
RESEARCH PAPER

Internal co-seismic deformation and curvature effect based
on an analytical approach

Jie Dong . Wenke Sun

Received: 10 January 2017 / Accepted: 14 February 2017 / Published online: 9 March 2017

� The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this study, we present a new method to

compute internal co-seismic deformations of a homoge-

neous sphere, based on our previous approach (Dong et al.

2016). In practical numerical computations, we consider a

strike-slip point source as an example, and compute the

vertical co-seismic displacement on different internal

spherical surfaces (including the Earth surface). Numerical

results show that the internal co-seismic deformations are

generally larger than that on the Earth surface; especially,

the maximum co-seismic displacement appears around the

seismic source. The co-seismic displacements are opposite

in sign for the areas over and beneath the position of the

seismic source. The results also indicate that the curvature

effect of the internal deformation is pretty large, and larger

than that on the Earth surface. The results indicate that the

dislocation theory for a sphere is necessary in computing

internal co-seismic deformations.

Keywords Internal displacement � Curvature effect �
Spherical model

1 Introduction

Various dislocation theories have been developed for dif-

ferent geometrical Earth models, such as half-space media

(Okada 1985; Okubo 1992), homogeneous sphere (Sun and

Okubo 1993), or inhomogeneous sphere (Sun and Okubo

1993). The theory for a spherical Earth model is considered

better than that for a half-space model, because the former

takes the Earth curvature into account. However, due to the

mathematical simplicity, the dislocation theory for a half-

space model is still widely applied.

As modern geodetic technique developed, such as GPS

and gravity missions, global co-seismic deformation could

be detected. In this case, a more precise dislocation theory

is actually necessary. We must be sure it is safe to apply a

theory for a simple half-space Earth model in computing

co-seismic deformation, especially for a far-field even a

global scale deformation. Okubo et al. (2002) found the

far-field displacement should be analyzed in the framework

of spherical Earth theory by comparing the results for an

elastic homogeneous half-space model and a radially

stratified elastic Earth. For this purpose, some researchers

made efficient studies to try to understand how large the

effects of the curvature and layered structure are. So far,

almost all the investigations are made for the deformation

on the surface of the Earth, since the geodetic observation,

such as GPS and gravity measurements, is usually per-

formed on the Earth surface. Pollitz (1996) presented a

method to illustrate the effects of Earth’s sphericity and

layering on the calculated deformation field, whose results

showed the curvature effect is generally \2% within

100 km of the point source depth. Sun and Okubo (2002)

found that both the layering and curvature effects on the

co-seismic surface deformation are very large. The layered

structure effect reaches a discrepancy of more than 25%.

Fu et al. (2010) studied the total effects of curvature and

radial heterogeneity in the case of the 2008 Wenchuan

earthquake and the 2004 Sumatra earthquake. Wang et al.

(2010) found the total effects of the curvature and layer

structures are large, without separating the two effects.

Recently, Dong et al. (2014, 2016) systematically studied

the effects of Earth’s layered structure, gravity and
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curvature on co-seismic deformation. Their results show

that those effects are very larger and cannot be neglected.

Notice again that all above studies were performed on

the Earth surface. There are less study referring to the

internal deformation, including the internal co-seismic

deformation and the curvature effect. Although Okada

(1992) presented a set of expressions of the internal

deformation based on a homogeneous elastic half-space

mode, the study about the internal deformation is still

basically in the stage of theoretical discussion. Computing

the internal co-seismic deformation can enhance our

understanding of the stress status, mass redistribution,

seismic mechanism, and so on. Recently, Takagi and

Okubo (2017) presented a new method of computing

internal displacement, stress, strain, and gravitational

changes caused by a point dislocation in a spherical Earth

model. However, in their method the asymptotic solutions

of the radial functions are introduced. Actually, for a

homogeneous sphere, it can be proved that the asymptotic

solutions are not necessary; a more accurate and straight-

forward approach can be applied.

Therefore, in this study, we present a set of formulas to

compute the internal deformation for the homogeneous

spherical model, based on our previous study (Dong et al.

