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Abstract The paper investigates the locus of non-simple principally polarised abelian g-
folds. We show that the irreducible components of this locus are IsgD , defined as the locus
of principally polarised g-folds having an abelian subvariety with restricted polarisation of
type D = (d1, . . . , dk), where k ≤ g

2 . The main theorem produces Humbert-like equations
for irreducible components of IsgD for any g and D. Moreover, there are theorems which
characterise the Jacobians of curves that are étale double covers or double covers branched
in two or four points.

Keywords Non-simple abelian varieties · Equations in the Siegel space · Humbert locus ·
Prym–Tyurin varieties
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Introduction

A common approach to understand the geometry of the moduli space of principally polarised
abelian g-folds, denoted Ag , is to use ideas coming from the geometry of curves. That is
possible because of the Torelli theorem,which says that the Jacobian completely characterises
the curve. Because of that, many geometric constructions from the theory of curves give rise
to interesting constructions in the theory of Jacobians. One remarkable construction is the
Prym construction, which gives a subvariety of a Jacobian for any finite cover of curves.More
precisely, every cover of curves f : C −→ C ′ induces a pullback map f ∗ : JC ′ −→ JC .
Therefore JC is a non-simple abelian variety, as it contains im f ∗ and the complementary
abelian subvariety, called the Prym variety of the cover.
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1532 P. Borówka

The motivation behind the results of this paper is to understand the locus of non-simple
abelian varieties itself. One can ask:

(�) What does the locus of non-simple principally polarised abelian g-folds look like?

For abelian surfaces, a non-simple abelian surface contains an elliptic curve, and Humbert
[9] proved that the locus of non-simple principally polarised abelian surfaces is the union
of countably many irreducible surfaces called Humbert surfaces, in the moduli space. The
Humbert surfaces are indexed by the degree of the polarisation restricted to an elliptic curve.

In Sect. 2, we propose a definition of the generalised Humbert locus, denoted by IsgD ,
which is the locus of principally polarised abelian g-folds having an abelian subvariety with
restricted polarisation of type D = (d1, . . . , dk), where k ≤ g

2 . The definition was stated
by Debarre [6, p. 259], denoted by A δ

g′,g−g′ . Then he proves irreducibility of IsgD , using
irreducibility of some moduli space. The main result of Sect. 2 is Proposition 8 that also
states that IsgD is irreducible. Both ideas of proofs are similar, but the proof presented in this
paper is explicit.

Using the fact that every non-simple abelian g-fold belongs to some IsgD , we get that the
only discrete invariants of the locus of non-simple principally polarised abelian varieties are
the dimensions of subvarieties and the type of the restricted polarisation on the smaller one.
Moreover, all possibilities of k ≤ g

2 and D = (d1, . . . , dk) can occur.
Note that Guerra [8] considered moduli spaces of embeddings of a pair of abelian varieties

of types D, D′ in an abelian variety of type E . He proves some general results but could
not verify whether the moduli spaces are actually non-empty. Our result implies that if E is
a principal polarisation, for the moduli space to be non-empty, the necessary and sufficient
condition is that D, D′ are complementary polarisation types, see Remark 4. In particular,
we answer one of the questions posted in [8]

Recall that the Siegel space hg = {Z = [zi j ] ∈ M(g,C) : Z = t Z , Im Z > 0}
is the moduli space of principally polarised abelian varieties with symplectic basis, and
Ag = hg/Sp2g(Z). The main result of the paper is contained in Sect. 3 and provides an
explicit answer to Question (�):

The locus of non-simple principally polarised abelian g-folds is the union of countably
many components given by images under the canonical projection π : hg −→ Ag of sets of
period matrices

{ZA = [zi j ] ∈ hg :zi j = di z(g+1−i) j , i = 1, . . . , k, j = 1, . . . , k

zi j = 0, i = k + 1, . . . , g − k, j = 1, . . . , k},

where k ≤ g
2 and D = (d1, . . . , dk) is a possible polarisation type.

Moreover, using results from Sect. 3, one can easily find many other sets of equations that
give the same outcome.

The next step of the investigation is to understand the locus of Jacobians that are non-
simple abelian varieties. In full generality, due to the Schottky problem, this task is hard.
However, in some specific situations, we have a complete answer. When the genus of the
curve is 2, the answer can be easily extracted from the work of Humbert [9]: the Jacobian of a
genus 2 curveC is non-simple and contains an elliptic curve E with the restricted polarisation
of type n if and only if the curve C is an n : 1 cover of E .

In genus 3, the answer is well known and completely analogous. Proposition 4 states that
the Jacobian of a genus 3 curve C is non-simple and contains an elliptic curve E with the
restricted polarisation of type n if and only if the curve C is an n : 1 cover of E . However,
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Non-simple principally polarised abelian varieties 1533

if we restrict our attention to hyperelliptic Jacobians that belong to Is32, then we find a nice
characterisation of étale double covers of genus 2 curves: see Proposition 5 and Corollary 1.

Proposition 5 is generalised in Theorem 7 which, roughly speaking, says that if the Jaco-
bian of a curve contains an abelian subvariety of half the dimension and the type of the
restricted polarisation is twice the principal polarisation, then there is a double cover of
curves that yields the Jacobian and the subvariety.

1 Preliminaries

In this section, we review the well-known facts and set up notation. For more details, see [3].
By an abelian variety, we mean a projective complex torus. An abelian variety A is

isomorphic to C
g/ΛA, where ΛA is a lattice of maximal rank. For a g × 2g matrix [Z D],

the lattice spanned by the column vectors will be denoted by 〈Z D〉. We can always write
ΛA in the form

ΛA = 〈Z D〉 ,

in such a way that Z , called a period matrix of A, belongs to the Siegel space

hg = {Z = [zi j ] ∈ M(g,C) : Z = t Z , Im Z > 0}
and D = diag(d1, . . . , dg) is a diagonal matrix with positive integer values di such that
di |di+1, i = 1, . . . , g − 1. Moreover, on such a variety, we always choose a polarisation of
type D, usually denoted by H .

There are many equivalent definitions of a polarisation. Most of the time, by a polarisation
H we mean a Hermitian form on C

g given by a matrix (Im Z)−1 or equivalently an isogeny
φH : A −→ Âwith analytic representation givenby (Im Z)−1. The exponent ofφH is denoted
by e(H) and called the exponent of the polarisation. By K (H) we denote the kernel of φH .
Using a decomposition for H , one proves that K (H) is isomorphic to (Zd1 × · · · × Zdg )

2.
On K (H) there exists a multiplicative alternating non-degenerate form

eH (w1, w2) = exp(−2π i(Im H)(v1, v2)) ∈ C
∗,

where v1, v2 are any preimages of w1, w2 in C
g .

