(x*) are bounded with known bounds.

3. CONVENTIONAL SLIDING MODE CONTROL

The first step in CSMC-design is to define m switching co-ordinates s
1
, s

2
,2 , s

m
by

s
i
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for i"1,2 , m (5)

with tracking error e
i
, desired output y

di
, and constants g

i,j
( j"1,2, n

i
!1) which are chosen

such that the desired error dynamics is obtained if s"[s
1
2 s

m
]T"0.

The idea is to determine an input u that achieves s"0 in finite time from every initial error and
keeps s"0 afterwards. The control law proposed to achieve this is

u"BK ~1(y(n)
d
!fK!eR

c
!K sign(s)) (6)

where y
d
, e

c
and sign(s) are vectors with y

di
, e

ci
and sign(s

i
) as components. This law gives

sR"!(I#E)K sign(s)#e
c

with error matrix E and vector e
c
, given by

E"*BBK ~1 ; e
c
"* f#E(y(n)

d
!fK!eR

c
)

From the known bounds on the components of *B and *f, bounds b and a on the components of
E and e

c
can be determined, such that

DE
ij
(x*) D)b

ij
(x*), De

ci
(x*, t) D)a

i
(x*, t) for i, j"1,2,m (7)

Using the Lyapunov function candidate »"1
2
sTs, it is seen that all trajectories are directed

towards the sliding surface s"0 if »Q "sTsR(0 for all sO0. Hence, the gain K in the control law
must satisfy

!sT(I#E)K sign(s)#sTe
c
(0 if sO0
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Only diagonal matrices K"diag(k) with k"[k
1
2 k

m
]T are considered in the sequel. The

condition is then implied by
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For simplicity it is assumed that the error bounds b and a in (7) are independent. Then (8) will
hold if

DsDT((I!P)k!a)'0 if sO0 (9)

where DsD is a vector with Ds
i
D as components and P a matrix with components

P
ij
"G

b
ij

if s
i
O0?s

j
O0

0 otherwise
(10)

It is tacitly assumed that I!P'0.
The control law (6) is discontinuous across the sliding surface, resulting in chattering, excitation

of unmodelled dynamics and high-frequency control activity. A comparison of some methods to
avoid chattering can be found in De Jager.6 One possibility to replace the sign function in (6) by
the saturation function sat(s, '), where '"diag(u)'0 with u"[u

1
2u

m
]T :

sat(s, ')
i
"sat(s

i
, u

i
)"G

sign(s
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D'u

i
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i
if Ds

i
D)u

i

The domain in state space where DsD)u (i.e., where Ds
i
D)u

i
for i"1,2, m) is called the

boundary layer. The modified control law

u"BK ~1 (y(n)
d
!fK!eR

c
!K sat(s, '))

guarantees attractiveness of this layer, but not of the sliding surface. The ‘s-dynamics’ inside the
boundary layer is now

sR#(I#E)K'~1s"e
c

(11)

In practice, the controller is implemented as a sampled data one with finite sampling frequency
f
s
"1/*t. Then the components of u must be lower bounded to keep s in the boundary layer. This

will be the case if Ds(t)D)u implies Ds(t#*t)D)u. Forward Euler discretization of (11) to
approximate s(t#*t) results, after some elaboration, in

(I!P)k!a*0?
*t

2
(I#P)k#a))u

The first inequality is satisfied if k satisfies

(I!P)k"a#i
c
; i

c
'0

Obviously, then condition (9) is also satisfied. The second inequality then yields

u**t (k!1
2
k
c
) (12)

To avoid excitation of unmodelled dynamics, one sets the bandwidth of the error dynamics (5)
lower than the lowest unmodelled resonant mode. This is achieved by a proper choice of the
coefficients g

i,j
in (5). Also, one tries to set u close to the bound in (12) to realize satisfactory

tracking accuracy.
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4. DYNAMICAL SLIDING MODE CONTROL

Recently, a new method has been proposed to circumvent chattering and, at the same time, retain
the robustness of the ideal SMC.3,4 The idea is to create a dynamical controller that eliminates
the chattering problem by passing discontinuous actions onto a derivative of the input u.

