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Abstract We put forward a model of private goods with externalities. Agents derive
benefit from communicating with each other. In order to communicate they need to
operate on a common platform. Adopting new platforms is costly. We first provide an
algorithm that determines the efficient outcome. Then we prove that no individually
rational and feasible Groves mechanism exists. We provide sufficient conditions that
determine when an individually rational Groves mechanism runs a deficit and we
characterize the individually rational Groves mechanism that minimizes such deficit
whenever it occurs. Moreover, for 2-agent economies, we single out the only feasible
and symmetrical Groves mechanism that is not Pareto dominated by another strategy-
proof, feasible and symmetrical mechanism.
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2 E. Athanasiou et al.

1 Introduction

Traveling by train across the border between France and Spain used to involve the
inconvenience of changing trains. French and Spanish trains operate on rails of differ-
ent gauge. In order to resolve this issue, Spain adopted a variable gauge system that
enables its trains to access the French railway network. Swedish and Polish railway
companies employ variable gauge systems on cross-border services as well.

We consider a framework where an agent is associated with one of two platforms.
Communication between two agents requires that they operate on a common plat-
form. Adoption of a new platform is costly. The cost depends on the agent’s native
platform. The benefit of communication depends on a subjective parameter reflecting
the value the agent attaches to the interactions the new platform enables. The benefit
of communication is increasing in the number of agents with whom one may interact.

The term platform denotes a mode of operation, while the term communication
denotes the possibility of interaction that having a platform in common affords. Refer
to Fig. 1a. Agents are represented by nodes. The set of agents is partitioned in two
groups. All members of each group share the same native platform. Agent j’s native
platform is α. Platform adoption, that entails a platform-specific cost, is depicted by
an arrow stemming from a node and pointing to a set of nodes. Individual j adopts
platform β. This enables her to communicate with each agent whose native platform
is β. The net benefit she derives depends on the number of agents she is able to
communicate with [this is what Selten and Pool (1991) call ‘communicative benefit’]
and the cost she had to face in order to adopt the new platform.Moreover, she becomes
a source of value for all the agents whose native platform is β, who are now able to
communicate with her. This externality is a critical feature of the model.

Two questions arise naturally. First, what is the efficient adoption pattern? Second,
provided the previous question is resolved, how may a policy maker implement it?
The central aim of this paper is to understand how the answer to these two questions
is shaped by the inherent externality present in the situations we study.

The exercise of determining the efficient outcome constitutes a discrete optimiza-
tion problem. We provide an algorithm that solves it and we address computational
complexity issues. Figure 1b depicts a situation where all agents have a platform in
common. Efficient outcomes do not necessarily entail that. Moreover, at the optimum,
two-sided adoption, depicted in Fig. 1c, may occur.

Nα Nβ

j

(a)

Nα Nβ

(b)

Nα Nβ

(c)

Fig. 1 a By adopting platform β agent j makes possible the interaction between her and each agent in Nβ .
bAn assignment that enables all agents to communicate with each other. c Two-sided adoption: at least one
agent from each platform group adopts the platform foreign to her
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Groves mechanisms and communication externalities 3

Implementation is associatedwith the study ofmechanisms. These objects associate
a social outcome to the various values the primitives of the model may take. A mech-
anism can be evaluated on the basis of its properties. The following four properties
feature prominently in this paper:

1. Assignment efficiency The mechanism always selects efficient outcomes.
2. Strategy-proofness The mechanism induces all agents to reveal whatever private

information they may hold.
3. Individual rationality The mechanism does not force the participation of any

agent.
4. Feasibility The mechanism relies exclusively on the resources generated within

the economy.

It turns out that no mechanism satisfies all of the above requirements. There are,
however, mechanisms that satisfy any three of them. We place particular emphasis on
Assignment Efficiency and Strategy-Profness. Both these properties are shown to be
inherently linked with incentives. A mechanism that violates either of them is prone
to deficiencies that undermine the implementation exercise in a fundamental way.
Appealing to a result due to Holmström (1979), embracing Assignment Efficiency
and Strategy-Proofness entails confining our investigation to the family of Groves
mechanisms (1973). The literature discussing such mechanisms does so primarily in
three fairly distinct contexts. Pure public goods, excludable public goods and private
goods.

In this paperwe studyGrovesmechanisms in a context of private goods that accounts
for the effect of an externality. It turns out that some of the conventional wisdom on
Groves mechanisms does not carry through to our model. For example, the celebrated
Pivotal mechanism here fails Feasibility. The nature of the externality we capture
in our model causes the Pivotal mechanism to sometimes assign positive transfers,
something that is disallowed in the framework of either public or private goods.

Our proposal involves two mechanisms. First, we look at individually rational
Grovesmechanisms.We show that suchmechanisms are often in deficit andweprovide
sufficient conditions that determine when this is the case. We propose a mechanism
that minimizes the deficit whenever it occurs. Second, we outline a methodology to
design feasible Groves mechanisms. Following that, in economies comprising two
agents, we single out the only feasible and symmetrical Groves mechanism that is not
Pareto dominated by another strategy-proof, feasible and symmetrical mechanism.

Effectively the objectivewe pursue is to identify the best-in-classmechanism.When
Feasibility is out of the picture the criterion that isolates the best mechanism is related
to the incidence of the deficit. We do not focus on the worst case scenario (as in Bailey
1997; Cavallo 2006; Guo and Conitzer 2007; Moulin 2009) or on the asymptotic
behavior of the deficit (as in Deb et al. 2006; Green and Laffont 1979; McAfee 1992).
Rather we propose a mechanism that runs a lower deficit than any other mechanism
in each economy where the deficit presents itself.

In order to isolate the best feasible Groves mechanism, we do not base our selection
on sums of utilities but rather on their distribution (as in Guo and Conitzer 2008;
Athanasiou 2013; Sprumont 2012). Loosely speaking, a mechanism Pareto dominates
another one if the former generates, in each economy and for each agent, a higher
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4 E. Athanasiou et al.

amount of utility. This criterion turns out to be sharp enough to isolate a single feasible
Groves mechanism when the discussion is confined to two-agent economies.

A natural application of our findings concerns the problem of language acquisition.
The literature on this topics focuses on decentralized outcomes that may arise in sit-
uations similar to the ones we explore. In their seminal contribution Selten and Pool
(1991) introduce a general model of language acquisition. They show that an equilib-
rium of the multi-country multilingual language acquisition model exists. The charac-
terization of an equilibrium is then studied by Church and King (1993). More recently,
Ginsburgh et al. (2006) and Gabszewicz et al. (2011) study qualitative properties of
such equilibria in the context of bilingual societies. In our model one may rational-
ize different Nash Equilibria, exhibiting both one-sided as well as two-sided learning.
However, the efficient outcomedoes not generically come about as aNashEquilibrium.

This latter point provides themotivation for looking into the outcomes aPlannermay
bring about and how they compare with those that arise in the absence of intervention.
Consider the following example. Peter andMary speak English. Igor, Ivan andNatasha
speak Russian. Both Peter and Mary attach significant value to communicating with
Igor, Ivan and Natasha, but they face a cost of learning Russian that is prohibitive.
Contrary to that, Igor, Ivan and Natasha attach no value to communicating with Peter
and Mary, although for them the cost of learning English is smaller that the benefit it
would create for Peter and Mary. Suppose that each individual’s strategy in this game
consists of a decision on whether to learn the foreign language or not. At equilibrium
no-one learns a foreign language, albeit for different reasons. However, the pattern
of language acquisition that maximizes the sum of utilities involves Igor, Ivan and
Natasha learning English. This example capture the nature of the externality that lies
in the heart of the problem we study in this paper.

Section 2 introduces the model. Section 3 discusses efficiency. Section 4 introduces
the axioms and presents the impossibility. Section 5 discusses individually rational
Groves mechanisms. Section 6 discusses feasible Groves mechanisms. Section 7 con-
cludes.