We denote byAg = hg/Sp2g(Z) themoduli space of principally polarised abelian g-folds
and byAD the moduli space of D-polarised abelian varieties. InsideAg , we denote the locus
of Jacobians by J and the locus of hyperelliptic Jacobians by JH.

1.1 Complementary abelian subvarieties

In Sect. 2, we will try to understand the locus of non-simple abelian varieties. The idea is to
improve the statement of uniqueness in Poincaré’s complete reducibility theorem. Therefore
we need to recall the following definitions and Poincaré’s reducibility theorems. For details
we refer to [3].

Definition 1 [3, p. 132] Let ι : M −→ A be an abelian subvariety of a principally polarised
abelian variety (A, H) and ι̂ be the dual map. Then ι∗H is a polarisation on M , denoted
also by H |M . Define the exponent of M by e(M) = e(ι∗H). Moreover, we define the norm
endomorphism of A associated to M by

NmM = ι(e(M)φ−1
ι∗H )ι̂φH .
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1534 P. Borówka

εM = 1
e(M)

NmM ∈ EndQ(A) is called the associated symmetric idempotent.
Conversely for any symmetric idempotent ε ∈ EndQ(A), there exists n ∈ N such that

nε ∈ End(A), and we can define the abelian subvariety Aε = im(nε).

The next theorem is the main tool in proving Poincaré’s reducibility theorems.

Theorem 1 [3, Thm 5.3.2] The assignments M 	→ εM and ε 	→ Aε are inverse to each other
and give a bijection between the sets of abelian subvarieties of A and symmetric idempotents
in EndQ(A)

The main advantage of translating the existence of subvarieties into symmetric idempo-
tents is that the latter have an obvious canonical involution ε 	→ 1 − ε. This leads to the
following definition.

Definition 2 [3, p. 125] Let A be a polarised abelian variety. Then the polarisation induces
a canonical involution on the set of abelian subvarieties of A:

M 	→ N = A1−εM

We call N the complementary abelian subvariety of M in A, and (M, N ) a pair of comple-
mentary abelian subvarieties.

In this paper, we often consider products of principally polarised abelian varieties, and
therefore, we introduce the following notation.

Definition 3 Suppose k and g are integers with 0 < k ≤ g
2 , and D = (d1, . . . , dk) is a

polarisation type. The complementary polarisation type, denoted D̃, is the (g − k)-tuple
(1, . . . , 1, d1, . . . , dk).

If (M, HM ) and (N , HN ) are polarised abelian varieties of types D and D̃, then, even if it is
not written explicitly, we will treat the product M × N as the (D, D̃)-polarised variety with
the canonical product polarisation. Strictly speaking, (D, D̃) is not a polarisation type, so
one needs to permute the coordinates.

The following proposition shows that indeed the complementary abelian subvariety in the
principally polarised abelian variety has a complementary polarisation type

Proposition 1 Let (A, H) be a principally polarised abelian variety. The following condi-
tions are equivalent:

1. there exists M ⊂ A such that H |M is of type D.
2. there exists N ⊂ A such that H |N is of type D̃.
3. there exists a pair (M, N ) of complementary abelian subvarieties in A of types D and

D̃, respectively.
4. there exists a polarised isogeny ρ : M × N −→ A with

ker ρ ∩ (M × {0}) = ker ρ ∩ ({0} × N ) = {0}.
Proof The equivalence of conditions (1), (2), (3) follows from the definition and [3, Cor
12.1.5].

(3) ⇒ (4) is a consequence of [3, Cor 5.3.6]. The condition on the kernel states that
ρ|M×{0} and ρ|{0}×N are inclusions.

(4) ⇒ (3) Let us denote the inclusions by ιM = ρ|M×{0} and ιN = ρ|{0}×N . Then
ρ(m, n) = ιM (m) + ιN (n) and so

εM + εN = ιMφ−1
ι∗M H ˆιMφH + ιNφ−1

ι∗N H ˆιNφH = ρφ−1
ρ∗H ρ̂φH = φ−1

H φH = 1

�
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Non-simple principally polarised abelian varieties 1535

Theorems 2 and 3 are Poincaré’s reducibility and complete reducibility theorems.

Theorem 2 [3, Thm 5.3.5] Let (A, H) be a polarised abelian variety and (M, N ) a pair of
complementary abelian subvarieties of A. Then the map

(NmM ,NmN ) : A −→ M × N

is an isogeny.

Theorem 3 [3, Thm 5.3.7] For an abelian variety A, there is an isogeny

A −→ An1
1 × · · · × Anr

r

with simple abelian varieties Ai not isogenous to each other. Moreover, the abelian varieties
Ai and integers ni are uniquely determined up to isogenies and permutations.

1.2 Symplectic forms on finite abelian groups

Later, we shall be interested in isotropic subspaces of K (H) and their behaviour under the
action of the symplectic group. We will use notation from [3, Sections 6.6 and 8.3.1].

Definition 4 A pair (K (D), eD) is called a finite symplectic Z module if K (D) = (Zd1 ×
· · · × Zdk )

2 with a multiplicative alternating form defined on the standard set of generators
fi as follows:

eD( fi , f j ) =

⎧
⎪⎨

⎪⎩

e
2π i
di if i+g=j

e
−2π i
di if j+g=i

1 otherwise

.

Remark 1 For any i = {1, . . . , k}, when di = 1 we can skip the factor Zdi . In particular,

(K (D), eD) is equal to (K (D̃), eD̃) for complementary polarisation types. However, we will
use both notations to distinguish abelian subvarieties.

Example 1 [3, Lem 3.1.4] Let H be a polarisation of type (d1, . . . , dk), on an abelian variety
A and consider a decomposition V1 ⊕ V2 for H . Then

K (H) = K (H)1 ⊕ K (H)2, with K (H)1 ∼= K (H)2 ∼= Zd1 × · · · × Zdk ,

Moreover, K (H) has symplectic form eH . The choice of an isomorphism K (H) ∼= K (D) is
sometimes called a canonical level structure or level D-structure on A. Note that a choice
of a period matrix induces a choice of a canonical level structure, see [3, Sec 8.3.1].

