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Abstract Band structure of a sawtooth photonic crystal for optical wave propagation along

the axis of periodicity is investigated. Floquet–Bloch solutions are found and illustrated for

the bandgaps, allowed bands, and bandedges of the crystal. Special attention is given to the

cases where Floquet–Bloch solutions become periodic functions.
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1 Introduction

In a recent paper (Morozov et al. 2013), we presented solutions for optical wave propa-

gation through a sawtooth crystal, i.e. a one-dimensional (1D) photonic crystal constructed

of layers with a linearly increasing refractive index n(z) in each period, see Fig. 1, in the

exact analytical form. In particular, we expressed the fields inside the crystal in terms of

the normalized solutions uðzÞ ½uð0Þ ¼ 1; u0ð0Þ ¼ 0� and vðzÞ ½vð0Þ ¼ 0; v0ð0Þ ¼ 1�, each
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expressed as a superposition of Bessel functions. With the aid of the transfer matrix

method, the reflection/transmission characteristics of the crystal were obtained.

In this paper, we analyze the band structure of a sawtooth crystal in the case of normal

propagation. It will be shown that it can be expressed in terms of just two parameters only:

a period-average dimensionless wavenumber knavd of the light inside the crystal and the

Fresnel reflection coefficient r21 between the layers of refractive indices n2 and n1, i.e.

knavd � k
n2 þ n1

2
d; r21 ¼ n2 � n1

n2 þ n1

; ð1Þ

where k is the wavenumber of light in vacuum. Then, we express the fields inside the

crystal in terms of the Floquet–Bloch solutions and illustrate their behavior in the allowed

bands, in the bandgaps, and at the bandedges respectively. Special attention is given to

periodic solutions. Overall, the results add to a better understanding of the behavior of light

within photonic crystals with linearly graded refractive index layers, recently studied in

Morozov et al. (2013), Fernandez-Guasti and Diamant (2015), Wu et al. (2011), Rauh

et al. (2010).

2 Band structure of a sawtooth crystal

Propagation of linearly polarized light of vacuum wavenumber k along the axis of peri-

odicity z of a sawtooth photonic crystal with period d, see Fig. 1, reduces to solving Hill’s

equation

d2EðzÞ
dz2

þ k2n2ðzÞEðzÞ ¼ 0; nðzþ dÞ ¼ nðzÞ; ð2Þ

where on the first period, i.e. for 0\z\d,

nðzÞ ¼ n1 þ ðn2 � n1Þ
z

d
: ð3Þ

The total electric field of propagating light is then

E ¼ EðzÞ expð�ikc tÞ ŷ; ð4Þ

where c is velocity of light in vacuum, and ŷ is a unit vector along the polarization

direction, which is normal to the plane of incidence. In accordance with Morozov et al.

(2013), the normalized solutions of Eq. (1) are expressed as

Fig. 1 A sawtooth photonic
crystal with the refractive index
increasing linearly from n1 to n2

inside each period of width
d; N is the number of periods; nin

and nex are the refractive indices
of the incident and exit media
respectively
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uðzÞ ¼ ~v0ð0Þ
ffiffiffi

c
p ~uðzÞ � ~u0ð0Þ

ffiffiffi

c
p ~vðzÞ;

vðzÞ ¼ � ~vð0Þ
ffiffiffi

c
p ~uðzÞ þ ~uð0Þ

ffiffiffi

c
p ~vðzÞ;

ð5Þ

with

~uðzÞ ¼ p

21=4C 1=4ð Þ
ffiffiffi

c
p

z� z0ð Þ½ �1=2
J�1=4

c z� z0ð Þ2

4

" #

;

~vðzÞ ¼ p

23=4C 3=4ð Þ
ffiffiffi

c
p

z� z0ð Þ½ �1=2
J1=4

c z� z0ð Þ2

4

" #

;

ð6Þ

where

c ¼ 2k n2 � n1ð Þ
d

¼ 4knav r21

d
; z0 ¼ � n1d

n2 � n1

¼ �ð1 � r21Þ d
2 r21

: ð7Þ

The overall field E(z) within the crystal, which is a general solution of Eq. (2) for

0\z\Nd, is then

EðzÞ ¼ AuðzÞ þ BvðzÞ; ð8Þ

where the constants A and B can be found from the boundary conditions at the points z ¼ 0

and z ¼ Nd.