2016). Then we compare the internal co-seismic defor-

mation computed by the new formula, and the corre-

sponding deformation calculated by applying Okada’s

(1992) formulas, to investigate the curvature effect of the

internal co-seismic deformation.

2 Expressions of internal co-seismic deformations

for a homogeneous sphere

Conventionally, researchers study the surface co-seismic

deformation (the blue sphere in Fig. 1) for a homogeneous

sphere or an inhomogeneous sphere. In this section, we try to

derive expressions to calculate internal deformations for a

specified inner surface (such as the red sphere in Fig. 1).

Although Okada (1992) presented analytical formulas for

computing the internal deformation based on a homogeneous

elastic half-space model, it is impossible to apply these for-

mulas in the case of a sphere since the Earth’s spherical

curvature is neglected. Here, we derive the expressions of

internal co-seismic deformations for a homogeneous sphere

in spherical coordinates (r; h;u), where r is the geocentric

distance, and ðh;uÞ express the co-latitude and longitude,

respectively, based on the approach of Dong et al. (2016).

Since we consider a homogeneous sphere without

gravity, the co-seismic displacement (u), and stress (s)

excited by a unit point source (f ) at a location ðr0; h0;u0Þ
satisfies the equations of equilibrium and stress-strain

relation (Alterman et al. 1959; Takeuchi and Saito 1972):

r � sþ qf ¼ 0 ð1Þ

s ¼ kIr � uþ l½ruþ ðruÞT� ð2Þ

where I is the unit tensor, superscript T stands for trans-

pose, and l and k are the Lame constants of the Earth.

Generally, any function can be expressed as spherical

harmonics on a unit sphere. To solve Eqs. (1) and (2), the

co-seismic displacement uðr; h;uÞ and stress sðr; h;uÞ can
be expressed as:

uðr; h;uÞ ¼
X

n;m

y1ðrÞRm
n ðh;uÞ þ y3ðrÞSmn ðh;uÞ

�

þ yt1ðrÞTm
n ðh;uÞ

� ð3Þ

s � erðr; h;uÞ ¼
X

n;m

y2ðrÞRm
n ðh;uÞ þ y4ðrÞSmn ðh;uÞ

�

þ yt2ðrÞTm
n ðh;uÞ

� ð4Þ

where erðr; h;uÞ is the radial unit vector, and s � erðr; h;uÞ
represents the radial component of the stress. Rm

n ðh;uÞ,
Smn ðh;uÞ, and Tm

n ðh;uÞ are conventional spherical

harmonic functions,

Rm
n ðh;uÞ ¼ erY

m
n ðh;uÞ

Smn ðh;uÞ ¼ eh
o

oh
þ eu

1

sin h
o

ou

� �
Ym
n ðh;uÞ

Tm
n ðh;uÞ ¼ eh

1

sin h
o

ou
� eu

o

oh

� �
Ym
n ðh;uÞ

Ym
n ðh;uÞ ¼ Pm

n ðcos hÞeimu

Y� mj j
n ðh;uÞ ¼ ð�1ÞmP mj j

n ðcos hÞe�i mj ju

m ¼ 0;�1;�2; . . .�n

ð5Þ

Ym
n ðh;uÞ, Y� mj j

n ðh;uÞ are functions of the associated

Legendre’s functions Pn (cos h). (er; eh; eu) is the base vec-
tors in spherical coordinate for radial, co-latitude and lon-

gitude directions, respectively. The superscript t stands for

Fig. 1 Sketch showing the positions of Earth (blue one) and the

internal layer sphere (red one). R is the radius of the Earth, ds is the

source depth, h is the internal layer depth under the surface, and H is

the radius of the internal sphere
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the toroidal deformation, which is parallel to the spherical

surface. For the spheroidal deformation, y1 and y3 are radial

and horizontal components of displacement; y2 and y4 are

radial and horizontal components of stress, while yt1 and yt2
are horizontal displacement and stress of toroidal deforma-

tion, respectively. Similarly, the point force f can be

expressed as spherical harmonics, and details are omitted

here but can refer to Sun et al. (2009) or Dong et al. (2016).