2 The model

The finite set of agents is denoted by N ⊆ N, with |N | ≥ 2. There are two platforms,
α and β. For each λ ∈ {α, β}, Nλ is the set of agents whose native platform is λ. For
each i ∈ N , either i ∈ Nα or i ∈ Nβ , but not both.

Each agent may adopt the platform that is foreign to her. Platform adoption is
represented by the dichotomous variable li ∈ {0, 1}.Wewrite li = 1 if adoption occurs,
li = 0 otherwise. Let lN = (li )i∈N ∈ {0, 1}N denote an assignment , the vector
describing the action taken by each member of the population. Let γ : N → {α, β}
be such that for each i ∈ N and for each λ ∈ {α, β},

γ (i) = λ ⇔ i ∈ Nλ.

The cost of platform adoption depends on the agent’s native platform. Let C =
(cα, cβ) ∈ R

2++. For each i ∈ N , cγ (i) is the cost of adoption agent i faces. We
assume that both cα and cβ are finite.
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Groves mechanisms and communication externalities 5

The marginal benefit an agent derives from being able to communicate with agents
that operate on a different native platform is denoted by the parameter θi ∈ R+. The
total benefit of communication is proportional to the number of agents with whom
one communicates. Consequently, the marginal benefit of communication is constant.
Namely, for each i ∈ N , at each lN ∈ {0, 1}N , the expression

θi
∑

j∈N\Nγ (i)

min
{
1, li + l j

}
, (2.1)

specifies the gross benefit of agent i . For instance, going back the example in Fig. 1a,
letting l j = 1 and, for each i ∈ N \{ j}, li = 0, agent j’s gross benefit becomes

θ j
(
min{1, 2} + min{1, 2}) = 2θ j .

Moreover, in the same figure, for each i ∈ Nα \{ j}, i’s net benefit equals 0, while
each agent i ∈ Nβ is now able to communicate with one more agent ( j) so her benefit
equals θi .

For each i ∈ N , at each lN ∈ {0, 1}N , the expression

vi (lN ; θi ) = θi
∑

j∈N\Nγ (i)

min
{
1, li + l j

} − li cγ (i),

specifies the net benefit of agent i .
Accounting for the possibility of an individual transfer ti ∈ R, the final utility of

each i ∈ N , at lN ∈ {0, 1}N , becomes

ui (lN , ti ; θi ) = vi (lN ; θi ) + ti .

Preferences are quasi-linear.
Let θNα ≡ (θi )i∈Nα , θNβ ≡ (θi )i∈Nβ and θN ≡ (θi )i∈N . An economy is denoted

by e = (
(θNα , θNβ ),C

) = (
θN ,C

) ∈ R
N+2+ ≡ E . Let tN = (ti )i∈N ∈ R

N . An
allocation is a list (lN , tN ) ≡ (li , ti )i∈N . Let Z = {0, 1}N × R

N be the set of all
allocations. A mechanism is a function ϕ : E → Z . It associates with each economy a
single allocation, so that ϕ(e) = (lN , tN ) and ϕi (e) = (li , ti ). Finally, for each e ∈ E
and each lN ∈ {0, 1}N , let π(lN ; e) = ∑

i∈N vi
(
lN ; θi

)
be the sum of net benefits

generated by the assignment lN .
Many of the computational difficulties associated with the model stem from themin

operator (Eq. 2.1). This operator ensures that even if two agents have two platforms
in common, the benefit each derives from communicating with the other remains
unchanged relative to the case of communication through a single platform.

The gross benefit does not account for people with whom one shares already the
same native platform. This value is a constant. Therefore, it does not have any bearing
on the maximization problem that underlies efficiency.

Finally, a platform carries no intrinsic value, it just serves as a means of commu-
nication. In addition, agents do not care with whom they communicate. They solely
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6 E. Athanasiou et al.

value the amount of communication. These assumptions serve to intensify the effect
of the externality. Since our aim is precisely to study this effect, we have no interest
in dampening its intensity.

3 Efficient assignments

In this section we discuss the problem of maximizing the sum of net benefits. Depend-
ing on the particular e ∈ E at hand, we need to solve the following optimization
problem:

P(e) : max
lN∈{0,1}N

∑

i∈N

⎛

⎝θi

⎛

⎝
∑

j∈N/Nγ (i)

min{1, li + l j }
⎞

⎠ − li cγ (i)

⎞

⎠ .

For each e ∈ E , let 	(e) be the set of assignments that solve P(e). We provide an
algorithm that produces for each e ∈ E , one lN ∈ 	(e). For each e ∈ E , there are at
most 2|N | candidate solutions. Since the set of candidate solutions is finite, for each
e ∈ E , 	(e) �= ∅.

A naive algorithm that solves P(e) enumerates all the candidate solutions. We
propose an algorithm that runs in polynomial time, that is, it enables a computer to
solve the problem quickly, far more so compared to the naive algorithm. We defer to
the end of the section a more precise discussion of this matter.

The construction of the algorithm is founded on Lemmas 1, 2 and 3 presented
below. These Lemmas provide properties of an optimal solution and allow pruning the
search to a small subset of candidate solutions without missing at least one optimal
solution. Lemma 1 states that if at the optimum an agent does not adopt the foreign
platform, then so do all other agents who share her native platform and have a lower
marginal benefit.

Lemma 1 For each e ∈ E , each λ ∈ {α, β} and each i1, i2 ∈ Nλ, if θi1 > θi2 then for
each lN ∈ 	(e), li1 ≥ li2 .

Proof Without loss of generality let λ = α. Suppose, by way of contradiction, that
there exists lN ∈ 	(e) such that li1 = 0 and li2 = 1. Construct an alternative solution
l̃N such that

l̃ j =
⎧
⎨

⎩

l j if j �= i1, j �= i2,
1 if j = i1,
0 if j = i2.

(3.1)

Let S ⊆ Nβ be such that for each i ∈ S, li = l̃i = 0. By construction, π(l̃N ; e) −
π(lN ; e) = (θi1 − θi2)|S|. By assumption, lN is optimal and li2 = 1, with i2 ∈ Nα .
If S = ∅ then, for each i ∈ Nβ , li = 1. But if every agent in Nβ adopted the foreign
platform, it would be suboptimal for agent i2 to do the same. Therefore, S �= ∅. This
implies that (θi1 − θi2)|S| > 0, the desired contradiction. 
�
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Groves mechanisms and communication externalities 7

Consider some arbitrary assignment lN ∈ {0, 1}N such that for some k ∈ Nα ,
lk = 0. If agent k were to adopt the foreign platform, she would generate a social
marginal contribution equal to

θk

⎛

⎝|N \N γ (k)| −
∑

j∈N\Nγ (k)

l j

⎞

⎠ − cγ (k) +
∑

j∈N\Nγ (k)

θ j (1 − l j ).

This value incorporates both her personal utility gain as well as the external effect
(the last term in the expression). Lemma 2 states two familiar conditions necessary
for optimality. Lemma 3 is a consequence of Lemmas 1 and 2.

Lemma 2 For each e ∈ E , each lN ∈ 	(e) and each i ∈ N ,

(1) if li = 1, then θi
(|N\N γ (i)|−∑

j∈N\Nγ (i) l j
)+∑

j∈N\Nγ (i) θ j (1−l j )−cγ (i) ≥ 0,

(2) if li = 0, then θi
(|N\N γ (i)|−∑

j∈N\Nγ (i) l j
)+∑

j∈N\Nγ (i) θ j (1− l j )−cγ (i) ≤ 0.

Proof Conditions (1) and (2) are necessary for lN ∈ 	(e). Indeed, if lN ∈ 	(e), then
for each i ∈ N unilaterally reducing the amount of communication (first condition), or
unilaterally increasing the amount of communication (second condition)must decrease
the sum of utilities. 
�
Lemma 3 For each e ∈ E , λ ∈ {α, β} and lN ∈ 	(e), if there exists i∗ ∈ Nλ, such
that θi∗ ≥ θi for each i ∈ Nλ and li∗ = 0 then

li = 0 for all i ∈ Nλ (3.2)

li =
{
1 if |Nλ|θi + ∑

j∈Nλ θ j − cγ (i) > 0
0 otherwise

for all i ∈ N \Nλ (3.3)

Proof Implication (3.2) follows from Lemma 1. Implication (3.3) follows from
Lemma 2. 
�
Proposition 1 For each e ∈ E , if the assignment lN ∈ {0, 1}N is selected by the
algorithm defined in Table 1, then lN ∈ 	(e).