In accordance with the Floquet–Bloch theory (Magnus and Winkler 2004; Eastham

1975; Stoker 1950), the overall field E(z) within a periodic crystal can be also expressed as

a superposition of two Floquet–Bloch solutions, which in most cases take the form

F1;2ðzÞ ¼ P1;2ðzÞ e�iuz=d; P1;2ðzþ dÞ ¼ P1;2ðzÞ ; ð9Þ

where the Bloch phase u,

2 cosðuÞ ¼ uðdÞ þ v0ðdÞ; ð10Þ

defines the band structure of a periodic potential. One can see that the solutions F1;2ðzÞ
satisfy a translational property

F1;2ðzþ dÞ ¼ q1;2F1;2ðzÞ; q1;2 ¼ expð�iuÞ: ð11Þ

In the allowed bands the Bloch phase is real, �1\ cosðuÞ\1, and, as a result, both

Floquet–Bloch solutions are oscillating functions. In the bandgaps the Bloch phase is

complex, cosðuÞj j[ 1, in particular u ¼ mpþ iu
00
, where m ¼ 1; 2; 3. . .;u

00
is real and, as

a result, one Floquet–Bloch solution decays while the other one grows along the z-axis of

propagation. The overall field E(z) also decays in the bandgaps.

If cosðuÞ ¼ �1, two cases might occur. Typically, this condition corresponds to the

boundaries between the bandgaps and allowed bands. On those boundaries the Floquet–

Bloch solutions become identical periodic functions, i.e. F2ðzÞ ¼ F1ðzÞ � FðzÞ, of period d

when cosðuÞ ¼ 1 (q1 ¼ q2 � q ¼ 1), or of period 2d when cosðuÞ ¼ �1

(q1 ¼ q2 � q ¼ �1). To account for this anomaly, another particular solution must be

sought to complete the general solution of Eq. (2). It is known as the hybrid Floquet mode

G(z)
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GðzÞ ¼ ½P2ðzÞ þ zP1ðzÞ� eiuz=d; ð12Þ

and it satisfies a translational property

Gðzþ dÞ ¼ qGðzÞ þ qdFðzÞ: ð13Þ

An appearance of a hybrid Floquet mode was discussed in the context of 1D superlattices

in Cottey (1971, 1972) and in the context of 1D photonic crystals in Morozov and Sprung

(2011, 2012).

If in addition to cosðuÞ ¼ �1 (uðdÞ þ v0ðdÞ ¼ �2), the normalized solutions satisfy the

condition vðdÞ ¼ u0ðdÞ ¼ 0, so-called incipient bands (vanishing gaps) appear. Those are

points of contact between distinct allowed bands (i.e. a special type of band crossing),

where both distinct functions F1;2ðzÞ and, as a result, the overall field E(z) within the

crystal, become periodic, again of period d if cosðuÞ ¼ 1 (q1 ¼ q2 � q ¼ 1), or of period

2d if cosðuÞ ¼ �1 (q1 ¼ q2 � q ¼ �1). There are periodic potentials, for which vanishing

gaps exist in the form of discrete points (Morozov and Sprung 2011, 2012), straight lines

(Morozov and Sprung 2015), and continuous second-order curves (Caffrey et al. 2016).

For a sawtooth crystal one has

uðdÞ ¼ p

4
ffiffiffi

2
p ð1 � r21Þ3=2

r21

ð1 þ r21Þ1=2
knavd

� J�3=4 z2
1=4

� �

J�1=4 z2
2=4

� �

þ J3=4 z2
1=4

� �

J1=4 z2
2=4

� �� �

;

u0ðdÞ d ¼ � p

4
ffiffiffi

2
p ð1 � r2

21Þ
3=2

r21

ðknavdÞ2

� J�3=4 z2
1=4

� �

J3=4 z2
2=4

� �

� J3=4 z2
1=4

� �

J�3=4 z2
2=4

� �� �

;

vðdÞ
d

¼ � p

4
ffiffiffi

2
p ð1 � r2

21Þ
1=2

r21

� J1=4 z2
1=4

� �

J�1=4 z2
2=4

� �

þ J�1=4 z2
1=4

� �

J1=4 z2
2=4

� �� �

;

v0ðdÞ ¼ p

4
ffiffiffi

2
p ð1 þ r21Þ3=2

r21

ð1 � r21Þ1=2
knavd

� J1=4 z2
1=4

� �

J3=4 z2
2=4

� �

þ J�1=4 z2
1=4

� �

J�3=4 z2
2=4

� �� �

;