As before, the first step is to introduce m switching co-ordinates s
i
, now defined by

s
i
"e(ni)

i
#e

di
; e

i
"y

i
!y

di
; e

di
"

ni
+
j/1

g
i,j

e( j~1)
i

for i"1,2,m (13)

where the constants g
i,1

,2 , g
i,ni

must guarantee the desired error dynamics if s
i
"0. With the

usual definitions for s and e
d

this results in

s"y(n)!y(n)
d
#e

d
"Bu!(y(n)

d
!f!e

d
)

where (4) is used to eliminate y(n). Compared with (5), the order of the error dynamics is increased
by one and now y(n) must be known to compute s. Bartolini,3 and Bartolini and Pydynowski5
showed that the attractiveness of the sliding surface s"0 can still be guaranteed if y(n) is replaced
by a suitable estimate yL (n) which converges to y(n).

The proposed dynamical control law is

d

dt
(BK u)"y(n`1)

d
!fK Q!eR

d
!(K sign(s)#¸ sat(s, '))

The reason for introducing the term ¸ sat(s, ') will be discussed later. Using this law yields

sR"!(I#E) (Ksign(s)#¸ sat(s, '))#e
d
#EQ BK u (14)

where E"*BBK ~1 is as defined before and the error vector e
d

is

e
d
"* fQ#E (y(n`1)

d
!fKQ!eR

d
) (15)

In the previous section, bounds for the components of E were introduced. Now it is assumed that
bounds for the components of EQ BK and e

d
can also be determined, i.e.,

D(EQ BK )
ij
D)l

ij
, De

di
D)k

i
for i, j"1,2 ,m (16)

To determine gain matrices K and ¸ that guarantee the attractiveness of the sliding surface the
same Lyapunov function candidate »"1

2
sTs as before is used. The condition »Q (0 if sO0 now

implies that K and ¸ have to satisfy

!sT(I#E) (Ksign(s)#¸sat(s, '))#sT(e
d
#EQ BK u)(0 if sO0

For diagonal K"diag(k) and ¸"diag(l ) this is true if

DsDT ((I!P) (k#¸sat( DsD, '))!k!N DuD)'0 if sO0 (17)

with P defined by (10) and N the matrix with the bounds l
ij

(i, j"1,2,m) as components.
Contrary to the situation for the CSMC, the input u is also present.

Suppose that it is possible to find gains k and l that satisfy this inequality. Then, if switching of
uR is infinitely fast, s will remain zero from the moment the sliding surface is reached and, according
to (13), perfect tracking is asymptotically achieved. In practice, however, switching is not infinitely
fast, since the sampling frequency f

s
"1/*t is upper bounded. Suppose that Ds(t)D)u for all t't

s
.

Then the discretization of (14) inside the layer DsD)u yields

s(t#*t)"s!*t((I#E) (Ksign(s)#¸'~1s)!e
d
!EQ BK u)
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where all time-dependent quantities on the right-hand side have to be taken at time t. If the term
¸'~1s is omitted then, in general, the mean of s does not converge to zero, even in the situation
without system uncertainties. Therefore, this term is required to force the mean of s in a sampled
data implementation to zero. Of course, ¸'~1 must be large enough to be effective. However, to
avoid instability, the gains in ¸"diag(l) may not be too large.

To guarantee that s remains in this layer, Ds (t) D)u must imply Ds(t#*t) D)u for all possible
errors E, EQ BK and e

d
. It can be shown that this will be the case if K"diag(k) and ¸"diag(l)

satisfy

(I!P) (k#l )!(k#N DuD)*0?
*t

2
((I#P) (k#l )#(k#N DuD)))u

The first inequality is satisfied if k and l satisfy

(I!P) (k#l )"k#N DuD#i
d
; i

d
'0

and then condition (17) is also satisfied. The second inequality then yields

u**t(k#l!1
2
i
d
) (18)

With a sampled data controller implementation, perfect tracking cannot be achieved anymore.
Besides, in practice, s will contain high-frequency components, due to unmodelled dynamics.
Therefore, the bandwidth of the error dynamics in (13) is chosen lower than the lowest unmodel-
led resonant mode. For the DSMC this filtering can be more effective as a result of the higher
order error dynamics. Again, it is best to set u close to its bound.