The proof is omitted. It relies on Lemmas 1, 2 and 3. The design of the algorithm
relies on the results presented in this section. It is defined in Table 1. The algorithm
performs approximately |Nα||Nβ | arithmetic operations. Using this fact it can be
shown that for |N | large enough, the algorithm takes less than η|N |2 operations, where
η is some constant independent of e. Thus, the proposed algorithm is a polynomial-
time algorithm. This picture changes radically if we consider instances of the problem
involving a partition of the population in more than two native platform groups. It can
be shown (a proof is available on request) that such a problem is NP-complete, that
is, one does not expect to find an efficient algorithm as is the case when each agent is
associated with one of two native platforms.

In what follows we provide an example that explains how the algorithm func-
tions. Consider the economy e = (((0.8, 0.1), (2, 0.1, 0)), (1.6, 1.1)) (namely θNα =
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8 E. Athanasiou et al.

Table 1 The algorithm

(1) Let Nα = {1, . . . ,m − 1} and Nβ = {m, . . . , N }. Sort agents so that for each
λ ∈ {α, β} and each i, j ∈ Nλ, i < j if and only if θi ≥ θ j . Let

Mi = |N \Nγ (i)|θi + ∑
j∈N\Nγ (i) θ j − cγ (i)

(2) Consider the problem P
(
(θNα , θNβ ),C

)

(a) By Lemma 1 either agent 1 adopts β or no one in Nα adopts β. Therefore, create two
subproblems

(b) In the first subproblem set l1 = 0. By Lemma 1, for each i ∈ Nα we have li = 0. In this case,
the optimal solution is obtained using Lemma 3. Call the resulting value V1. Save the solution
to this subproblem

(c) In the second subproblem set l1 = 1. This completely determines agent 1’s status. Save the
value M1 := |Nβ |θ1 + ∑

j∈Nβ θ j − cα , remove agent 1 from the problem

(d) Set t = 1

(3) If m − 1 > t go to step (4). Else go to step (5)

(4) The algorithm treats the problem P
(
(θNα\{1,...,t}, θNβ ),C

)

(a) By Lemma 1 either agent t + 1 adopts β or no one in Nα \{1, . . . , t} adopts β. Therefore,
create two subproblems

(b) In the first subproblem set lt+1 = 0. By Lemma 1, for each i ∈ Nα \{1, . . . , t} we have
li = 0. In this case, the optimal solution is obtained using Lemma 3. Call the resulting value
Vt+1. Save the solution to this subproblem

(c) In the second subproblem set lt+1 = 1. This completely determines agent t + 1’s status. Save
the value Mt+1 := |Nβ |θt+1 + ∑

j∈Nβ θ j − cα , remove agent t + 1 from the problem

(d) Set t = t + 1. Go to (3)

(5) The algorithm generates m solutions whose corresponding values are
V1, V2 + M1, V3 + M1 + M2, . . . , Vm−1 + M1 + · · · + Mm−2, M1 + · · · + Mm−1. Pick the
maximum among them

(0.8, 0.1), θNβ = (2, 0.1, 0) and C = (1.6, 1.1)) and consider the problem
P((0.8, 0.1), (2, 0.1, 0)), (1.6, 1.1)). By Lemma 1 either agent 1 adopts β or no one
in Nα adopts β. Therefore, create two subproblems.

Assume first that l1 = 0. By Lemma 1 we obtain l2 = 0. Lemma 3 determines how
many agents in Nβ will adopt the foreign platform, given l1 = l2 = 0. Assume l3 = 1.
The overall surplus generated by this action is |Nα|θ3+∑

j∈Nα θ j −cγ (3) = 2 × 2 +
0.8 + 0.1 − 1.1 = 3.8. Similarly, if l4 = 1, we obtain 0.1 × 2 + 0.8 + 0.1 − 1.1 = 0.
Finally, if l5 = 1, we obtain 0 × 2 + 0.8 + 0.1 − 1.1 = −0.2. Hence, V1 = 3.8.
This step generates the first candidate solution,

(
(0, 0), (1, 0, 0)

)
with corresponding

value V1 = 3.8.
Assume now that l1 = 1. Consider M1 := |Nβ |θ1+∑

j∈Nβ θ j −cα = 0.8∗3+2+
0.1 + 0 − 1.6 = 2.9, remove agent 1 from the problem and proceed to the next step.
Let l2 = 0. Again apply Lemma 3. If l3 = 1 then the overall surplus generated by this
action (given there is only agent 2 in Nα and she is not adopting the foreign platform)
is 2 + 0.1 − 1.1 = 1. It is easy to check that l4 = 1 and l5 = 1 would generate a
negative overall surplus. In this subproblem only agent 3 adopts the foreign platform
and V2 = 1. The second candidate solution is

(
(1, 0), (1, 0, 0)

)
with corresponding

value is M1 + V2 = 3.9.
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Groves mechanisms and communication externalities 9

Finally, let l2 = 1 and compute M2 := |Nβ |θ1 + ∑
j∈Nβ θ j − cα = 0.1 ∗ 3 + 2 +

0.1+ 0− 1.6 = 0.8. This step provides the last candidate solution:
(
(1, 1), (0, 0, 0)

)
.

The corresponding value is M1 + M2 = 3.7. The algorithm generates three candidate
solutions (out of 25 a priori candidates). The optimal assignment is

(
(1, 0), (1, 0, 0)

)
.

This example, apart from illustrating how the algorithm works, demonstrates two
important points regarding efficiency. First, at the optimum, full communication does
not necessarily ensue. Second, and perhaps more surprisingly, optimal assignments
may entail that agents from both sides adopting the foreign platform.

4 Axioms

In this section we formally define Strategy-Proofness, Assignment Efficiency and
Individual Rationality and discuss their implications. Although these axioms may
be motivated by appealing to normative considerations, we emphasize their signif-
icance in alleviating the incentive problem. In our framework a mechanism can be
manipulated in three ways:

(1) The agent may misreport private information.
(2) The agent may choose not to conform to the prescriptions of the mechanism.
(3) The agent may refuse to participate.

The axiomswepresent in this section tackle the issues listed above.Although the policy
maker observes each agent’s native platform and she is aware of the costs that adoption
entails, she does not know the marginal benefit of any agent. As a consequence, some
agents might find it profitable to behave strategically and misreport it. We require of
mechanisms to always induce, for each agent, a weakly dominant strategy to report
truthfully her marginal benefit. Let θN\{i} = (θ1, . . . , θi−1, θi+1, . . . , θ|N |) ∈ R

N−1+ .
Strategy-proofness For each e ∈ E , i ∈ N and θ ′

i ∈ R+,

ui (ϕi (θN ,C); θi ) ≥ ui
(
ϕi (θ

′
i , θN\{i},C); θi

)
.

Amechanism isAssignmentEfficient if, for each economy in the admissible domain,
it selects an allocation that involves an assignment that maximizes the sum of net
benefits.Assignment Efficiency differs fromPareto Efficiency in that it does not require
transfers to sum up to zero.
Assignment efficiency For each e ∈ E , if (lN , tN ) = ϕ(e) then lN ∈ 	(e).
The way Assignment Efficiency prevents manipulation is not immediately apparent.
In order to make it explicit we need to introduce the following axiom.
Non-compliance proofness For each e ∈ E , with (lN , tN ) = ϕ(e), if for some i ∈ N ,
li = 0, then

θi

⎛

⎝|N \N γ (i)| −
∑

j∈N\Nγ (i)

l j

⎞

⎠ − cγ (i) ≤ 0.

An allocation may be such that an agent is instructed not to adopt a foreign platform,
although she finds it profitable to unilaterally deviate and adopt it. Non-Compliance
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10 E. Athanasiou et al.