ð14Þ

with dimensionless parameters z1 and z2 defined as

z1 ¼ � ffiffiffi

c
p

z0 ¼ 2kdn2
1

n2 � n1

� �1=2

¼ 1 � r21
ffiffiffiffiffiffi

r21
p

ffiffiffiffiffiffiffiffiffiffiffi

knavd
p

;

z2 ¼ ffiffiffi

c
p ðd � z0Þ ¼

2kdn2
2

n2 � n1

� �1=2

¼ 1 þ r21
ffiffiffiffiffiffi

r21
p

ffiffiffiffiffiffiffiffiffiffiffi

knavd
p

:

ð15Þ

One can see that the Bloch phase u, see Eq. (10), is defined by two parameters only: knavd

and r21. The results are shown in Fig. 2. Since u0ðdÞ and v(d) are never zero simultane-

ously, a sawtooth crystal does not possess vanishing gaps, in agreement with Mogilner and

Loly (1992).

The energy transmission coefficient (transmittance), T, for an optical wave of vacuum

wavenumber k impinging normally from the left (z\0) on a crystal, consisting of N ¼ 4

periods, is shown in Fig. 3. The results were obtained by the standard transfer matrix
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method, assuming for simplicity that nin ¼ nex ¼ n1. For such a sawtooth crystal, the

transmittance is defined by three parameters: knavd; r21, and the number of periods N.

3 Floquet–Bloch solutions within a sawtooth potential

In this section we analyze the behavior of the Floquet–Bloch solutions in the various

regions of a sawtooth photonic crystal band structure depicted in Fig. 2. Three points, with

knavd=p ¼ 1:115 (point A), knavd=p ¼ 1:680 (point B), knavd=p ¼ 1:831 (point C), have

been chosen to sequentially represent the bandgaps, allowed bands, and bandedges. All

three points are characterized by the parameter r21 ¼ 0:5, which corresponds, for example,

Fig. 2 Band structure of a sawtooth photonic crystal, k is the vacuum wavenumber of propagating light, d is
the period of a crystal, nav ¼ ðn1 þ n2Þ=2; r21 ¼ ðn2 � n1Þ=ðn2 þ n1Þ

Fig. 3 The transmittance and the Bloch phase cosðuÞ of a sawtooth crystal with r21 ¼ 0:5
(n1 ¼ 1:5; n2 ¼ 4:5), N ¼ 4. The refractive indices of the incident and exit media are nin ¼ nex ¼ n1
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to a crystal with the refractive index increasing from n1 ¼ 1:5 to n2 ¼ 4:5. For such a

crystal nav ¼ 3:0 and we take for simplicity a period of the crystal to be d ¼ 1lm.

At each of the above points (A, B, C), we construct both Floquet–Bloch functions (and a

hybrid Floquet mode if necessary), using general representation of those functions in terms

of the normalized solution, see Refs. Morozov and Sprung (2011), Morozov and Sprung

(2012), as follows

F1;2ðzÞ ¼ uðzÞ þ
q1;2 � uðdÞ

vðdÞ vðzÞ; if vðdÞ 6¼ 0;

F1;2ðzÞ ¼
q1;2 � v0ðdÞ

u0ðdÞ uðzÞ þ vðzÞ; if u0ðdÞ 6¼ 0:

ð16Þ

As previously mentioned, u0ðdÞ and v(d) are never simultaneously zero for a sawtooth

crystal, so one of the above recipes always works. At the bandedges F2ðzÞ ¼ F1ðzÞ � FðzÞ
[cosðuÞ ¼ �1 and u0ðdÞ and v(d) are not simultaneously zero], and a second linear inde-

pendent solution of Hill’s equation (2) is taken in the form of a hybrid Floquet mode

Fig. 4 The moduli (upper panel) and the real and imaginary parts (lower panel) of the Floquet–Bloch
solutions F1ðzÞ and F2ðzÞ (grey lines) and the overall field E(z) (black lines) at the point A located within the
first bandgap of a sawtooth photonic crystal with n1 ¼ 1:5; n2 ¼ 4:5; d ¼ 1lm;N ¼ 4. Note that in the
bandgaps R½F1;2ðzÞ� ¼ F1;2ðzÞ;I½F1;2ðzÞ� ¼ 0. The overall field E(z) is given by Eq. (18) and is shown here

for the case nin ¼ nex ¼ n1
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GðzÞ ¼ q d
vðdÞ vðzÞ; if vðdÞ 6¼ 0;

GðzÞ ¼ q d
u0ðdÞ uðzÞ; if u0ðdÞ 6¼ 0:

ð17Þ

The corresponding total field E(z) generated by an optical wave of vacuum wavenumber k

impinging on the crystal from z\0 is

EðzÞ ¼ expðikninzÞ þ r expð�ikninzÞ; z\0;

EðzÞ ¼ C1F1ðzÞ þ C2F2ðzÞ; 0\z\Nd;

EðzÞ ¼ t expðiknexzÞ; z[Nd;

ð18Þ

where r and t are the amplitude reflection and transmission coefficients related to reflec-

tance and transmittance as R ¼ jrj2; T ¼ nex=nin jtj2. At the bandedges

F2ðzÞ ¼ F1ðzÞ � FðzÞ, and one has to replace F2ðzÞ with G(z). Finally, all of the above four

constants r; t;C1;C2 are obtained from the boundary conditions at z ¼ 0 and z ¼ Nd, where

N is the number of periods.