Definition 5 Let (K (D), eD) and (K (D̃), eD̃) be symplectic Z-modules. Then a Z-linear
map f : K (D) −→ K (D̃) is called an antisymplectic map if for all x, y ∈ K (D), we have

eD(x, y) = −eD̃( f (x), f (y)). (1)

Proposition 2 Every antisymplectic map is a bijection and the inverse map is also antisym-
plectic. Moreover, the space of antisymplectic maps is modelled on Sp(K (D),Z), i.e. for
every antisymplectic f, g : K (D) −→ K (D̃), we have that g−1 ◦ f ∈ Sp(K (D),Z) and for
all s ∈ Sp(K (D),Z), the maps f ◦ s are antisymplectic. By symmetry, it is also modelled on
Sp(K (D̃),Z).
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1536 P. Borówka

Proof By Eq. (1), if f (x) = 0, then eD(x, y) = 0 for every y, so x = 0, which means f is
injective. Since groups have the same order, f is bijective. The remaining statements follow
from:

eD(g−1 ◦ f (x), g−1 ◦ f (y)) = −eD( f (x), f (y)) = eD(x, y)

eD( f ◦ s(x), f ◦ s(y)) = −eD(s(x), s(y)) = −eD(x, y)

�
Proposition 3 Let (K (D), eD) and (K (D̃), eD̃) be symplectic Z-modules. Consider

(K (D) ⊕ K (D̃), eD + eD̃). Then the set of graphs of antisymplectic maps is the set of
maximal isotropic subspaces of K (D) ⊕ K (D̃) intersecting K (D) and K (D̃) only in {0}.

In particular, all maximal isotropic subspaces of K (D) ⊕ K (D̃) intersecting K (D) and
K (D̃) only in {0} are equivalent under the actions of symplectic groups on K (D) and on
K (D̃).

Proof It is obvious that the graph of an antisymplectic map is an isotropic subspace with
the desired properties. For the converse, let Z be a maximal isotropic subspace. Then the
projections πK (D) : Z −→ K (D) and πK (D̃)

: Z −→ K (D̃) are bijections. Moreover

πK (D̃)
◦ πK (D)−1 is antisymplectic and Z is the graph of πK (D̃)

◦ πK (D)−1.
The second part of the proposition is a direct application of Proposition 2. �

2 Generalised Humbert locus

2.1 Background: Humbert surfaces

We begin the study of moduli of non-simple abelian varieties with the surface case, by
recalling the Humbert surfaces of square discriminant.

Theorem 4 Let p be a positive integer. Let (A, H) be a principally polarised abelian surface.
The following conditions are equivalent:

1. there exists an elliptic curve E ⊂ A such that H |E is of type p;
2. there exists an exact sequence

0 −→ E −→ A −→ F −→ 0,

and therefore its dual

0 −→ F −→ A −→ E −→ 0,

such that the induced map E × F −→ A is an isogeny of degree p2;
3. there exists a pair (E, F) of complementary elliptic curves in A of type p;
4. End(A) contains a primitive symmetric endomorphism f with discriminant p2;
5. End(A) contains a symmetric endomorphism f with analytic and rational representations

given by

[
0 0

−1 p

]

,

⎡

⎢
⎢
⎣

0 −1 0 0
0 p 0 0
0 0 0 0
0 0 −1 p

⎤

⎥
⎥
⎦ ;
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Non-simple principally polarised abelian varieties 1537

6. (A, H) is isomorphic to an abelian surface defined by a period matrix
[
pt2 t2 1 0
t2 t3 0 1

]

,

with elliptic curves defined by period matrices [t2 1] and [pt3 − t2 1] embedded as
s 	→ (ps, s) and s 	→ (0, s).

Proof We have already proved the equivalence of (1), (2) and (3) in Proposition 1 in a more
general setting. The equivalence of (4), (5) and (6) is a direct application of [5, Section 4].
In particular, when we set a = −1, b = p, c = d = e = 0, then equivalence (5) and (6)
follows from Corollary 4.2 and equivalence (4) and (6) follows from Corollary 4.6 from [5].

Next, we will show that (3) �⇒ (4) and (6) �⇒ (1).
For the first implication, take f to be the norm endomorphism associated with either

elliptic curve. By [3, Thm 5.3.4], f is primitive, symmetric and has characteristic polynomial
f 2 − p f . So its discriminant equals p2.
For the second implication, to simplify notation, we write t ′ = Im(t) for any t ∈ C. Then

det(Im Z) = t ′2(pt ′3 − t ′2),

H = (Im Z)−1 = det(Im Z)−1
[

t ′3 −t ′2−t ′2 pt ′2

]

.

Denote by E the elliptic curve defined by the period matrix [t2 1] embedded by ιE : s 	→
(ps, s). Its analytic representation is given by the matrix

[
p
1

]

. Then φι∗E H = ι̂E ◦ φH ◦ ιE

is defined by

[
p 1

]
det(Im Z)−1

[
t ′3 −t ′2−t ′2 pt ′2

] [
p
1

]

= [
p 1

]
[

pt3−t ′2
t ′2(pt3−t ′2)

0

]

= p
[
(t ′2)−1

]
,

so H |E is of type p. �
Condition (6) of Theorem4 implies that inA2, the locus of all principally polarised abelian

surfaces satisfying the above conditions is the image of the surface given by the equation
t1 = pt2 in h2, and therefore, it is an irreducible surface in A2.

Definition 6 The locus in A2 of all principally polarised abelian surfaces that satisfy the
conditions of Theorem 4 is called the Humbert surface of discriminant p2.

Humbert showed more in [9]. He found the equations defining the preimage in h2
of all Humbert surfaces. To be precise, any 5-tuple of integers without common divisor
(a, b, c, d, e)with the same discriminantΔ = b2−4ac−4de gives us the so-called singular
relation

at1 + bt2 + ct3 + d(t22 − t1t3) + e = 0.

In other words, the period matrix Z =
[
t1 t2
t2 t3

]

∈ h2 is a solution to a singular relation with

Δ = p2 if and only if the abelian surface AZ = C
2/(ZZ2 + Z

2) contains an elliptic curve
with restricted polarisation of type p.

If we recall that A2 = h2/Sp(4,Z), then it means that all matrices which satisfy the
singular equation for some Δ = p2 form a symplectic orbit. Then condition 6 of Theorem 4
says that there always exists a normalised period matrix, i.e. such that

a = −1, b = p, c = d = e = 0.
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1538 P. Borówka

2.2 Generalised Humbert locus

We would like to generalise the notion of Humbert surface to higher dimensions. There are
a few immediate problems that arise. Firstly, Humbert surfaces are divisors in A2 globally
defined by one equation in h2, whereas in higher dimensions that is not the case. Secondly, all
elliptic curves are essentially canonically principally polarised, whereas in higher dimensions
polarisations are much richer.