Proofness requires that this is never the case. Assignment Efficiency implies Non-
Compliance Proofness. Indeed, if for some e ∈ E , (lN , tN ) = ϕ(e) is such that for
some i ∈ N , li = 1 and θi

(|N\N γ (i)|−∑
j∈N\Nγ (i) l j

)−cγ (i) > 0, then the necessary
condition (2) in Lemma 2 does not hold. Hence, lN /∈ 	(e). It needs to be noted
that the axiom does not prevent all possible deviations by a single agent. However,
it prevents precisely those forms of defiance that Assignment Efficiency rules out.
Hence, it exposes the role Assignment Efficiency plays in improving conformity to the
prescriptions of the mechanism.

A mechanism satisfies Individual Rationality if no agent is coerced into participa-
tion. All agents must enjoy a positive utility as a result of their participation.
Individual rationality For each e ∈ E and i ∈ N , ui (ϕi (e); θi ) ≥ 0.

Holmström (1979) shows that a mechanism defined over a convex domain of pref-
erences, as is the case here, satisfies Assignment Efficiency and Strategy Proofness
if and only if it belongs to the family of Groves mechanisms (1973). A mechanism
belonging to this family is associated with a transfer composed of two parts. First,
each agent receives the total net benefit obtained by all other agents at the assignment
chosen by the mechanism. Second, each agent receives a sum of money that does not
depend on her own marginal benefit.
A mechanism ϕg belongs to the family ofGroves Mechanisms if and only if for each
e ∈ E , if (lN , tN ) = ϕg(e) then lN ∈ 	(e) and for each i ∈ N and some arbitrary
function hi : RN−1+ → R

ti =
∑

j �=i

v j (lN ; θi ) − hi (θN\{i}).

A mechanism is by definition single-valued. Moreover, for some e ∈ E , 	(e) may
not be a singleton. Therefore, there may exist welfare equivalent Groves mechanisms
that only disagree on the tie-breaking rule. The sum of the transfers associated with a
Groves mechanismmay be either positive or negative. The former case corresponds to
a budget deficit, while the latter to a budget surplus. Either constitutes a welfare loss.
However, there is a particular difficulty pertaining to the deficit. It necessitates tapping
into resources that are not generated within the economy. Feasible mechanisms are
self-sufficient.
Feasibility For each e ∈ E , if (lN , tN ) = ϕ(e) then

∑
i∈N ti ≤ 0.

The agenda we pursue in this paper is set by the following result. One needs to
make a choice between an individually rational Groves mechanism, at the expense of
Feasibility and a feasible Groves mechanism, at the expense of Individual Rationality.

Proposition 2 There exists no mechanism ϕ that satisfies Strategy Proofness, Indi-
vidual Rationality, Feasibility and Non-Compliance Proofness.

Proof We construct a counter-example. Suppose that some mechanism ϕ satisfies the
axioms. Let e ∈ E be such that N = {1, 2}, with 1 ∈ Nα and 2 ∈ Nβ . Moreover, let
θ1 = θ2 > cα = cβ > 0 and cα + cβ > θ1. Finally, let (lN , tN ) = ϕ(e). Given our
assumptions, if lN = (0, 0), Non-Complinace Proofness is violated. Hence,

lN ∈ {
0, 1

}2\{
(0, 0)

} = {
(1, 0), (0, 1), (1, 1)

} ≡ �.
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Groves mechanisms and communication externalities 11

Assume, first, that lN = (1, 0) and suppose that u1
(
(l1, t1); θ1

) ≥ θ1 and
u2

(
(l2, t2); θ2

) ≥ θ2. Therefore, u1(lN , t1; θ1) + u2(lN , t2; θ2) ≥ θ2 + θ1, or put
equivalently θ1 − cα + θ2 + t1 + t2 ≥ θ1 + θ2, which implies

t1 + t2 ≥ cα

[
θ1, θ2 cancel out

]

t1 + t2 > 0
[
by assumption cα > 0

]
(4.1)

By Feasibility, inequality (4.1) constitutes a contradiction. This reasoning applies for
each lN ∈ �. Therefore, for each lN ∈ �, either u1(lN , t1; θ1) < θ1 or u2(lN , t2; θ2) <

θ2. Without loss of generality, suppose that u1(lN , t1; θ1) < θ1.
Let e′ = (

θ ′
N , (cα, cβ)

)
be identical to e except for the fact that θ ′

1 = 0. Let
(l ′N , t ′N ) = ϕ(e′). Suppose that l ′N = (1, 1). By Individual Rationality, t ′1 ≥
cα and θ ′

2 − cβ + t ′2 ≥ 0. Therefore, θ ′
2 + t ′1 + t ′2 ≥ cα + cβ . Moreover, by con-

struction cα + cβ > θ2 = θ ′
2 ≥ 0. Combining the last two observations we obtain

t ′1 + t ′2 > 0, which contradicts Feasibility. Hence, l ′N �= (1, 1). By Non-Complinace
Proofness, applying the same reasoning as before, we obtain l ′N �= (0, 0). Hence,

l ′N ∈ {
0, 1

}2\{
(0, 0), (1, 1)

} = {
(1, 0), (0, 1)

} ≡ �′.

Therefore, by Individual Rationality, either t ′1 ≥ cα (if l ′N = (1, 0)) or t ′1 ≥ 0 (if
l ′N = (0, 1)). Thus, for each l ′N ∈ �′, u1

(
ϕ1(e′); θ1

) ≥ θ1. Moreover, by assumption,
u1

(
ϕ1(e); θ1

)
< θ1. Hence, ϕ violates Strategy-Proofness, a contradiction. 
�

Proposition 2 marks a difference between our framework and other economic envi-
ronments. Examples of feasible and individually rational Groves mechanisms are
provided by Guo and Conitzer (2007) and Moulin (2009) (among others) as solutions
to the problem of assigning a finite number of identical objects to a greater finite
number of agents. For the public good provision problem, under natural assumptions
on the domain of preferences, a similar impossibility arises (Moulin 1988). Parkes
(2001) provides two sufficient conditions, on the domain of economies, for a feasible
Groves mechanism to satisfy Individual Rationality.1 It should be noted that Parkes’
conditions are not satisfied in our framework.

5 Individually rational Groves mechanisms

In this section we focus on Groves mechanisms that satisfy Individual Rationality.
As shown before, such mechanisms violate Feasibility. As we will see it is relatively
simple to isolate, among them, amechanism that minimizes the deficit (i.e., maximizes
the revenues). The natural question to raise next concerns the incidence of the deficit.
We provide conditions on the economy that, when met, imply that any individually
rational Groves mechanism will be in deficit in that economy. Inspection of these
sufficient conditions suggest that the deficit is, indeed, a prevalent phenomenon.2

1 We are referring to the Pivotal mechanism which we introduce in the next section.
2 It remains an open question whether in the framework we study there exists an individually rational
Groves mechanism that runs a surplus in at least one economy.
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12 E. Athanasiou et al.

For each e ∈ E and each i ∈ N let ei denote an economy that is otherwise identical
to e, except for the fact that agent i’s marginal benefit has been set equal to zero.
Formally, if e = (θN ,C), then ei = (

(0, θN\{i}),C
)
. In addition, let liN ∈ 	(ei ).

The Minimal Deficit Mechanism (MDM) For each e ∈ E , (lN , tN ) = ϕmd(e) if and
only if lN ∈ 	(e) and, for each i ∈ N ,

ti =
∑

j �=i

v j
(
lN ; θ j

) −
∑

j �=i

v j

(
liN ; θ j

)
− vi

(
liN ; 0

)
.

Roughly speaking, the transfer of theMDMconstitutes an assessment of the impact
each agent’s marginal benefit has on the optimal sum of net benefits. In order to obtain
the MDM from within the family of Groves mechanisms one needs to set, for each
e ∈ E and each i ∈ N ,

hi
(
θN\{i}

) = π
(
liN ; ei

)
=

∑

j �=i

v j

(
liN ; θ j

)
+ vi

(
liN ; 0

)
.