In both approaches, the tracking accuracy d
i
is determined by u

i
and coefficient g

i,1
in the

definition of s
i
. The parameters u

i
are lower bounded by the magnitude of the modelling errors

and the sampling frequency f
s
. For a given system, the guaranteed tracking accuracy is thus

limited by f
s
.

5. EXPERIMENTS

To investigate the CSMC and DSMC in an experimental environment, they were implemented as
sampled data controllers on a mechanical system (see De Jager and Banens7 for a detailed
discussion on the control system). The sampling frequency f

s
was 200 Hz during all experiments.

Unmodelled dynamics was, amongst other things, due to neglected joint flexibility. To study
robustness and performance of the controllers, experiments were performed with two different
trajectories.

5.1. System description

The system considered, an X½-table, is a big plotter-like machine moving in the horizontal
plane, see Figure 1. Two parallel slideways each support a slide. These slides are connected with
belts to a flexible spindle, which is driven by the x-motor. A third slideway rests on these slides
and supports the end-effector, which is belt-driven by the y-motor. By replacing a thin strip in the
spindle, the torsion stiffness of the spindle can be changed. Coulomb and viscous friction appear
in all slides. Two encoder wheels on the motor shafts provide information on the position of the
end-effector in the x-direction (y

1
, resolution: 3)52 km) and the y-direction (y

2
, resolution:

16)3 km). The system is controlled via the two motors.
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Figure 1. X½-table

Table I. Model parameters

Parameter Value Unit

a
1

34 kg
a
2

2)3 kg
a
3

40 N
a
4

13 N
a
5

35 Ns/m
a
6

5 Ns/m

If the flexible spindle is replaced by a rigid bar, the mathematical description of the X½-table
yields the two degrees-of-freedom design model

a
1
ÿ
1
#a

3
sign(yR

1
)#a

5
yR
1
"u

1

a
2
ÿ
2
#a

4
sign(yR

2
)#a

6
yR
2
"u

2
(19)

Here, a
1

and a
2

are masses, a
3
sign(yR

1
) and a

4
sign(yR

2
) represent Coulomb friction, and a

5
yR
1

and
a
6
yR
2

account for viscous damping, Finally, u
1

and u
2

are the generalized forces, exerted by the
servomotors. The parameters a

1
—a

6
, identified by experiments, are listed in Table I.

The design model’s order n"4 equals its relative degree r"2#2. In the notation of
Section 2, it is

y(n)"fK (x)#BK (x)u (20)

where x"[y
1
yR
1
y
2
yR
2
]T, u"[u

1
u
2
]T, y(n)"[ ÿ

1
ÿ
2
]T, and

fK (x)"C
!(a

3
sign(x

2
)#a

5
x
2
)/a

1
!(a

4
sign(x

4
)#a

6
x
4
)/a

2
D , BK (x)"C

1/a
1

0

0

1/a
2
D
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Table II. Controller settings for experiments

CSMC DSMC

x-direction y-direction x-direction y-direction
Parameter (i"1) (i"1) Unit (i"1) (i"1) Unit

g
i,1

12 30 rad/s 144 900 rad/s2
g
i,2

— — 24 60 rad/s
k
i

6 6 m/s2 70 100 m/s3
l
i

— — 7)5 10 m/s3
u
i

0)07 0)07 m/s 0)75 1)0 m/s2

The most important sources of modelling errors are

f Neglected flexibilities: the spindle is assumed to be rigid and so are the springs used to
attach the slides to the belts. This implies that the relative degrees of the real system and the
design model are the same, but that the real system’s order n**12 is higher than the design
model’s order n"4. Thus, unmodelled dynamics shows up in the internal dynamics of the
real system.

f ºnmodelled friction components: as a result of imperfections in bearings and shafts, there is
a harmonic disturbance force (friction) in both the x-direction and the y-direction.

f Parameter errors: wrongly identified mass and friction parameters, the latter of which vary
due to changing operating conditions.