If we consider an abelian subvariety of an abelian variety, then the two obvious discrete
invariants are the dimension of the subvariety and the type of the restricted polarisation. So
we define

Definition 7 The generalised Humbert locus of type D = (d1, . . . , dk) in dimension g,
denoted by IsgD , is the locus in Ag of principally polarised g-folds X such that there exists a
k-dimensional subvariety Z of X such that the restriction of the polarisation from X to Z is
of type D. If d1 = dk , then we say it is of principal type.

Remark 2 The same definition was proposed by Debarre [6, p. 259], denoted by A δ
g′,g−g′ .

Firstly, some obvious remarks and connections with previously known notions:

1. Every non-simple principally polarised abelian variety belongs to a generalised Humbert
locus for some g and D.

2. The name comes from the fact that for surfaces, it gives back Humbert surfaces of
discriminant D2. The word Is is an abbreviation of (polarised) isogenous to a product.

3. Note that principal type does not mean dk = 1. If dk = 1, then the isogeny from Propo-
sition 1 is actually an isomorphism and we get only the locus of products of principally
polarised abelian varieties. If we restrict the generalised Humbert locus of principal type
to Jacobians of smooth curves, then we get Jacobians containing Prym–Tyurin varieties.

The first example of generalised Humbert locus arises in dimension three. The following
proposition generalises Barth [2, Proposition 1.8] result about curves on (1, 2) polarised
surfaces.

Proposition 4 A variety A ∈ Is3n is either a product of an elliptic curve with an abelian
surface or the Jacobian of a smooth genus 3 curve which is an n : 1 cover of an elliptic curve
branched in 4 points (counted with multiplicities), and all such Jacobians are contained in
Is3n. In other words, the only non-simple Jacobians are Jacobians of covers of elliptic curves.

Proof By [3, Cor 11.8.2], every principally polarised abelian threefold is either a product or
a Jacobian so we restrict our attention to Jacobians. If JC ∈ Is3n , then it contains an elliptic
curve, say E . Taking the Abel–Jacobi map composed with the dual of the inclusion, we get a
mapC −→ E . As H |E is of type n, it is an n : 1 cover. Using theHurwitz formula, we get that
it has to be branched in 4 points. Conversely, if we have an n : 1 cover π : C −→ E , then we
can have the norm map Nmπ : JC −→ J E = E , given by Nmπ (P − Q) = π(P) − π(Q).
Moreover, Nmπ (π−1(P ′ − Q′)) = n(P ′ − Q′) is a multiplication by n, so the restricted
polarisation is of type n. �

Before stating Proposition 5, Theorem 7 and Corollary 2, I would like to note that the
results are based on well-known ideas of Prym construction (see [3,10]) and the generalised
Torelli Theorem (see [13]), but I was not able to find any exact references in the context of
non-simple abelian varieties.

The first result is a characterisation of a 3-dimensional family of Jacobians of étale double
covers of genus 2 curves.
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Proposition 5 The locus of Jacobians of étale double covers of genus 2 curves is Is32 ∩JH.

Proof Let f : C −→ C ′ be an étale double cover. It is defined by a 2-torsion point in JC ′,
say η. Then ker( f ∗) = {0, η} (see [1, Ex. B. 14]). Therefore f ∗ JC ′ = JC ′/〈η〉 is a (1, 2)-
polarised abelian surface, which is an abelian subvariety of JC . Hence JC ∈ Is32. To finish
the implication, let us note that C ′, being of genus 2, has to be hyperelliptic and any étale
double cover of a genus 2 curve is hyperelliptic. This implication can be easily deduced from
the proof of part (a) of [10, Thm 7.1] or from [11].

As for the other implication, let JC ∈ Is32 ∩JH. Denote by E an elliptic curve in JC
with restricted polarisation of type (2). Denote by ιE the involution of C which defines
the double cover and by iE its extension to JC . By construction, im(1 − iE ) = E , and
therefore, εE = 1−iE

2 . On the other hand, if we denote by ι the hyperelliptic involution
on C , then its extension to JC is (−1). This is because for a branch point Q, we have
(P − Q) + (ι(P) − Q) = 0, being the principal divisor of a pullback of a meromorphic
function on P

1. Now, ι ◦ ιE is an automorphism on C and its extension is −iE . Denoting by
Z = im(1− (−iE )) and εZ = 1+iE

2 , we immediately get that εZ + εE = 1 and so (E, Z) is
a pair of complementary abelian subvarieties of JC .

Denote by ιZ = ι◦ιE and letC ′ = C/ιZ be the quotient curvewith the cover f : C −→ C ′
given by P 	→ {P, ιZ (P)}. Then f ∗({P, ιZ (P)}) = P + iE (P), so Z = im( f ∗).

It is obvious that dim JC ′ = dim Z = 2, so C ′ is of genus 2 and by the Hurwitz Formula
f has to be an étale double cover. �
The following corollary is an immediate consequence of Proposition 5. It has also been

proved in [12] using Galois theory.

Corollary 1 Proposition 5 says that a genus 3 curve is an étale double cover of a genus 2
curve if and only if it is both hyperelliptic and a double cover of an elliptic curve branched
in 4 points.

Now, we would like to recall the tools which we use in the proof of Theorem 7.

Theorem 5 (Generalised Torelli theorem [13]) Let C be a smooth curve. Then

Aut(C) =
{
Aut(JC), if C is hyperelliptic

Aut(JC)/(−1), if C is not hyperelliptic
.

Theorem 6 [3, Prop 11.4.3 and Lem 12.3.1] Let f : C −→ C ′ be a double cover of smooth
curves.

If f is étale, then it is defined by a 2-torsion point on JC ′, say η, and f ∗ factorises through
JC ′/η which is embedded in JC. In this case, the restricted polarisation from JC to JC ′/η
is of type (1, 2, . . . , 2).

If f is not étale, then f ∗ is injective and the restricted polarisation from JC to JC ′ is
twice the principal polarisation on JC ′.

Denote byDg
b the locus of curves of genus g which are double covers ramified in b points

and by JDg
b the locus of their Jacobians. Let HDg

b be the locus of hyperelliptic curves
of genus g which are double covers ramified in b points and JHDg

b their Jacobians. The
following theorem is the generalisation of Proposition 5.

Theorem 7 Let 2 = (2, . . . , 2) be a g-tuple of 2’s. Then for odd dimension we have:

Is2g+1
2 ∩J = JD2g+1

0 ∪ JD2g+1
4
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and restricting to the hyperelliptic curves, we have:

Is2g+1
2 ∩JH = JHD2g+1

0 = JHD2g+1
4 .