The following example illustrates the MDM. Consider the economy

e = (((2, 1, 0.1), (0.8, 0.1)), (1.1, 1.6)).

Refer to Fig. 2. Dots represent agents. Agents whose native platform is α are grouped
on the left column, while agents whose native platform is β are grouped on the right
column. The number in parenthesis is the name of the agent. The figure depicts the
original economy along with the five economies we obtain by setting, each time,
the marginal benefit of one agent equal to zero. An arrow stemming from a node
representing agent i ∈ N and pointing to a set of nodes stands for li = 1. The absence
of an arrow stands for li = 0. The figure depicts lN ∈ 	(e), as well as liN ∈ 	(ei ), for
each i = 1, . . . , 5. For instance, lN = (0, 0, 0, 1, 1). The value of π(liN ; ei ), for each
i ∈ N , lies at the bottom of each diagram. This piece of information allows one to
compute theMDM transfers at e: tN = (−0.2,−0.2, 0, 0.9, 1.6). TheMDMproduces
a deficit equal to 2.1.

The properties of the MDM have already been studied by Krishna and Perry (1998)
as part of what they call the generalized Vickrey, Clarke, Groves mechanisms. They
show, in amore general framework, that some instances of suchmechanismsminimize
the sum of transfers associated with any assignment efficient, individually rational and
Bayesian incentive compatible mechanism. As a consequence, in our framework the
MDMminimizes the deficit whenever it occurs and the result that follows (Lemma 4)
is logically implied by Krishna and Perry’s result. However, its proof helps to better
understand how the externality present in our framework works. In our setting, by
removing an agent from the economy, one deprives the remaining agents from any
benefit they may derive from being able to communicate with her. This simple obser-
vation explains why the MDM needs to be distinguished from the Pivotal mechanism
(see Clarke 1971; Moulin 1986). Let lN\{i} = (l1, . . . , li−1, li+1, . . . , l|N |). In order
to obtain the Pivotal mechanism from the family of Groves mechanisms one needs to
set, for each e ∈ E and each i ∈ N ,
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Groves mechanisms and communication externalities 13

Nα Nβ

π(l3N ; e3) = 5.5

Nα Nβ

π(l4N ; e4) = 4

Nα Nβ

π(l5N ; e5) = 5.4

Nα

(3)

(2)

(1)

Nβ

(4)

(5)

π(lN ; e) = 5.7

Nα Nβ

π(l1N ; e1) = 1.9

Nα Nβ

π(l2N ; e2) = 3.9

Fig. 2 An example illustrating the calculations that underlie the MDM

hi
(
θN\{i}

) =
∑

j �=i

v j

(
l ′N\{i}; θ j

)
,

where l ′N\{i} ∈ 	(θN\{i},C). The hi (.) component of the Pivotal transfer is obtained
by removing agent i from the economy altogether and then calculating the optimal
sum of net benefits in her absence. In the canonical public good provision model
whether an agent is removed from the economy or her valuation of the project is set
to zero, amounts to the same effect. In our framework, an agent is still a source of
value for the rest even if her marginal benefit is equal to zero. Removing her from
the economy amounts to more than deducting her net benefit from the total sum.
Moreover, in the pure public good provision problem the transfers associated with the
Pivotal mechanism are non-positive. This is no longer the case in our framework. The
following lemma asserts that any individually rational Groves mechanism generates
at least as much deficit as the MDM.

Lemma 4 If for some e ∈ E the MDM generates a deficit then, in the same economy,
any mechanism satisfying Assignment Efficiency, Strategy-Proofness and Individual
Rationality generates a greater or equal deficit.

Proof By Assignment Efficiency and Strategy-Proofness we need to compare our
mechanism with other mechanisms belonging to the Groves family of mechanisms.
Moreover, by Individual Rationality we need to have, for each e ∈ E and each i ∈ N ,

ui (ϕ
g(e); θi ) = vi (lN ; θi ) + ti =

∑

i∈N
vi (lN ; θi ) − hi (θN\{i}) ≥ 0, (5.1)

with

∑

i∈N
vi (lN ; θi ) =

∑

i∈N

⎛

⎝θi
∑

j∈N\Nγ (i)

min
{
1, li + l j

} − li cγ (i)

⎞

⎠ ,
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14 E. Athanasiou et al.

where lN ∈ 	(e). Since the component hi (θN\{i}) is independent of θi , Eq. 5.1 entails

hi (θN\{i}) ≤ min
θi

⎧
⎨

⎩
∑

j∈N
v j (l

i
N ; θ j )

⎫
⎬

⎭ =
∑

j �=i

v j (l
i
N ; θ j ) + vi (l

i
N ; 0), (5.2)

where liN ∈ 	(ei ). Moreover,

∑

i∈N
ti =

∑

i∈N

∑

j �=i

v j (lN ; θ j ) −
∑

i∈N
hi (θN\{i}).

By Eq. 5.2,

∑

i∈N
ti ≥

∑

i∈N

∑

j �=i

v j (l; θ j ) −
∑

i∈N

∑

j �=N

v j (l
i ; θ j ) −

∑

i∈N
vi (l

i
N ; 0). (5.3)

This means that, as soon as an individually rational mechanism generates a deficit, it
generates at least as much deficit as in the right-end side of Eq. 5.3. Hence in order to
minimize the deficit produced by the mechanism we need to set

hi (θN\{i}) =
∑

j �=i

v j (l
i
N ; θ j ) + vi (l

i
N ; 0).


�
Pápai (2003) uses a similar argument to identify a sufficient condition for a Groves
mechanism to be individually rational. In her framework an individually rational
Groves mechanism cannot charge the agents more than the Pivotal does. This is not
the case here as Lemma 4 demonstrates.

We can now introduce the main result of this section. The next proposition demon-
strates that in a significant sub-domain of the set of admissible economies any Groves
mechanism satisfying Individual Rationality runs a deficit. In light of the previous
discussion, in all these instances, the MDM is the most desirable solution among all
the individually rational Groves mechanisms. Proposition 3 involves a condition. It
depends on all the parameters of the economy, namely its size, the profile of pref-
erences and costs. For each economy at which the condition is met any individually
rational Groves mechanism runs a deficit. The proposition assumes, without loss of
generality, that cα ≤ cβ . The proof can be found in “Appendix 1”.

For each e ∈ E and each T > 0 let ζ(T, e) = |{i ∈ N | θi < T }|.
Proposition 3 For each e ∈ E such that cα ≤ cβ , if

(a) |Nα| ≤ |Nβ | and there exists T > 0 such that |Nβ | ≥ cα
T + cβ

T + ζ(T, e) + 1,
then any Individually Rational Groves mechanism runs a deficit.

(b) |Nα| ≥ cβ
cα

|Nβ | and there exists T > 0 such that |Nα| ≥ cβ
cα

(
ζ(T, e) + 1

) + 2cβ
T ,

then any Individually Rational Groves mechanism runs a deficit.
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Groves mechanisms and communication externalities 15

The following examples elaborate on Propositions 3. Consider the economy

e =
((

(3, 2, 1, 0), (3, 3, 2, 2, 1.5, 1.5, 0.5)
)
, (1, 2)

)
.

The number of agentswith θi less than 1, i.e., ζ(1, e), is 2. Hence, ζ(1, e)+1+ cα+cβ
1 =

6 < |Nβ | = 7. By Proposition 3 (a), in this economy any individually rational Groves
mechanism runs a deficit. Consider, next, the economy

e =
((

(ε, . . . , ε), (ε, . . . , ε)
)
, (qε, qε)

)
,

where ε > 0 and q ∈ N. The number of agents with θi less than ε, i.e., ζ(ε, e), is
equal to zero. Moreover, |Nα| = cβ

cα
|Nβ | = |Nβ |. We obtain

qε

qε
(ζ(ε, e) + 1) + 2qε

ε
= 1 + 2q.

Hence, as soon as |Nα| ≥ 1+2q, by Proposition 3 (b), in this economyany individually
rational Groves mechanism runs a deficit.