Substituting the formulae (3)–(4) into (1) and (2), and

neglecting the gravity effect (g ¼ 0), we obtain four ordinary

spheroidal differential Eq. (6) and two toroidal Eq. (7) as:

dyt1
dr

¼ 1

r
yt1 þ

1

l
yt2

dyt2
dr

¼ l n� 1ð Þ nþ 2ð Þ
r2

yt1 �
3

r
yt2 � Ft

2

dðr � r0Þ
r20

8
>><

>>:
ð7Þ

The general solution (X) of Eqs. (6) and (7) can be

analytically obtained according to Love (1911). Although

Love (1911) studied this problem, it is difficult to find a

suitable solution of X from his publication; therefore, we

derive the expressions of X in this study. Omitting the

tedious mathematical work, we present four sets of fun-

damental spheroidal solutions yjiði; j ¼ 1, 2, 3, 4Þ and two

sets of toroidal solutions ytjiði; j ¼ 1, 2Þ.
The spheroidal solutions of the homogeneous Eq. (6),

including two sets of regular solutions and two sets of

irregular solutions, can be obtained analytically:

y11 rð Þ y12 rð Þ y13 rð Þ y14 rð Þ
y21 rð Þ y22 rð Þ y23 rð Þ y24 rð Þ
y31 rð Þ y32 rð Þ y33 rð Þ y34 rð Þ
y41 rð Þ y42 rð Þ y43 rð Þ y44 rð Þ

0

BB@

1

CCA ¼

Similarly, the toroidal solutions (one regular solution

and one irregular solution) are:

yt11 rð Þ yt12 rð Þ
yt21 rð Þ yt22 rð Þ

� �
¼ rn �r�ðnþ1Þ

lðn� 1Þrn�1 lðnþ 2Þr�ðnþ2Þ

� �

ð9Þ

Then the general solution (X) can be expressed by a

combination of the fundamental spheroidal solutions as

xjðrÞ ¼
X4

i¼1

biyjiðrÞ; j ¼ 1; 2; 3; 4 ð10Þ

where bi are unknown constants. To determine the solution

on the Earth surface, we introduce the boundary conditions,

y2ðrÞjr¼R¼ y4ðrÞjr¼R¼ 0 ð11Þ

yjðrÞ
��
r¼rþs

�yjðrÞ
��
r¼r�s

¼ sj; j ¼ 1; 2; 3; 4 ð12Þ

yðrÞjr¼0\þ1 ð13Þ

where s is seismic source function, which is given by

Takeuchi and Saito (1972).

Thus, we may obtain the following equations for the

spheroidal solution. Here we take the vertical strike-slip

source as an example. The strike-slip source is formed in

shear force, with a relative movement across the strike of

the fault:

dy1

dr
¼ 1

b
y2 �

k
r
2y1 � nðnþ 1Þy3½ �

� �

dy2

dr
¼ 4

r

3jl
rb

� �
y1 �

4l
rb

y2 �
n nþ 1ð Þ

r

6lj
rb

� �
y3 þ

n nþ 1ð Þ
r

y4 � F2

dðr � r0Þ
r20

dy3

dr
¼ 1

l
y4 �

1

r
y1 � y3ð Þ

dy4

dr
¼ � 6lj

r2b
y1 �

k
rb

y2 þ
2l
r2b

2n2 þ 2n� 1
	 


kþ 2 n2 þ n� 1
	 


l
� �� �

y3

� 3

r
y4 � F4

dðr � r0Þ
r20

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð6Þ

�ðnþ 1Þr�n�2 � ðnþ 1Þkþ ðnþ 3Þl
ðn� 2Þkþ ðn� 4Þl

� �
nr�n nkþ ðn� 2Þl

ðnþ 3Þkþ ðnþ 5Þl ðnþ 1Þrnþ1 nrn�1

2lðnþ 1Þðnþ 2Þr�n�3 ðn2 þ 3n� 1Þkþ nðnþ 3Þl
ðn� 2Þkþ ðn� 4Þl 2lnr�n�1 ðn2 � n� 3Þkþ ðn2 � n� 2Þl