For even dimension, we have:

Is2g2 ∩J = JD2g
2 , and Is2g2 ∩JH = JHD2g

2

Proof The idea of the proof is that the inclusion ⊃ comes from the Prym construction and
⊂ comes from the generalised Torelli Theorem.

We will prove the odd dimension case in detail. Let C ∈ D2g+1
0 ∪ D2g+1

4 . Let f be the

quotient map and C ′ be the quotient curve. If C ∈ D2g+1
4 , then C ′ is of genus g and f ∗ is

injective, so JC ′ is embedded in JC with the restricted polarisation of type 2, whereas for
C ∈ D2g+1

0 , we have that f is étale defined by the two torsion points, say η, andC ′ is of genus
g + 1, so JC ′/η is embedded in JC with the restricted polarisation of type (1, 2, . . . , 2).
The complementary polarisation type is 2, so in both cases JC ∈ Is2g+1

2 .

Now, let JC ∈ Is2g+1
2 . Let M be a subvariety of JC with the restricted polarisation of

type 2 and let N be the complementary subvariety to M . Then Nm2
M = 2NmM and therefore

iM = (1 − NmM ) is an involution of JC , because

(1 − NmM )2 = 1 − 2NmM +Nm2
M = 1.

As NmN = 2 − NmM , we get that iN := (1 − NmN ) = −iM is another involution.
By Theorem 5, one of them comes from the involution on C . Assume that iM is the

extension of the involution ιM ∈ Aut(C). Let C ′ = C/ιM and let f : C −→ C ′ be the
quotient map. Then for c ∈ C we have

f ∗ f (c) = f ∗([c, ιM (c)]) = c + ιM (c) = NmN (c).

Thus im f ∗ = N and as f ∗ : JC ′ −→ JC is finite onto its image, it means that the genus
of C ′ equals

g(C ′) = dim(JC ′) = dim(N ) = g + 1.

From the Hurwitz formula, we get that 2(2g + 1) − 2 = 2(2(g + 1) − 2) + b, so b = 0 and
therefore f is an étale double cover, so JC ∈ JD2g+1

0 . Analogously, if iN is the extension

of the involution on C , then f is branched in 4 points, so JC ∈ JD2g+1
4 .

IfC is a hyperelliptic curve, then both involutions iM and iN come from involutions onC ,
so Is2g+1

2 ∩JH ⊂ JHD2g+1
0 and Is2g+1

2 ∩JH ⊂ JHD2g+1
4 which gives the second part of

the theorem.
In the even dimensional case, both M and N are of dimension g and with the restricted

polarisation of type 2, and the Hurwitz formula gives b = 2. �
In particular if C is not hyperelliptic and JC ∈ Is2g2 , then for a pair of complementary

subvarieties (M, N ) of type 2, exactly one of them is the Jacobian JC ′ of genus g curve in
such a way that C is a double cover of C ′ and the other is the Prym variety of the double
cover. If C is hyperelliptic, then both subvarieties are Jacobians and Pryms for each other.

The idea of this proof leads to an interesting observation.

Corollary 2 Let D = (1, . . . , 2) be a g-tuple with a positive number of 1’s and 2’s. Then

1. Is2gD ∩J = ∅,
2. Is2g+1

D ∩J = ∅.
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Proof If either of those was non-empty, we would find a pair of complementary subvarieties
(M, N ) and an involution onC which induces one of the involutions (1−NmM )or (1−NmN ).
Taking the quotient curve C ′, with quotient map f , we would find that M = f ∗(JC ′) or
N = f ∗(JC ′).

In the first case, both subvarieties are of dimension g, so the Hurwitz formula tells us that
f has to be a double cover ramified in two points, whichmeans that the restricted polarisation
on f ∗ JC ′ is twice a principal polarisation, a contradiction.

In the second case, the Hurwitz formula states that 2(2g + 1) − 2 = 2(2g(C ′) − 2) + b,
where b is the number of ramification points, and gives two possibilities. If g(C ′) = g + 1,
then b = 0 and we have an étale double cover, and from the Prym construction [3, Thm
12.3.3], we get a contradiction. If g(C ′) = g, then b = 4 and again, we get a contradiction
because the restricted polarisation on N has to be of type 2 [3, Prop 11.4.3]. �

There is one more result related to Is32.

Proposition 6 There is a 1 to 1 correspondence between the set of smooth genus 3 hyper-
elliptic curves (up to translation) on a general abelian surface A and the set of degree 2
polarised isogenies A −→ B, where B is the Jacobian of a smooth genus 2 curve. In par-
ticular, there are exactly three hyperelliptic curves in the linear system of a (1, 2) polarising
line bundle on a (very) general abelian surface.

Proof Let (JC ′,Θ) be the Jacobian of a smooth genus 2 curve. Let ρ : A −→ JC ′ be a
degree 2 isogeny. Then ρ−1(C ′) is a genus 3 hyperelliptic curve on A, which is an étale
double cover of C ′.

Conversely, let C be a hyperelliptic genus 3 curve on A. Then O(C) is a (1, 2) polar-
ising line bundle. From the universal property of Jacobians, there exists a surjective map
f : JC −→ A. By [4, Prop 4.3], f̂ is an embedding of Â with restricted polarisation of type
(1, 2). Therefore JC ∈ Is32. As C is also hyperelliptic, Proposition 5 tells us that there exists
an étale double cover C −→ C ′. It is defined by a 2-torsion point, say η, and there is an
embedding of JC ′/〈η〉 to JC with the restricted polarisation of type (1, 2). As A is general,
we have Â = JC ′/〈η〉, and by dualising the quotient map, we obtain a degree 2 polarised
isogeny A −→ JC ′.

The last part follows from the fact that there are exactly three nonzero 2-torsion points in
the kernel K (O(C)). A (very) general surface means one for which the resulting principally
polarised abelian surface is the Jacobian of a smooth curve. �
2.3 Irreducibility

The aim of this section is to show that IsgD is irreducible. This will be an indication that the
choice of definition is a good one.

In the proof of this fact, we will use condition (4) of Proposition 1, so we define

Definition 8 Let M, N , A be polarised abelian varieties. An allowed isogeny is a polarised
isogeny ρ : M × N −→ A, such that its kernel has intersection {0, 0} with M × {0} and
{0} × N .