Fig. 5 The moduli (upper panel) and the real and imaginary parts (lower panel) of the Floquet–Bloch
solution F1ðzÞ (grey lines) and the overall field E(z) (black lines) at the point B located within the second
allowed band of a sawtooth photonic crystal with n1 ¼ 1:5; n2 ¼ 4:5; d ¼ 1lm;N ¼ 4. Note that in the
allowed bands R½F2ðzÞ� ¼ R½F1ðzÞ�;I½F2ðzÞ� ¼ �I½F1ðzÞ�. The overall field E(z) is given by Eq. (18) and is
shown here for the case nin ¼ nex ¼ n1
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We now begin our analysis with the point A, located within the first bandgap of the

crystal. The Floquet–Bloch solutions and the resultant field E(z) are shown in Fig. 4. As

expected, the Bloch phase is complex since cosðuÞ ¼ f ð1:115p; 0:5Þ ¼ �1:024. Both

Floquet multipliers are real-valued numbers, q1 � �0:803 and q2 � �1:245. The first

Floquet–Bloch solution F1ðzÞ decays along the axis of propagation, while the second one

F2ðzÞ grows in the same direction. The overall field E(z), which is a proper superposition of

F1ðzÞ and F2ðzÞ, also decays along the axis of propagation.

Point B is located within the second allowed band of the crystal, where, in particular,

cosðuÞ ¼ f ð1:680p; 0:5Þ ffi 0:646. The Floquet multipliers are complex valued numbers,

q1;2 ffi 0:646 � 0:763 i. Both the Floquet–Bloch solutions, which are complex conjugates

of each other, as well as the total field are oscillating functions. The results are shown in

Fig. 5.

Point C is located on the bandedge between the second allowed band and the second

bandgap of the crystal, where cosðuÞ ¼ f ð1:831p; 0:5Þ ¼ 1. The Floquet multipliers

coincide with each other, q2 ¼ q1 � q ¼ 1, and so do the Floquet–Bloch solutions,

F2ðzÞ ¼ F1ðzÞ � FðzÞ, which become periodic functions of period d. The hybrid Floquet

mode G(z) is then constructed as a second linear independent solution of Hill’s equation

Fig. 6 The moduli (upper panel) and the real and imaginary parts (lower panel) of the Floquet–Bloch
periodic solution F(z) and the hybrid Floquet mode G(z) (grey lines), and the overall field E(z) (black lines)
at the point C, located at the bandedge between the second allowed band and the second bandgap
of a sawtooth photonic crystal with n1 ¼ 1:5; n2 ¼ 4:5; d ¼ 1 lm;N ¼ 4. Note that R½FðzÞ� ¼
FðzÞ;R½GðzÞ� ¼ GðzÞ;I½FðzÞ� ¼ I½GðzÞ� ¼ 0. The overall field E(z) is given by Eq. (18) and is shown
here for the case nin ¼ nex ¼ n1

112 Page 8 of 9 S. Caffrey et al.

123



(2). It grows within the crystal while the overall field E(z), which is a proper superposition

of F(z) and G(z), decays within the crystal. The results are shown in Fig. 6.

4 Conclusions

We found that the band structure of a 1D sawtooth photonic crystal in the case of normal

light propagation is defined by two parameters only: the Fresnel reflection coefficient r21

between the highest and the lowest refractive indices inside the crystal, and a period-

average dimensionless wavenumber knavd of the light inside the crystal. To a good

approximation the bandgaps have the same width, which is useful for applications where

significant reflection is required in several frequency ranges. A typical behavior of the

Floquet–Bloch solutions was illustrated for each characteristic region of the band structure,

including the bandgaps, allowed bands, and bandedges. The absence of vanishing gaps

(incipient bands) hinted in Mogilner and Loly (1992) was confirmed. This paper extends

our understanding of light propagation through a sawtooth photonic crystal and adds

further insight into the theory of periodic potentials in general.
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