ðnþ 3Þkþ ðnþ 5Þl 2lðnþ 1Þrn 2lnðn� 1Þrn�2

r�n�2 r�n rnþ1 rn�1

�2lðnþ 2Þr�n�3 �ðn2 � 1Þkþ ðn2 � 2Þl
ðn� 2Þkþ ðn� 4Þl 2lr�n�1 ðn2 þ 2nÞkþ ðn2 þ 2n� 1Þl

ðnþ 3Þkþ ðnþ 5Þl 2lrn 2lðn� 1Þrn�2

0

BBBBBBBB@

1

CCCCCCCCA

ð8Þ
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y21 Rð Þ y22 Rð Þ y23 Rð Þ y24 Rð Þ 0 0

y41 Rð Þ y42 Rð Þ y43 Rð Þ y44 Rð Þ 0 0

y11 rþs
	 


y12 rþs
	 


y13 rþs
	 


y14 rþs
	 


�y13 r�s
	 


�y14 r�s
	 


y21 rþs
	 


y22 rþs
	 


y23 rþs
	 


y24 rþs
	 


�y23 r�s
	 


�y24 r�s
	 


y31 rþs
	 


y32 rþs
	 


y33 rþs
	 


y34 rþs
	 


�y33 r�s
	 


�y34 r�s
	 


y41 rþs
	 


y42 rþs
	 


y43 rþs
	 


y44 rþs
	 


�y43 r�s
	 


�y44 r�s
	 


0

BBBBBBBB@

1

CCCCCCCCA

�

b1
b2
b3
b4
b5
b6

0
BBBBBBBB@

1
CCCCCCCCA

¼

0

0

s121 rsð Þ
s122 rsð Þ
s123 rsð Þ
s124 rsð Þ

0
BBBBBBBB@

1
CCCCCCCCA

ð14Þ

where R is the radius of the Earth, and rs ¼ ðR� r0Þ=R
denotes the normalized radius distance of the source. After

solving Eq. (14), bi can be determined analytically, but the

tedious calculations are not presented. Then, we can obtain

the radial and horizontal components of displacement on

the surface, and even inside the Earth.

Similarly, for the toroidal solution, we have:

yt21 Rð Þ yt22 Rð Þ 0

yt11 rþs
	 


yt12 rþs
	 


�yt11 r�s
	 


yt21 rþs
	 


yt22 rþs
	 


�yt21 r�s
	 


0
@

1
A

b1
b2
b3

0
@

1
A ¼

0

s
t;12
1 rsð Þ
s
t;12
2 rsð Þ

0
@

1
A

ð15Þ

The constants bi can be obtained in an analytical form as

b1
b2
b3

0

@

1

A ¼ rn�1
s

8pn nþ 1ð Þ

nþ2
n�1

�1
nþ2
n�1

þ r�2n�1
s

0

@

1

A ð16Þ

Then we obtain the toroidal solution as

y
t;n;12
1 rð Þ ¼ rn�1

s

8pn nþ 1ð Þ
nþ 2

n� 1
rn þ r�n�1

� �
ð17Þ

Similarly, we can obtain the solutions for other sources.

Finally, we may compute co-seismic displacement

uðr; h;uÞ by harmonics summation.

According to the above approach, we may easily

derive the corresponding explicit expressions of internal

deformations, by applying the four sets of fundamental

spherical solutions (y) and two sets of toroidal solutions

for a homogeneous Earth model. In order to derive

expressions of the internal co-seismic deformations for

any layer (h) inside the Earth, we should consider two

conditions:

Case I When h\ds, i.e., the internal surface to be com-

puted is over the seismic source, located between the Earth

surface and the seismic source, and we get the y-variables

by solving the following equations

y1

y3

� �
¼

y11 rð Þ y12 rð Þ y13 rð Þ y14 rð Þ
y31 rð Þ y32 rð Þ y33 rð Þ y34 rð Þ

� �
b1
b2
b3
b4

0

BBB@

1

CCCA

yt1 ¼ yt11 rð Þ yt12 rð Þð Þ
bt1
bt2

 !
ð18Þ

Case II when h[ ds, i.e., the internal surface to be

computed is beneath the seismic source, located between

the seismic source and the mantle-core boundary, and we

get the y-variables by solving the following equations

y1

y3

� �
¼

y13 rð Þ y14 rð Þ
y33 rð Þ y34 rð Þ

� �
b5
b6

� �

yt1 ¼ yt11ðrÞbt3
ð19Þ

After deriving all these y-symbols based on the above

mathematical processing, we may finally obtain the

expressions of internal co-seismic displacement Green

functions as

urðr; h;uÞ ¼
X

n;m

yn1;mðrÞYm
n ðh;uÞ � R2

uhðr; h;uÞ ¼
X

n;m

yn3;mðrÞ
oYm

n ðh;uÞ
oh

� R2

þ
X

n;m

y
t;n
1;mðrÞ

1

sin h
oYm

n ðh;uÞ
ou

� R2

uuðr; h;uÞ ¼
X

n;m

yn3;mðrÞ
1

sin h
oYm

n ðh;uÞ
ou

� R2

�
X

n;m

y
t;n
1;mðrÞ

oYm
n ðh;uÞ
oh

� R2

ð20Þ

Note that although these formulas in Eq. (20) are given

by spherical harmonic functions, they are still analytical

solutions. These summations in Eq. (20) can be evaluated

analytically using the mathematical skill as used in Sun

et al. (2009). It means that we can compute the co-seismic

deformations for any layer inside the Earth. In a practical

computation, in the above scheme, the inputs we need are

the source depth ds, internal surface depth h, and radius R.

3 Internal co-seismic deformations of a homogeneous

sphere

In order to display the internal deformations, we assume a

strike-slip point source to locate at north pole (Sun and

Okubo 1993). Then we consider two source depths at 30

and 637 km, respectively. The 30-km source represents a

shallow event, and the 637-km (10% of the Earth radius)

source stands for a deep event, so that we can observe the
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property of the inner deformation and the curvature effect

for different source depth.

Applying the above computing scheme, we calculate co-

seismic displacements on two internal spheres caused by

the two sources, with depth of h = 1000 km and

h = 2500 km. Figure 2 shows the vertical co-seismic dis-

placements on an internal sphere with depth of

h = 1000 km, caused by the two sources, while Fig. 3

gives the same results as Fig. 2 but for an internal sphere of

h = 2500 km. Both Figs. 2 and 3 show that the co-seismic

deformation behaves in a quadrant pattern, similar to the

deformation on the Earth surface. Since the Earth’s surface

in the quadrants 1 and 3 sink down, and the other two

quadrants rise (further discussions on the distribution of the

surface deformation refer to the Figs. 4, 5 below); while

the deformation at the two internal spheres (h = 1000 km

and h = 2500 km) shown in Figs. 2 and 3 indicates that

the deformation in the quadrants 1 and 3 rise, and the

quadrants 2 and 4 sink down. The reason for this opposite

deformation between the Earth surface and the inner

surface is due to the position of the inner surface. Gener-

ally, we found that if the internal surface is located beneath

the source, the deformation appears opposite in sign with

that over the source (including the earth surface).

Comparing Fig. 2a, b shows that the amplitude of the

vertical displacement caused by the source at radius of

637 km is larger than that at radius of 30 km, because the

source at ds = 637 km is nearer to the internal surface of

h = 1000 km. In addition, the magnitude of the vertical

displacements for both depths decays quickly as the epi-

central distance (h) increases, meaning that the local co-

seismic deformation dominates.

From Fig. 3, we see that the amplitude of the co-seismic

displacements on the internal sphere of h = 2500 km is

smaller than that on the sphere of h = 1000 km. This

phenomenon is normal, because the former is farther from

seismic source and the deformation decays with distance.

In addition, the deformation on sphere of h = 2500 km

appears wide distribution covering a more large area,

because the farther the distance apart from the seismic

Fig. 2 Vertical displacement on the internal sphere h = 1000 km caused by the strike-slip point source (UdS=R2 ¼ 1) at depths of 30 km

(a) and 637 km (b), the vertical displacement is dimensionless

Fig. 3 Same as Fig. 2 but for the internal sphere h = 2500 km, the vertical displacement is dimensionless
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source, the weaker the co-seismic deformations. It means

that the high frequency components of the deformation

become weaker and weaker, while the low frequency

components become dominating.