It is impossible to give an exact description of the real system, as f and B are not available.
However, estimates for f and B have been derived (see, e.g., Blom8 and Van de Wal9 from which
estimates for * f and *B can be obtained and used for controller design.

5.2. Controller and observer settings

The design and tuning of the controller parameters were based on simulations and experi-
ments. Simulations were used for practical reasons: easy access to all variables of interest, gradual
introduction of model errors, easy manipulation of system characteristics, etc.

For the design model, the switching co-ordinates s
i
, i"1, 2, are defined by

CSMC: s
i
"eR

i
#g

i,1
e
i

DSMC: s
i
"ë

i
#g

i,2
eR
i
#g

i,1
e
i

As mentioned in Sections 3 and 4, the poles (and therefore the bandwidth) of the error dynamics
should be chosen to filter unmodelled dynamics. The poles for i"1, i.e., for the error in the
x-direction, were placed at !12 rad/s, which corresponds to about half the expected resonance
frequency of the lowest unmodelled mode for the X½-table with spindle stiffness 1)3 Nm/rad. The
poles for i"2, i.e., for the error in the y-direction, were placed at !30 rad/s to take into account
that, for the y-direction, the resonance frequency of unmodelled modes which have a significant
contribution in that direction is much higher than for the x-direction. This choice for the poles
results in the coefficients g

i,j
of Table II.
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The controller gains k
1
*0 and k

2
*0 (and for the DSMC l

1
*0 and l

2
*0) must satisfy

condition (9) for the CSMC and (17) for the DSMC. In the current investigation, it was decided to
use fixed values for the gains, so the earlier given relations in terms of (possibly state-dependent
and input-dependent) error bounds were not used. One option is to derive worst-case values for k

i
and l

i
based on knowledge of the maximum input and the model error bounds in (7) and (16).

However, this would result in control effort that is much higher than strictly needed, i.e., the
controller would be conservative. An approach which partly resolves this shortcoming is dis-
cussed next.

For the CSMC, the individual sliding conditions »Q
i
"s

i
sR
i
(0 are (see also (8))

!Ds
i
D (1#E

ii
)k

i
!s

i

m
+

jO1

E
ij
k
j
sign(s

j
)#e

ci
s
i
(0

Employing the relation !E
ij
s
i
sign(s

j
))DE

ij
D Ds

i
D, it is sufficient, for the sliding conditions to be

fulfilled, that

!(1#E
ii
)k

i
#

m
+
jOi

DE
ij
Dk

j
#e

ci
sign(s

i
)(0 (21)

For the X½-table, the following explicit expression for k
1

and k
2

results in

C
k
1

k
2
D'!~1C

e
c1
sign(s

1
)

e
c2
sign(s

2
)D; !"C

1#E
11

!DE
21

D
!DE

12
D

1#E
22
D (22)

Rewriting (21) as (22) is justified if DE
ij
D(1 and det(!)'0, which applies under all circumstances

that can be expected for this system. S" imulations for a circle trajectory (see Section 5.3) are now
performed with a more advanced evaluation model which, contrary to the design model (19),
accounts for the flexibility of the spindle. Parameters k

1
and k

2
are set equal to the maximum of

the absolute value of the right-hand side of (22), giving

CSMC: k
1
"3; k

2
"0)035m/s2

In the case of the DSMC, k
i
’s are determined in a similar way. Provided the values for l

i
are small

compared with those for k
i
, the individual sliding conditions are met if

C
k
1

k
2
D'!~1C

(e
d1
#$

$t
(*B

11
)u

1
#$

$t
(*B

12
)u

2
)sign(s

1
)

(e
d2
#$

$t
(*B

21
)u

1
#$

$t
(*B

22
)u

2
)sign(s

2
)D

For the DSMC, the term * fQ
i
in e

d
may contain Dirac-functions if Coulomb friction is present.