Definition 9 Let (M, HM ), (N , HN ) be polarised abelian varieties of type D and D̃. A
subgroup K ⊂ M × N is called an allowed isotropic subgroup if it is a maximal isotropic
subgroup of K (HM �HN ), with respect to eHM�HN , such that K ∩K (HM ) = K ∩K (HN ) =
{0}. Note that every maximal isotropic subgroup of K (HM � HN ) has order (d1 · · · · · dk)2.
Let us recall:
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Proposition 7 [3, Cor 6.3.5] For an isogeny ρ : Y −→ X and L ∈ Pic(Y ), the following
statements are equivalent:

1. L = ρ∗(L ′) for some L ′ ∈ Pic(X).
2. ker(ρ) is an isotropic subgroup of K (L) with respect to eL .

This leads to an obvious corollary.

Corollary 3 Let A be a principally polarised abelian variety. Let M, N be polarised abelian
varieties of type D and D̃. Then

1. If ρ : M×N −→ A is an allowed isogeny, then ker(ρ) is an allowed subgroup of M×N.
2. If K is an allowed subgroup of M × N, then (M × N )/K is a principally polarised

abelian variety and the quotient map ρ : M×N −→ (M×N )/K is an allowed isogeny.

Let us state the main result of this section.

Proposition 8 Let k, g be integers such that 0 < k ≤ g
2 , and D = (d1, . . . , dk) be a

polarisation type. Then IsgD is an irreducible subvariety ofAg of dimension
(
k+1
2

)
+

(
g−k+1
2

)

and codimension k(g − k).

Proof Proposition 1 tells us that A belongs to IsgD if and only if there exists an allowed isogeny
to A. Therefore, the idea of the proof is to show that there exists one map from hk × hg−k

which covers all possible allowed isogenies, and so, IsgD is the image of an irreducible variety.
The sketch of the proof is as follows. Take polarised abelian varieties (M, HM ) and

(N , HN ) of types D and D̃, respectively. Take their product with product polarisation
(M × N , HM � HN ). By [3, Lem 3.1.4], we have K (HM ) ∼= K (HN ), and K (HM � HN ),
of order

∏
d4i , is a symplectic Z-module with the non-degenerate symplectic form eHM�HN .

Therefore, there exists an allowed isotropic subgroup G ⊂ K (HM � HN ), and by Proposi-
tion 3, all such are equivalent under the action of the symplectic group. Hence there exists
an allowed isogeny ρ : M × N −→ (M × N )/G and so IsgD is non-empty. Moreover, the
action of the symplectic group on K (HM � HN ) is induced by the symplectic action on hg ,
which gives us irreducibility.

To make this more precise, we need to recall that a period matrix of an abelian variety is
a choice of symplectic basis of a lattice in its universal cover.

Let l ≤ k be the number of integers bigger than 1 in D. By the elementary divisor
theorem, let BM = {λM

1 , . . . , λM
l , μM

1 , . . . , μM
l } and BN = {λN

1 , . . . , λN
l , μN

1 , . . . , μN
l } be

symplectic bases of K (HM ) and K (HN ). Then B = {BM , BN } is a symplectic basis of
K (HM � HN ). Let KB be given by the image (that is, the group generated by the columns)
of the matrix

K =

⎡

⎢
⎢
⎣

idl 0
0 idl
idl 0
0 − idl

⎤

⎥
⎥
⎦ .

Then KB is an allowed isotropic subgroup.Moreover, if we change bases using the symplectic
action, then im(K ) will always define an allowed isotropic subgroup, and by Proposition 3,
every allowed isotropic subgroup arises in this way.

When we take the universal cover V of M × N , in order to write the period matrix we
need to choose a real symplectic basis of V . The obvious choice is to enlarge the symplectic
basis B to a symplectic basis B. We need to enlarge the matrix K by zero blocks to a matrix
K , such that its image is equal to KB .
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From this discussion, we have found

Λ =
〈
Z(M) 0 diag(D) 0
0 Z(N ) 0 diag(D̃)

〉

, M × N = C
g/Λ,

and a matrix K , such that im(K ) is an allowed isotropic subgroup of M × N .
The data defining K are discrete, so im(K ) will be allowed isotropic for any matrices

Zk ∈ hk, Zg−k ∈ hg−k . Moreover, the symplectic action on hk × hg−k gives all possible
period matrices; hence, all possible symplectic bases and therefore all possible allowed
isotropic subgroups.

Thus we have proved that there exists a global map

Ψ : hk × hg−k � Zk × Zg−k 	→ (AZk × AZg−k )/ im(K ) ∈ Ag,

which covers all possible allowed isogenies, that is, for any allowed isogeny M × N −→ A,
there exist period matrices Z(M) and Z(N ) such that Ψ (Z(M) × Z(N )) = A.

From the construction, it is obvious that IsgD is the image of the above map, and as the
domain is irreducible, it follows that IsgD is an irreducible variety. �

Remark 3 Proposition 8 is stated as a fact in [6, (9.2)] and proved using irreducibility of
some moduli space. Both constructions are similar, but the proof presented in this paper is
explicit.

There is a generalisation of Humbert surfaces to the moduli of non-principally polarised
abelian surfaces. However, in that case, the generalised Humbert surface is no longer irre-
ducible. For details, see [7].

One can also generalise further Proposition 8 to non-principally polarised abelian varieties.
Let D be a polarisation type of an abelian g-fold. The idea is to define for any polarisation
types D1 ∈ Z

k , D2 ∈ Z
g−k the locus Isg,DD1,D2

of D-polarised abelian g-foldswhich have a pair

of complementary subvarieties of types D1 and D2. The obvious question is whether Is
g,D
D1,D2

is non-empty. Using Proposition 7, one can translate the question into one about the existence
of isotropic subgroups analogous to the allowed ones. The proof of Proposition 8 can be easily
generalised, but one must have in mind that the number of irreducible components of Isg,DD1,D2
will be equal to the number of orbits of such isotropic subgroups. To sum up, the problem
can be solved if one can deal with the combinatorics related to special isotropic subgroups in
finite symplectic groups. Certainly, this is possible in many cases, such as (1, p)-polarised
surfaces (see [7]).

Remark 4 In [8], L. Guerra defines the moduli space of embeddings of abelian varieties of
types D, D′ into abelian variety of type E given by an equivalence class of a matrix [M],
denoted by Eδ[M], where δ = (D, D′, E). He gives a model of such moduli space, being a
quotient of Siegel spaces by an action of some group, provided themoduli space is non-empty.
If E is a principal polarisation, then there is a natural birational map between Eδ[M] and IsgD
sending a pair of embeddings to the codomain of both. The map is obviously surjective, and
injectivity comes from the fact that on a general non-simple abelian variety there exist exactly
two abelian subvarieties. In particular, IsgD does not depend on a matrix M , and therefore,
we fully answered one of the questions posted in [8, page 21] in case E being principal.