To observe the property of the co-seismic displacements

changing for different depth, we compute and plot co-

seismic vertical displacements on several internal spheres

with different depths (0, 20, 60 and 1000 km) and different

epicentral distance h. Results are plotted in Fig. 4 for a

seismic source depth of 30 km, and in Fig. 5 for a source

depth of 637 km. In Fig. 4, when h = 0 km (on the surface

of the Earth), we find that the larger displacements appear

within h ¼ 1�, almost the same as that of the homogeneous

sphere’s numerical solutions of Sun et al. (2009). When

h = 20 km, the larger displacements appear within h ¼
0:4� and show largest deformation in magnitude among the

four depths, more concentrate to the epicenter, because the

deformation on the internal sphere of h = 20 km is nearer

to the source of 30 km than the Earth surface (h = 0 km).

When h = 60 km, we find that the co-seismic displace-

ment is much smaller than that on the Earth surface, even

though the distances between the seismic source

(h = 30 km) and the two spheres (h = 0 km and

h = 60 km) are the same. This phenomenon is under-

standable, because the co-seismic deformation depends on

the geocentric distance, and the distances from the Earth’s

center to the Earth surface and depth of 60 km are differ-

ent. Finally when h = 1000 km, the larger co-seismic

displacement appears in wider area, covering large epi-

central distance. On the other hand, the magnitude of the

displacement is much smaller than that on other spheres,

because this sphere (h = 1000 km) is very far from the

source and the deformation decays quickly.

In addition, we find that the coverage (epicentral dis-

tance) of the largest deformation is proportional to the

distance of ( h� dsj j). That is, the epicentral distance for

the large deformation becomes larger as the internal sphere

farther from the source. Furthermore, we find that, as

pointed out above, the co-seismic displacements are

opposite in sign for those areas over and beneath the

seismic source. Generally, the displacement becomes large

when the computing point is near the source, as shown in

Figs. 4 and 5.

Comparing Figs. 4 and 5 shows that the internal defor-

mation obviously changes for different source depth. The

vertical displacements on the Earth surface become much

smaller when the source is located in depth of 637 km,

while the deformation on sphere of h = 1000 km becomes

larger due to the relatively near source. Note that all

properties shown in Fig. 4 also apply to Fig. 5.

Fig. 4 Vertical co-seismic displacements on different internal spheres (h is the depth under the surface) caused by the strike-slip point source

(UdS=R2 ¼ 1) at a source depth of 30 km, the vertical displacement is dimensionless
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4 Curvature effect in computing internal co-seismic

deformations

In this section, we investigate the curvature effect for

internal co-seismic deformation based on the above

approach. For this purpose, we calculate internal vertical

co-seismic displacements for different depths by using the

above approach and the theory of Okada (1992). In com-

putation, we consider two strike-slip seismic sources at

depths of 30 and 637 km, respectively. Similarly, the point

source is normalized by factor of UdS=R2 ¼ 1. Then we

compute the vertical displacements for different depths (or

internal spheres) and plot them in Figs. 6 and 7, for the two

sources, respectively. A comparison of vertical co-seismic

displacements on different internal spheres (h) computed

by half-space model (red line) and spherical model (blue

dashed line) is clearly shown in the figures. The difference

between the results represents the curvature effect of the

internal deformation.

Figure 6 shows that the difference (curvature effect)

between the two theories on Earth surface and shallow areas

over the source is not obvious and difficult to be identified

since both curves overlap, although the numerical result

shows the curvature effect is about 1.2% on the surface.

However, the curvature effect becomes larger and larger

when the depth of the internal sphere goes deeper and deeper.

However, when the source locates deep as shown in Fig. 7

for depth of 637 km, the curvature effect becomes larger,

even we can identify them directly. It means that the cur-

vature effect becomes larger for deep seismic events.

To evaluate the curvature effect in quantity, we repre-

sent the curvature effect in form of a relative error defined

as

e ¼
uðsÞ
�� ��� uðhÞ

�� ��
uðhÞ
�� ��

max

ð21Þ

where uðsÞ is the displacement computed for a spherical

model, uðhÞ is that computed for a half-space model (Okada

1992), while the term uðhÞ
�� ��

max
stands for the maximum

value of the co-seismic deformation. Then the curvature

effects in Figs. 6 and 7 can be represented in Fig. 8a, b.