However, these effects last for a very short time and it is assumed that stability will not be
endangered if they are neglected in the derivation of the gains k

i
. Similar simulations as for the

CSMC result in the following values:

DSMC: k
1
"45; k

2
"1)5 m/s3

During the experiments, the sliding surface must be reached within 0)5 sec, starting from
(y

1
, y

2
)"(0)5, 0)5). To satisfy this requirement, the gains k

i
have to be increased, while k

2
for the

CSMC have to be tuned up even more due to modelling errors in the evaluation model. The final
values used for the experiments are listed in Table II.

Controller parameters l
i
are chosen such that the mean of s will rapidly converge to zero,

without endangering stability. Parameters u
i

in Table II are determined according to the
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directives in the previous sections, see (12) and (18), but u
i
for the CSMC need to be increased in

the experimental environment to avoid unstable behaviour.
Since only the measured positions y

1
and y

2
are used for feedback, the velocities, and in case of

the DSMC also the accelerations, are obtained by means of an observer. In order to compensate
for the time delay *t in the sampled data implementation, positions, velocities and accelerations
are determined one-step-ahead. For the purpose of observer design, the discontinuous nonlinear
Coulomb friction term dK in fK is absorbed into the input u@ :

y(n)"fK @ (x)#BK (x)u@; fK @(x)"fK (x)!dK (x); u"u@!BK ~1(x)dK (x)

with fK @ continuous and u the actually applied input. The observer was designed employing this
relation instead of (20).

For the CSMC, the observer design is based on a Kalman-like approach. For this purpose,
a discrete-time version of the state-space description for the X½-table (19) is used (the subscript ‘d’
denotes discrete time versions of the associated matrices):

design model: x (t#*t)"A
d
x (t)#B

d
u@ (x(t), t) (23)

‘real’ system: x (t#*t)"A
d
x (t)#B

d
u@ (x(t), t)#w (t)

measured positions: y(t)"C
d
x (t)#v(t)

where v represents measurement noise and w ‘process noise’ (modelling errors). In order to design
a Kalman filter, the covariance matrices for v and for w are determined. For v, this is related to the
quantization error of the position encoder wheels, that is known from the resolutions given
before. The covariance of w is estimated by means of an experiment with the CSMC. After the
experiment, the actual velocity and acceleration in xR are approximated via a central difference
scheme. Now w is determined from the difference between the required u@ for the design model (23)
to follow the ‘measured’ trajectory exactly and the measured u@ for the real system. Given the
covariance matrices, the gain ¸

d
in the one-step-ahead observer

xL (t#*t)"A
d
xL (t)#¸

d
(y(t)!C

d
xL (t))#B

d
u@(xL (t), t) (24)

can be computed. However, to realize stable controlled system dynamics, ¸
d
had to be detuned.

This was achieved by computing the covariance after high-pass filtering of w with a cut-off
frequency of 10 Hz, by which deterministic components in w are partially eliminated in the
Kalman filter design. Another approach would be to increase the covariance of v. The ultimately
resulting ¸

d
is given below:

¸
d
"

2)56 0

313 0

0 1)40

0 120

The natural frequencies u
n
and natural damping factors f

n
for the observer in the x-direction are

u
n
"[120, 822] rad/s, f

n
"[1)00, 1)00], and in the y-direction u

n
"[234, 234] rad/s,

f
n
"[0)685, 0)685].
Unfortunately, several efforts for a similar design of an observer which also estimates acceler-

ations were not successful in the sense that the resulting closed-loop system was unstable. Instead,
for the DSMC, the observer discussed above was extended with a Luenberger observer which
provides acceleration estimates:

xL *(t#*t)"A
d
xL * (t)#¸*

d
(y*(t)!C

d
xL * (t))#B

d
uR @(xL (t), xL * (t), t) (25)
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Here, xL *"xRK , y*"[xL
2

xL
4
]T contains the velocity estimates by the Kalman-like filter, and ¸*

d
is

the gain for the Luenberger observer. It is emphasized that only the y(K
i
’s in xL * are used for control.