We need to emphasize three points. First, the domain restrictions ‘almost’ do not
rely on preferences. In effect, they only involve agents who attach a low value to
the possibility of communication. Second, the domain restrictions do not require the
economy to involve a large number of agents, unless both costs are enormous. Even
in such a case though, one needs only one of the two groups to be adequately large for
the result to come through. Finally, in economies that involve a large enough number
of agents any individually rational Groves mechanism runs a deficit.

6 Feasible Groves mechanisms

In this section we drop Individual Rationality in favor of Feasibility. The restriction
to feasible Groves mechanisms reflects a physical constraint often imposed on the
implementation effort. The policy maker is not mandated to resort to outside funding.
She may only rely on her power to tax agents which may be, for the purposes of this
section, complemented by her ability to coerce participation.

Given the analysis performed so far, there is a simple class of mechanisms that
accomplishes the task. It will serve in this section as a benchmark. In order to construct
it we need to rely on a particular feature of the MDM. For each economy, let the set
of assignments that ensure that each pair of agents have a platform in common be
denoted by L f (e).3

3 Formally,

L f (e) =

⎧
⎪⎨

⎪⎩
lN ∈ {0, 1}N : for each i ∈ N ,

∑

j∈N\Nγ (i)

min
{
1, li + l j

} = |N \Nγ (i)|

⎫
⎪⎬

⎪⎭
.
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16 E. Athanasiou et al.

Consider within this set the subset of assignments that are the least costly. That is,
for each e ∈ E , let

L f ∗(e) ≡ argmin
lN∈L f (e)

∑

i∈N
li cγ (i)

Moreover, for each l∗N ∈ L f ∗(e), let

c =
∑

i∈N
l∗i cγ (i).

Notice that in order to compute the value c one does not need to know the vector of
marginal benefits. Moreover, for each economy the total cost pertaining to the efficient
assignment is less or equal to the value c for that economy. The mechanism we present
below charges all individuals an amount c

|N | on the top of what they were charged by
the MDM. Recall that liN ∈ 	(ei ).

The Translated Minimal Deficit Mechanism (TMDM) For each e ∈ E , (lN , tN ) =
ϕtmd(e) if and only if lN ∈ 	(e) and, for each i ∈ N

ti =
∑

j �=i

v j (lN ; θi ) −
∑

j �=i

v j

(
liN ; θ j

)
− vi

(
liN ; 0

)
− c

|N | .

Relative to the MDM, the TMDM levies an extra amount c that aims at ensuring Fea-
sibility. Moreover, the TMDM collects an equal share of this extra amount from each
agent. One may imagine alternative ways of distributing this extra burden. However,
as long as a Groves mechanism levies an amount c over the amount the MDM levies,
it will satisfy Feasibility. This is a direct consequence of the following Lemma.

Lemma 5 For each e ∈ E , if (lN , tN ) = ϕmd(e), then

∑

i∈N
ti ≤

∑

i∈N
li cγ (i).

Proof For each e ∈ E and each i ∈ N , if lN ∈ 	(e) and liN ∈ 	(ei ), then

θi
∑

j∈N\Nγ (i)

min{1, li + l j } ≥
∑

i∈N
vi (lN ; θi ) −

∑

j �=i

v j (l
i
N ; θ j ) − vi (l

i
N ; 0).

If that were not true, by rearranging the terms of the inequality one would obtain

π(liN ; ei ) =
∑

j �=i

v j (l
i
N ; θ j ) + vi (l

i
N ; 0)

<
∑

i∈N
vi (lN ; θi ) − θi

∑

j∈N\Nγ (i)

min{1, li + l j } = π(lN ; ei ),
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Groves mechanisms and communication externalities 17

which constitutes a contradiction, as, by assumption, liN ∈ 	(ei ). Summing over
i ∈ N we obtain

∑

i∈N
θi

∑

j∈N\Nγ (i)

min{1, li + l j } ≥ |N |π(lN ; e) −
∑

i∈N
π(liN ; ei ).

The left-hand side of the previous equation represents the total gross benefit deriving
from communication at lN . A simple algebraic manipulation yields

∑

i∈N
li cγ (i) ≥ (N − 1)π(lN ; e) −

∑

i∈N
π(liN ; ei ) =

∑

i∈N
ti .


�
Lemma 5 provides a rough idea of the challenge one needs to overcome when

designing feasible Grovesmechanisms. If the policymaker knows for each e ∈ E , with
(lN , tN ) = ϕmd(e), the value

∑
i∈N li cγ (i), then she has at her disposal a rough rule

of thumb that she may apply in order to comply with Feasibility. However, Lemma 5
does not do much more than point in the right direction. The value

∑
i∈N li cγ (i) varies

with the economy and there is no a priori reason to be hopeful that collecting the
information required to calculate it complies with Strategy-Proofness. The TMDM
circumvents this issue by utilizing the fact that for each e ∈ E , each lN ∈ 	(e) and
each l ′N ∈ L f ∗(e), we have

∑
i∈N li cγ (i) ≤ ∑

i∈N l ′i cγ (i) = c.4

Using the TMDM as a benchmark we now turn to the question of what constitutes
a ‘good’ feasible Groves mechanism. In what follows we confine our discussion to
a two-agent environment. A brief remark at the end of this section explains why this
concession is necessary.

Let Nα = {1} and Nβ = {2} and c = cα < cβ , so that if ever adoption is efficient, it
is individual 1 that adoptsβ.An economy is denotedby e = (θN , c) ∈ R

3+=E2. Figure 3
below depicts the TMDM defined over E2. Although restrictive, this environment is
still worth investigating as an instance of bilateral cooperation.

In order to build a notion of what constitutes a ‘good’ feasible Groves mechanism
we rely on the following axiom, Symmetry with respect to Adoption Costs, or simply
Symmetry. Let τ : {1, 2} → {1, 2} be such that τ(i) = j for each i, j ∈ N and θτ(N )

denote the vector θN permuted according to τ . In the two-agent setting Symmetry
effectively requires that the distribution of utilities that an allocation induces does
not depend on the agent-specific cost that adoption entails. The axiom constitutes a
minimal legitimacy requirement that all mechanisms should naturally fulfill as agents
cannot be considered responsible for the cost deriving from adopting a foreign plat-
form. The axiom states that the consequences of a mechanism in utility terms should
be invariant to the swapping of preference parameters. It should be noted that swap-
ping preferences is still shy of fully swapping identities, as adoption costs are platform
specific and exogenous.

4 This is straightforward. Suppose that for some e ∈ E , lN ∈ 	(e) and
∑

i∈N li cγ (i) > c. Any l∗N ∈
L f ∗(e) involves a greater or equal sum of gross benefits and a lower total cost compared to lN , which is in
contradiction with lN ∈ 	(e).
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18 E. Athanasiou et al.

Fig. 3 The vector of transfers
(t tmd
1
t tmd
2

)
for each profile

(θ1, θ2) ∈ R+ according to the
TMDM in the two-agent case.
Agent 1 adopts if θ1 + θ2 ≥ c.
She does not otherwise

θ1

θ2

c

c

− c
2

− c
2

c
2

θ1 − 3c
2

θ2 − c
2

− c
2

θ2 − c
2

θ1 − 3c
2

c
2

− c
2

Symmetry For each e ∈ E2, i ∈ N ,

ui
(
ϕi (θN , c); θi

) = uτ(i)
(
ϕτ(i)(θτ(N ), c); θτ(i)

)
.

Let�2 be the set of Strategy-Proof, Symmetrical and Feasiblemechanisms defined
over E2. For each pair of mechanisms ϕ, ϕ′ ∈ �2, ϕ Pareto dominates ϕ′ if and only
if for each c ∈ R+, each θN ∈ R

2+ and each i ∈ N

ui
(
ϕi (θN , c); θi

) ≥ ui
(
ϕ′
i (θN , c); θi

)
,

moreover, for some θ̃N ∈ R
+
2 and some j ∈ N ,

u j
(
ϕ j (θ̃N , c); θ̃ j

)
> u j

(
ϕ′
j (θ̃N , c); θ̃ j

)
.