If E is not principal, then the irreducible components of Isg,ED,D′ will correspond to a choice
of different classes of matrices [M].
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3 Equations in the Siegel space

As in the Humbert surface case, we would like to find equations for a locus in hg which maps
to IsgD in Ag . Ideally, we would like to describe the whole preimage of IsgD which would
involve understanding the action of Sp(2g,Z) on hg and finding good symplectic invariants.

We start by proving an obvious, yet important lemma.

Lemma 1 (A, H) = (Cg/Λ, H) is non-simple if and only if there exists a k-dimensional
complex subspace V with g > k > 0, such that Λ ∩ V is symplectic of rank 2k.

Proof If A is non-simple, then there exists a subvariety B of dimension, say k. Taking a
universal cover of A, we get a lattice Λ and a Hermitian form H . The preimage of B is a
vector subspace, say V , and Λ ∩ V is of rank 2k. The restricted polarisation on B is given
by restriction of H , so Λ ∩ V has to be symplectic sublattice.

If V is a complex subspace, then we define B = (V,Λ ∩ V ). By assumption, H |V is a
polarisation, so B is an abelian subvariety and so A is non-simple. �
3.1 Equations of non-simple abelian varieties

The idea of constructing equations is to choose a sublattice that is symplectic of type D =
(d1, . . . , dk) and, by applying equations, force it to lie in a complex subspace. To fix notation,
let ei denote the basis of Cg and fi = ZA(i) the column vectors of some period matrix
ZA. Then t ei Im(ZA)−1 f j = δi, j gives a standard matrix of the symplectic form. Choose
gi = di ei + eg−k+i , i = 1, . . . , k. Obviously gi ’s are primitive, linearly independent and
well defined since k ≤ g

2 . Moreover, {gi , fi , i = 1, . . . , k} generates a symplectic sublattice
of type D. The following equations will force fi ’s to lie in the complex subspace generated
by gi ’s and by Lemma 1 will give the desired outcome. From now on, we start to abuse
notation by writing 0 for the block matrix of the correct dimension.

Theorem 8 Let 0 < k ≤ g
2 and let D = (d1, . . . , dk) be a type of polarisation.

Let Z A = [zi j ] ∈ hg satisfy

zi j = di z(g−k+i) j , i = 1, . . . , k, j = 1, . . . , k

zi j = 0, i = k + 1, . . . , g − k, j = 1, . . . , k

LetΛA = 〈
ZA idg

〉
and A = C

g/ΛA. Then A ∈ IsgD, i.e. there exists an abelian subvariety
given by

ZM =

⎡

⎢
⎢
⎢
⎣

z11 z12 . . . z1k
z12 z22 . . . z2k
...

...
. . .

...

z1k z2k . . . zkk

⎤

⎥
⎥
⎥
⎦

, ΛM =< ZM , D >, M = C
k/ΛM ,

and an embedding

ιM : M −→ A

(x1, . . . , xk) + ΛM 	−→
(

x1, . . . , xk, 0, . . . , 0,
x1
d1

, . . . ,
xk
dk

)

+ ΛA

such that the restricted polarisation is of type D.

123



Non-simple principally polarised abelian varieties 1545

Proof Obviously, ZM ∈ hk because it is a principal minor of ZA. Moreover ιM is a well-
defined embedding because the images of generators of ΛM are given by ιM (di ei ) = di ei +
eg−k+i and ιM (ZM (i)) = ZA(i), and thus, they are primitive vectors in ΛA.

To shorten the notation, we will write ZM (i) for the i-th column vector of the matrix ZM

and z′ for Im(z). By 1
D , we will denote the matrix diag

(
1
d1

, . . . , 1
dk

)
.

It remains to compute the restricted polarisation using analytic representations written in
block matrices. We have

[
idk 0 1

D

]
(Im ZA)−1

⎡

⎣
idk
0
1
D

⎤

⎦ Im ZM

= [
idk 0 1

D

] [
Z ′
A(1) Z ′

A(2) . . . Z ′
A(g)

]−1 [
Z ′
A(1) Z ′

A(2) . . . Z ′
A(k)

]

= [
idk 0 1

D

]

⎡

⎣
idk
0
0

⎤

⎦ = idk,

so the restricted polarisation is of type D. �

Remark 5 Let D̃ = diag(1, . . . , 1, d1, . . . , dk) be a (g − k)-tuple and Z̃M =
[
0 0
0 ZM

]

be

the zero extension of ZM to a (g − k) × (g − k) symmetric matrix. Let

X =

⎡

⎢
⎢
⎢
⎣

zk+1k+1 zk+1k+2 . . . zk+1g

zk+1k+2 zk+2k+2 . . . zk+2g
...

...
. . .

...

zk+1g zk+2g . . . zgg

⎤

⎥
⎥
⎥
⎦

.

Then

ZN = D̃X D̃ − Z̃M

is a symmetric matrix and the complementary abelian subvariety is given by

ΛN =< ZN , D̃ >, N = C
g−k/ΛN ,

and

ιN : N −→ A

(y1, . . . , yg−k) + ΛN 	−→
(

0, . . . , 0,
y1

d̃1
, . . . ,

yg−k

d̃g−k

)

+ ΛA

is a well-defined embedding.
To shorten the computations, we will describe only important steps in block matrices.

Then

ιN (D̃) =
[

0
idg−k

]

and ιN (ZN ) =
[

0
X D̃ − D̃−1 Z̃M

]

is the g × (g − k) block matrix of the last (g − k) columns of ZA with the last k columns
of ZA multiplied by D from the right and having subtracted the first k columns. Therefore,
images of generators ofΛN are primitive so ιN is an embedding. Checking that the restricted
polarisation is of type D̃ is completely analogous.
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In particular, it is easy to see that the matrix
⎡

⎣
D 0 idk
0
idk

2 idg−k

⎤

⎦

is an explicit example of a matrix that satisfies equations and belongs to hg , so the set defined
by equations is non-empty.

Using Propositions 1 and 8, we can summarise the discussion into the following theorem.