Figure 8 shows that the curvature effect on the Earth sur-

face is small, which is about 1.2%, in agreement with the

conclusion of Dong et al. (2016). It also shows that the

curvature effect (e) becomes larger as the distance between

the internal sphere and the source goes larger. Figure 8 also

shows a proportional relation between the curvature effect

and the source depth, i.e., e / h� dsj j. This relation should

be further proved in theory or more numerical work.

Fig. 5 Same as Fig. 4 but a source depth of 637 km
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5 Discussion and conclusions

In this study, we present expressions for computing the

internal deformation of a homogeneous sphere, based on

our previous approach (Dong et al. 2016). These expres-

sions are given in form of analytical solutions, similar to

that of Okada (1992), which is given for a homogeneous

half-space model. In practical numerical computations, we
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Fig. 7 Same as Fig. 6 but for a source depth of 637 km
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Fig. 6 Comparison of vertical co-seismic displacements on different internal spheres (h) computed by half-space model (red line) and spherical

model (blue dashed line) caused by the strike-slip point source (UdS=R2 ¼ 1) at a source depth of 30 km, the vertical displacement is

dimensionless
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consider a strike-slip point source as an example, and

compute the vertical co-seismic displacement on different

internal spherical surfaces (including the Earth surface).

Numerical results of the internal deformations show that

the internal co-seismic deformations are generally larger

than that on the Earth surface; especially, the maximum co-

seismic displacement appears around the seismic source.

For the point source at depth of 30 km, the displacement

magnitude reaches about 105(normalized by factor of

UdS=R2 ¼ 1) near the source, while the displacement

amplitude in other places decreases quickly as the distance

apart from the source increases. The results also show that

the displacements are opposite in sign for the areas over

and beneath the position of the seismic source. The results

of the study also indicate that the curvature effect of the

internal deformation is pretty large. Our previous study

(Dong et al. 2016) on the Earth surface showed that the

curvature effect is generally \5% for point source with

depth less than 100 km. The current study shows that the

curvature effect of internal deformation becomes larger

comparing to the surface, e.g., the curvature effect on the

CMB (core–mantle boundary) spherical surface can reach

100%. The above results indicate that the dislocation the-

ory for a sphere is necessary in computing internal co-

seismic deformations, comparing to the theory for a half-

space media (Okada 1992).

Fig. 8 Curvature effects on different inner spheres caused by the strike-slip point source (UdS=R2 ¼ 1) at depths of 30 km (a) and 637 km (b).
The Subplot a shows that the curvature effects for those internal spheres are 1.2%, 1.1%, 0.7%, 0.4%, 0.4%, 18%, 33%, and 54%, respectively;

b shows that the corresponding curvature effects are 26.1%, 26%, 25.8%, 11.6%, 10.4%, 12.2%, 34%, and 75%, respectively

Earthq Sci (2017) 30(1):47–56 55

123



Note that since the numerical computations are made for

only the strike-slip source and the vertical co-seismic dis-

placement in the study, the corresponding conclusions are

actually limited. Because the co-seismic deformations

include different geophysical phenomena, such as dis-

placement, strain, potential (geoid) and gravity changes,

the corresponding deformation property and pattern are

different. The displacement is a vector, including two

components, vertical displacement and horizontal dis-

placement, and its spatial distribution pattern and magni-

tude are different. In addition, all these co-seismic

deformations appear different spatial distribution property,

depending on source types, source depth. Therefore, the

numerical computation and discussion and conclusions are

considered as a case study. For different source types and

different co-seismic deformations, there may be somehow

changeable or adjustable conclusions, maybe slightly.

However, the method and conclusions in this study are still

important in enhancing our understanding of the property

of the internal deformation and curvature effect.

The method presented in this study can be used to

compute Green’s functions of the internal co-seismic

deformation, including all types of physical variables, such

as displacement, strain, tilt, and so on. Then we may apply

the Green’s functions to compute co-seismic deformations

at any source depth by arbitrary source types, though

simple numerical integrations over limited fault plane.

These practical applications remain in our future work.
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