A mechanism ϕ ∈ �2 is Second Best Efficient if and only if there does not exist
another mechanism ϕ′ ∈ �2 such that ϕ′ Pareto dominates ϕ. In a different economic
environment, Moulin (1986) and Guo et al. (2013) demonstrate that, for two-agent
economies, the Pivotal Mechanism is the only Groves mechanism that is not Pareto
dominated by another Groves mechanism. We will show that there exists a unique
Second Best Efficient Groves mechanism in �2. The following condition (adapted
from Athanasiou 2013) is necessary for a mechanism to be Second Best Efficient.
A mechanism ϕ ∈ �2 satisfies Condition A if and only if for each e ∈ E2 and each
i ∈ N , there does not exist ε > 0 such that for each x ≥ 0

(
lN (x), tN (x)

) = ϕ
(
(x, θN\{i}), c

)
and

∑

j∈N
t j (x) + ε ≤ 0.

Amechanism violatingConditionA enables us to perturb it slightly in order to produce
a newmechanism that Pareto dominates the original. The perturbation involves giving

123



Groves mechanisms and communication externalities 19

one agent a little bit more at a single valuation and for all profiles comprising this
valuation. By construction, the mechanism thus created retains Strategy-Proofness
and, courtesy of the violation of Condition A, remains feasible.

Proposition 4 A mechanism ϕ ∈ �2 is Second Best Efficient only if it satisfies Con-
dition A.

Proof Suppose that ϕ ∈ �2 is Second Best Efficient. By way of contradiction let there
exist e′ = (θ ′

N , c′) ∈ E2 and ε > 0 such that for some j ∈ {1, 2}
(
l ′N (x), t ′N (x)

) = ϕ
(
(x, θ ′

N\{ j}), c′), and

for each x ≥ 0,
∑

i∈N
t ′i (x) + ε ≤ 0.

Without loss of generality, let j = 1. Consider the mechanism ϕ̂ constructed in the
following way: For each e = (

(θ1, θ2), c
) ∈ E2 if either θ1 �= θ ′

2 or θ2 �= θ ′
2 or c �= c′,

then ϕ̂(e) = ϕ(e). Otherwise, ϕ̂
(
(x, θ ′

2), c
′) = (

l̂N (x), t̂N (x)
)
, where, for each x ≥ 0,

(i) l̂N (x) = l ′N (x),
(ii) t̂1(x) = t ′1(x) + ε and t̂2(x) = t ′2(x),

Moreover for each x ≥ 0, ϕ̂
(
(θ ′

2, x), c
′) = ((

l̂2(x), l̂1(x)),
(
t̂2(x), t̂1(x)

))
. By assump-

tion, ϕ satisfies Strategy-Proofness and Symmetry. Hence, by construction, so does ϕ̂.
By assumption, ϕ satisfies Feasibilty. Hence, since the negation ofCondition A is true,
by construction, so does ϕ̂. Therefore, ϕ̂ ∈ �2. By construction, for each e ∈ E2 and
each i ∈ {1, 2},

ui
(
ϕ̂(e); θi

) ≥ ui
(
ϕ(e); θi

)
.

Moreover, by construction, for each x ≥ 0,

u1
(
ϕ̂
(
(x, θ ′

2), c
′); θ1

)
> u1

(
ϕ
(
(x, θ ′

2), c
′); θ1

)
.

Therefore, ϕ cannot be Second Best Efficient, a contradiction. 
�
Refer to Fig. 3. The TMDM does not satisfy Condition A. Let θ1 = θ ′

1 < c, so that
the value of the sum of the transfers prescribed by the TMDM only depends on θ2.
For each θ2 ≥ 0,

∑
j∈N t tmd

j (θ2) < 0. Therefore it is possible to build a mechanism

ϕ̂
(
(θ ′

1, x), c
) = (

l̂N (x), t̂N (x)
)
, in such a way that, for each x ≥ 0, l̂N (x) = ltmd

N (x),
t̂1(x) = t tmd

1 (x) and t̂2(x) = t tmd
2 (x)+ε. This mechanism is feasible (for some ε > 0)

and, by construction, Pareto dominates ϕtmd .

The Second Best Mechanism (SBM) For each e ∈ E2, (lN , tN ) = ϕsbm(e) if and only
if lN ∈ 	(e) and, for each i ∈ N ,

t1 =
{

v2(lN ; θ2) + f (θ2) if θ2 ≤ c,
f (θ2) if θ2 > c.
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Fig. 4 The vector of transfers
(tsbm1
tsbm2

)
for each profile

(θ1, θ2) ∈ R+ according to the
SBM in the two-agent case.
Agent 1 adopts if θ1 + θ2 ≥ c.
She does not otherwise

θ1

c
2

c
2

θ2

c

c

0

0

c
2

θ1 − c

θ2

− c
2

c
2−θ2

0

0

c
2−θ1

c
2

− c
2

and

t2 =
{

v1(lN ; θ1) + f (θ1) if θ1 ≤ c,
f (θ1) − c if θ1 > c,

where,

f (θi ) =
⎧
⎨

⎩

0 if θi ≤ c
2

c
2 − θi if c

2 < θi ≤ c
c
2 if θi > c.

,

Figure 4 depicts the SBM for some arbitrary c ∈ R+. The mechanism violates
Individual Rationality at each (θN , c) ∈ E such that either θ1 < c or θ2 < c.

Proposition 5 Amechanism ϕ ∈ �2 satisfyingAssignment Efficiency is Second Best
Efficient if and only if it is the SBM.

The proof can be found in “Appendix 2”. The subtlety of Proposition 5 becomes
apparent by comparing the SBM with the TMDM. The Pareto criterion does not rank
the two. The TMDM is preferred to the SBM by agent 1 in economy e = (θN , c) ∈ E2

such that θ1 ∈ (0, c
2 ), θ2 ∈ ( c2 , c) and θ1 + θ2 > c. The mechanism that Pareto

dominates the TMDM, hence rendering it not Second Best Efficient, must be itself not
Second Best Efficient.

Naturally the reader may wonder whether the methodology we apply in the two-
agent case extends to the general case. The combinatorial nature of the problemmakes
this very difficult to ascertain. Our proof hinges on the fact that for each e ∈ E2,
	(e) ⊆ {

(0, 0), (1, 0)
}
. In the general framework the set 	(e) varies widely as the

economy changes. As a consequence, the number of cases one needs to check in order
to arrive at a result becomes too big. For this reason we believe that a more general
result is out of reach.
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7 Concluding remarks

This paper focuses on Groves mechanisms in a model of private goods with externali-
ties.We provide an algorithm that identifies the set of efficient assignments. Following
that, we tackle the issue of implementing one of such assignments by means of a
Groves mechanism. The externality present in the problem changes the characteris-
tics of well-known solutions like the Pivotal Mechanism that, in our framework, is
no longer feasible. Indeed we show that there is no Groves mechanism that is both
individually rational and feasible. This fact forces us to explore two distinct avenues.

We first look at Groves mechanisms that are individually rational and among them
we single out the mechanism that minimizes the amount of outside funding. We also
provide quite general conditions under which an individually rational Groves mecha-
nism runs a deficit. We then look at feasible Groves mechanisms. It is relatively simple
to find examples of such mechanisms. However, the task of determining mechanisms
that are Pareto undominated by some strategy-proof, symmetrical and feasible mecha-
nism is more involved. Within the simpler, but still meaningful, domain of economies
comprising only two agents we show that there is a single Groves mechanism that
satisfies this property.