Theorem 9 Let (A, H) be a principally polarised abelian variety and suppose D and D̃ are
possible polarisation types of complementary abelian subvarieties. The following conditions
are equivalent:

1. there exists an abelian subvariety M ⊂ A such that H |M is of type D, i.e. A ∈ IsgD;
2. there exists a pair (M, N ) of complementary abelian subvarieties in A of types D and

D̃;
3. (A, H) is isomorphic to an abelian variety defined by the lattice ΛA = 〈

ZA idg
〉
, with

ZA = [zi j ] ∈ hg satisfying the linear equations

{
zi j = di z(g−k+i) j , i = 1, . . . , k, j = 1, . . . , k
zi j = 0, i = k + 1, . . . , g − k, j = 1, . . . , k

Proof (1) ⇔ (2) is the content of Proposition 1, so we only need to prove that (1) ⇔
(3). Theorem 8 tells us that the set of abelian varieties with a period matrix satisfying (3)
is a subset of IsgD . Moreover, both of them are closed irreducible subvarieties of Ag of
codimension k(g − k), which means that they are equal. In other words, the locus

{Z = [zi j ] ∈ hg : zi j = di z(g+1−i) j , i = 1, . . . , k, j = 1, . . . , k

zi j = 0, i = k + 1, . . . , g − k, j = 1, . . . , k}
is one of the irreducible components of the preimage of IsgD in hg . �

Now, we have an explicit answer to the question stated in the introduction.

Corollary 4 The locus of non-simple principally polarised abelian g-folds is a countable
union of IsgD, and all IsgD are images of irreducible loci in hg defined by

{Z = [zi j ] ∈ hg : zi j = di z(g+1−i) j , i = 1, . . . , k, j = 1, . . . , k

zi j = 0, i = k + 1, . . . , g − k, j = 1, . . . , k}
In Theorem4,we chose a very simple formof a periodmatrixwithΔ = p2 and generalise it to
higher dimensions in Theorem 9. However, it is not hard to make it lookmore complicated. In
particular, the relations between coefficients of a periodmatrix need not be linear. Proposition
9 will give another set of equations of a preimage of Isgp .

Again let ei ’s be a standard complex basis and fi = ZA(i) be column vectors of the Siegel
matrix. Take a symplectic sublattice generated by f1 and g1 = f j − pe1 for some p positive
integer and j �= 1. Then the assumption that f1, g1 are contained in a complex line gives the
following proposition.
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Proposition 9 Fix j ∈ {2, . . . , g} and let Z A = [zik] ∈ hg satisfy

z11z ji = z1i (z1 j − p), i = 2, . . . g.

Let ΛA = 〈
ZA idg

〉
and A = C

g/ΛA. Then A ∈ Isgp, i.e. there exists an elliptic curve

ΛE =
〈
z1 j−p
z11

1
〉
, E = C/ΛE ,

and an embedding

ιE : E −→ A

s + ΛE 	−→ (z11s, z12s, . . . , z1gs) + ΛA

such that the restricted polarisation is of type p.

Proof Without loss of generality, we assume that Im
(
z1 j−p
z11

)
> 0. It cannot equal 0 because

that would mean that the first and j-th rows of ZA are linearly dependent over R.
Obviously ιE is a well-defined embedding because ιE (1) = (z11, z12, . . . , z1g) and

ιE

(
z1 j−p
z11

)
= (z j1 − p, z j2, . . . , z jg) = ZA( j) − pe1 are primitive vectors in ΛA.

It remains to compute the restricted polarisation using analytic representations. We need
to compute the following real number:

y = [
z̄11 z̄12 . . . z̄1g

]
(Im ZA)−1

⎡

⎢
⎢
⎢
⎣

z11
z12
...

z1g

⎤

⎥
⎥
⎥
⎦

[(
z1 j − p

z11

)′]

As the product of the first three matrices is always real, we will consider
z1 j−p
z11

instead of its
imaginary part and compute y as the imaginary part of the resulting complex number. We
have:

t Z̄ A(1)(Im ZA)−1

⎡

⎢
⎢
⎢
⎣

z11
z12
...

z1g

⎤

⎥
⎥
⎥
⎦

[
z1 j − p

z11

]

= t Z̄ A(1)
[
Z ′
A(1) · · · Z ′

A(g)
]−1

⎛

⎜
⎜
⎜
⎝
ZA( j) −

⎡

⎢
⎢
⎢
⎣

p
0
...

0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

.

Since the matrix of Hermitian form consists of real entries, the imaginary part of the outcome
comes from multiplying the imaginary part of one matrix with the real part of the other.
Moreover, using a property of the inverse matrix, we get immediately that y is equal to:

y = Re(t Z̄ A(1))

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
...

1 j
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− [
1 0 · · · 0 ]

⎛

⎜
⎜
⎜
⎝
Re(ZA( j)) −

⎡

⎢
⎢
⎢
⎣

p
0
...

0

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

= [Re(z1 j ) − (Re(z1 j ) − p)],

so the restricted polarisation is of type p. �
We would like to point out some remarks about the construction of equations and its

outcome.
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1. If one chooses a symplectic sublattice to be generated by integer combinations of canon-
ical vector basis, like in Theorem 8, then the analytic representation of the inclusion map
has integer coefficients, and therefore, it does not depend on an abelian variety.Moreover,
the resulting equations on coefficients of a period matrix will be linear.

2. If one chooses a symplectic sublattice to be generated also by integer combinations of
columns of a period matrix, like in Proposition 9, then the analytic representation of
the inclusion map depends on an abelian variety. Moreover, the resulting equations on
coefficients of a period matrix will be quadratic.

3. The construction is invertible in the following sense: for any M, N abelian varieties of
types D and D̃, one can construct an abelian g-fold A with period matrix defined by

⎡

⎣
ZM 0 ZMD−1

0
D−1ZM

D̃−1(Z̃M + ZN )D̃−1

⎤

⎦ ,

with 0 entries where needed. Then, by Theorem 8, we have A ∈ IsgD and it is obvious
that M, N are complementary abelian subvarieties in A.

4. Note that we only proved irreducibility of ‘biggest blocks’ in the locus of non-simple
principally polarised abelian varieties. If one wants to consider the locus of varieties
that contain three different subvarieties with fixed restricted polarisation type, then the
irreducibility of such locus is still an unanswered question. It is due to the fact that the
restricted polarisation to subvarieties is usually no longer principal, so we cannot apply
the above ideas.
In some cases, one can intersect the loci IsgD for different D’s and ask for the irreducibil-
ity of the outcome. As an easiest example, consider the locus of principally polarised
threefold generated by three elliptic curves with restricted polarisations of types p, q, r .
If p, q, r are distinct, the locus will be certainly contained and probably almost equal to
Is3p ∩ Is3q ∩ Is3r . However, one has to develop new methods to treat the case p = q = r .
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