By choosing

¸*
d
"

0)235 0

2)74 0

0 0)235

0 2)74

natural frequencies u
n

and natural damping factors f
n

for the observer in the x-direction are
u

n
"[26)0, 26)0] rad/s, f

n
"[0)982, 0)982], and in the y-direction u

n
"[27)1, 27)1] rad/s,

f
n
"[0)962, 0)962]. In the y-direction u

n
is close to the bandwidth aimed at by the control law.

5.3. Experiments with circular trajectory

During the first experiments, the desired trajectory was chosen to be a circle

y
d1
"0)5!0)25 cos(2nf

e
t) m

y
d2
"0)5!0)25 sin(2nf

e
t) m

with f
e
successively fixed at 0)5 Hz and 0)25 Hz.

First, results of experiments with desired trajectory (26) and f
e
"0)5 Hz will be discussed. In

Figure 2, upper plot, the results for the root mean square (RMS) of e
1
, i.e., the tracking error in

the x-direction, are plotted against the stiffness of the spindle. From this plot, it is concluded that
the performance of both controller schemes is approximately the same for all considered
stiffnesses. This also holds with respect to robustness, since the sensitivity to variations in the
stiffness is about the same.

The same experiments were carried out with f
e
"0)25 Hz, see Figure 2 lower plot. Again

robustness is approximately the same, but now the performance of the CSMC is always better
than that of the DSMC. A sound explanation for this trajectory dependency has not yet been
found. Van de Wal9 mentioned the errors in the predicted states as possible causes.

For f
e
"0)25 Hz the error e

1
for both controller schemes is more affected by the value of the

stiffness than for f
e
"0)5 Hz. Probably, the influence of other modelling errors, such as inertia and

viscous damping parameter errors, is more dominant at higher speeds.
The influence of varying mass parameters on the performance can be investigated by mounting

additional masses on the end-effector. During the experiments, it was observed that robustness to
parameter errors is about the same for both controller schemes. However, the experimental
results are poor: additional masses larger than about 50 per cent of the nominal mass cause
instability, even after detuning g

21
for the CSMC to 20 rad/s and for the DSMC to 400 rad/s2.

This is somewhat disappointing, since good control has been obtained for larger masses (see, e.g.,
Blom and De Jager10). The errors in the predicted states are believed to be the main reason for
this.

Although not depicted, slight chattering with the DSMC occurs in both control inputs. This is
due to the sampled data implementation and the finite sampling frequency f

s
. Larger values for f

s
are expected to reduce the chattering effects. Since, for the experimental set-up, the controller and
observer parameters needed substantial retuning for sampling frequencies other than 200 Hz, this
conjecture was only supported by simulations, for which the controller parameters could be
maintained and where all variables of interest were available.
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Figure 2. Robustness to unmodelled dynamics; solid: CSMC, dashed: DSMC

In addition, it is expected that the tracking error is strongly affected by f
s
. Again, this has only

been confirmed by simulations, which were performed for sampling frequencies between 200 Hz
and 2 000 Hz. During all simulations, displacements, velocities and accelerations were ‘measured’,
while one-step-ahead prediction was not necessary. Instead, the constant input applied in the
interval (t, t#*t] was based on measurements obtained at t. The tracking errors tended to
decrease for increasing f

s
: for the DSMC in both directions and for the CSMC in the y-direction.

In the x-direction, the error with the CSMC was approximately constant. For the range of
sampling frequencies investigated, performance with the CSMC was always better than with the
DSMC, but the difference was smaller for larger f

s
.

5.4. Experiments for a torch burning task

In a second series of experiments, the performance of the controllers was studied with the
X½-table performing a more specific industrial manufacturing task, such as torch burning. The
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Figure 3. Desired and realized trajectories; dotted: desired; solid: CSMC; dashed: DSMC

trajectory consists of several parts (Figure 3), that have to be tracked at a constant speed of
0)3 m/s, starting to the left of the corner point 1. The effect of the Dirac-functions in the desired
acceleration at the corner points are, to a certain extent, taken into account by temporarily
prescribing the maximally realizable acceleration. This modification of the desired trajectory
must last as many sample moments as it takes to realize the change in impulse of the system
(‘a

1
*yR

d1
, a

2
*yR

d2
’) moving from one trajectory part to another.

To avoid chattering of u due to incorrect Coulomb friction compensation, the computed torque
part fK in both the CSMC and the DSMC was slightly modified: the sign-function in the friction
compensation part was replaced by a saturation function, thereby avoiding chattering in the
input signals in trajectory parts with zero velocity in one direction.

During the experiments, the DSMC settings from Table II were used, except for u
2

which had
to be set three times higher to guarantee that, after entering, s remained inside the boundary layer.
The associated parameter l

2
was also set three times higher.

Figure 3 shows the desired trajectory and the realized trajectories with a CSMC and a DSMC.
In Figure 4, the tracking errors e

1
and e

2
are depicted. It is concluded that for e

1
the CSMC

performs better than the DSMC. Note the overshoot with the DSMC after passing the fourth and
eighth corner point.

On trajectory parts with zero desired velocity in the y-direction, steady-state tracking errors in
this direction occur with the CSMC. This is due to imperfect Coulomb friction compensation,
implying persistent disturbances in the s-dynamics, which cannot be filtered out. With respect to
the DSMC, this modelling error causes impulses (non-persistent disturbances) at the input of the
s-dynamics, resulting in converging tracking errors (although convergence is slow in trajectory
part 1—2).

6. CONCLUSIONS AND RECOMMENDATIONS

In this paper, a particular method to eliminate chattering in SMC is discussed. The fundamental
idea is to introduce a first-order dynamical controller. However, owing to the finite sampling
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Figure 4. Tracking errors in x- and y-directions (‘clipped’); solid: CSMC; dashed: DSMC

frequency f
s
, slight chattering still occurs in a sampled data implementation. Larger values for f

s
will diminish this.

Theoretically, stability and asymptotically perfect tracking for the DSMC can be achieved in
the presence of modelling errors, provided that the errors are bounded with known bounds and
that the gains in K are large enough. These gains depend on the system input, the system state and
the desired trajectory. If physical bounds on the state and input are used to obtain K, this may
result in a controller that is conservative. To avoid this, simulations with a more accurate
evaluation model, or experiments, could be performed. Afterwards, the required gains could be
computed from the ‘modelling errors’. Since in robust control it should not be necessary to
develop an extended model just to determine proper controller parameters, other methods to
determine the controller gains are an important issue for future research. Spong11 showed that for
modelling errors due to uncertain inertia parameters, the uncertainty bounds needed for
a specific controller, depend only on these parameters and not on the desired trajectory, the state
or the control input. This is a desirable property, which is not shared by the controllers discussed
in this paper.
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To apply DSMC, the variables y(n) must be determined by measurement or by estimation.
Combining DSMC with a robust observer deserves special attention in future research. Special
attention has to be paid to the observer for the experimental system. The imperfect state estimates
are believed to considerably influence the results.

Although the controllers are designed in continuous time, they are implemented as sampled
data ones, thereby introducing discretization errors. Unfortunately, in such an implementation
the perfect tracking property of the DSMC is lost, since the error dynamics is excited by
a non-zero sliding vector s. Owing to this ‘leak’, the bandwidth of the error dynamics in the
DSMC cannot be set arbitrarily high if excitation of high-frequency unmodelled dynamics has to
be avoided. In a continuous implementation, s would be exactly zero and a high bandwidth of the
error dynamics in the DSMC could be chosen to guarantee a fast response. So, owing to the
sampled data implementation, an important advantage of the DSMC over the CSMC is
eliminated. This may be the main reason that during the experiments the robustness of the
DSMC to unmodelled dynamics is not better than that of the CSMC. It seems worthwhile to
thoroughly trace the influence of discretization errors on the tracking performance and to
develop versions of the DSMC directly targeted at sampled data systems.
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