Although the paper focuses on Groves mechanisms, it is worth making the point
that there are interesting mechanisms not belonging to this class that merit further
investigation (see for example Moulin and Shenker 1992; Moulin 1994). To keep
things simple let us maintain the simplifying assumptions we made in the previous
section. For instance, consider the mechanism (adapted from Moulin 1988) defined
over two-agent economies depicted in Fig. 5. Effectively, the mechanism asks agents
to announce their marginal benefit. If the announcements are such that either θ1 < c

2
or θ2 < c

2 there is no platform adoption and each agent receives a transfer equal to
zero. Otherwise, agent 1 adopts and t1 = c

2 = −t2. This simple mechanism satisfies
Strategy-Proofness, Individual Rationality andFeasibility (in fact, the sum of transfers
always equals zero).Alas, it violatesNon-ComplianceProofness and, thus,Assignment

Fig. 5 The vector of transfers(t1
t2

)
for each profile

(θ1, θ2) ∈ R+. Agent 1 adopts if
both θ1 ≥ c

2 and θ2 ≥ c
2 . She

does not otherwise

θ1

c
2

c
2

θ2

0

0

0

0

0

0

c
2

− c
2
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Efficiency. To see that, suppose that θ2 = 0 < c < θ1. The mechanism prescribes
to agent 1 to refrain from adoption. Nonetheless, agent 1 can ensure a higher utility
if she deviates from the proposed allocation and adopts the foreign platform. Aside
from this deficiency, one should not be hasty in dismissing the mechanism depicted
in Fig. 5. Applying the reasoning employed in the proof of Proposition 4, it can be
demonstrated that it is Second Best Efficient. This fact alludes to the existence of
interesting mechanisms outside the Groves family. Its implications are left for future
research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Proof of Proposition 3

By inspecting the proof of Lemma 4 (namely the lower bound set by inequality 5.3)
the following fact can be easily deduced. Let ϕ be an individually rational Groves
mechanism. For each e = (θN ,C) ∈ E , with (lN , tN ) = ϕ(e), if

∑

i∈N

∑

j �=i

v j (lN ; θ j ) −
∑

i∈N

∑

j∈N
v j (l

i
N ; θ j ) −

∑

i∈N
vi (l

i
N ; 0)

= (|N | − 1)π(lN , e) −
∑

i∈N
π(liN , ei ) ≥ 0, (7.1)

then

∑

i∈N
ti ≥ 0.

In what follows we assume without loss of generality that cα ≤ cβ , that Nα =
{1, . . . ,m − 1}, Nβ = {m, . . . , |N |} and that, for each λ ∈ {α, β} and for each
i, j ∈ Nλ, if i < j , then θi ≥ θ j . Throughout this section lN ∈ 	(e) and liN ∈ 	(ei ).
Moreover, some times it will be more convenient to represent lN as a function of the
agents that actually adopt the foreign platform at such assignment. So, for each e ∈ E
and lN ∈ 	(e) let I (lN ; e) = {i ∈ Nα|li = 1} and J (lN ; e) = {i ∈ Nβ |li = 1}.When
no confusion may ensue we will just write I (lN ; e) = I and J (lN ; e) = J , so that
(I, J ) is the set of agents who adopt a foreign platform at some efficient assignment
lN . Similarly, some times it will be more convenient to denote liN as (I i , J i ).

For some Ĩ ⊆ Nα and J̃ ⊆ Nβ we use z( Ĩ , J̃ ) to denote the sum of net benefits
generated by the assignment described by Ĩ and J̃ , i.e.,

z( Ĩ , J̃ ) = |Nβ |
∑

i∈ Ĩ
θi +| Ĩ |

∑

j∈Nβ\J̃
θ j +|Nα|

∑

j∈ J̃

θ j + | J̃ |
∑

i∈Nα\Ĩ
θi−| Ĩ |cα−| J̃ |cβ.

(7.2)
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Similarly, for some Ĩ ⊆ Nα and J̃ ⊆ Nβ we use zi ( Ĩ , J̃ ) to denote the value of such
a structure in the economy ei .

The following Lemmas are needed for the proof of Proposition 3.

Lemma 6 For each i ∈ Nα , π(liN ; ei ) ≤ π(l1N ; e1) + |Nβ |(θ1 − θi ) and for each
i ∈ Nβ , π(liN ; ei ) ≤ π(lmN ; em) + |Nα|(θm − θi ).

Proof Let (I i , J i ) be an optimal solution yielding a total surplus of π(liN ; ei ). There
are three cases:

(1) i ∈ I i : Since in ei we set θi to zero, this implies that, by Lemma 1, I i = Nα and
J i = ∅. Therefore,

π(liN ; ei ) − z1(Nα,∅) = −|Nβ |θi + |Nβ |θ1
which implies

π(liN ; ei ) = z1(Nα,∅) + |Nβ |(θ1 − θi ) ≤ π(l1N ; e1) + |Nβ |(θ1 − θi ).

(2) i /∈ I i , 1 ∈ I i : Then

π(liN ; ei ) = |Nβ |
∑

p∈I i
θp + |Nα|

∑

j∈J i

θ j + |I i |
∑

j∈Nβ\J i
θ j

+ |J i |
∑

p∈Nα\(I i∪i)
θp − |I i |cα − |J i |cβ.

Moreover

z1((I i \{1}) ∪ {i}, J i ) = |Nβ |
∑

p∈(I i\1∪{i})
θp + |Nα|

∑

j∈J i

θ j + |I i |
∑

j∈Nβ\J i
θ j

+ |J i |
∑

p∈Nα\(((I i\{1})∪{i})∪{1})
θp − |I i |cα − |J i |cβ.

Therefore,

π(liN ; ei ) − z1((I i \{1}) ∪ {i}, J i ) = −|Nβ |θi + |Nβ |θ1.

Therefore,

π(liN ; ei ) ≤ π(l1N ; e1) + |Nβ |(θ1 − θi ).

(3) i /∈ I i , 1 /∈ I i : Then, by Lemma 3, I i = ∅. So,

π(liN ; ei ) = |Nα|
∑

j∈J i

θ j + |J i |
∑

p∈Nα\{i}
θp − |J i |cβ.
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Moreover,

z1(∅, J i ) = |Nα|
∑

j∈J i

θ j + |J i |
∑

p∈Nα\{1}
θp − |J i |cβ.

Therefore

π(liN ; ei ) − z1(∅, J i ) = |J i |(θ1 − θi ).

Therefore,

π(liN ; ei ) ≤ π(l1N ; e1) + |J i |(θ1 − θi ) ≤ π(l1N ; e1) + |Nβ |(θ1 − θi ).

The same argument may be employed for the proof of the second part of the state-
ment. 
�
Lemma 7 If 1 /∈ I 1 then, for each i ∈ Nα , z(I 1 ∪ {1}, J 1) − π(liN ; ei ) ≥ |Nβ |θi +∑

j∈Nβ\J 1 θ j − cα . If m /∈ Jm then, for each i ∈ Nβ , z(Im, Jm ∪ {m}) − π(liN ; ei ) ≥
|Nα|θi + ∑

j∈Nα\Im θ j − cβ .

Proof If 1 /∈ I 1 then, by definition, z(I 1 ∪ {1}, J 1) − π(l1N ; e1) = |Nβ |θ1 +∑
j∈Nβ\J 1 θ j − cα . Moreover from Lemma 6 we have that, for each i ∈ Nα ,

π(liN ; ei ) ≤ π(l1N ; e1)+|Nβ |θ1 −|Nβ |θi and therefore z(I 1 ∪{1}, J 1)−π(liN ; ei ) ≥
|Nβ |θi + ∑

j∈Nβ\J 1 θ j − cα . Similarly for the second part of the statement. 
�
An immediate consequence of Lemma 7 is that, If 1 /∈ I 1, then

∑
i∈ Ĩ (π(lN ; e) −

π(l jN ; ei )) ≥ ∑
i∈ Ĩ (z(I

1 ∪ {1}, J 1) − π(liN ; ei )) ≥ |Nβ | ∑i∈ Ĩ θi + | Ĩ | ∑ j∈Nβ\J 1 θ j

− | Ĩ |cα where Ĩ is any subset of Nα . Similarly, if m /∈ Jm , then
∑

j∈ J̃ (π(lN ; e) −
π(l jN ; e j )) ≥ ∑

j∈ J̃ (z(I
m, Jm∪{m})−π(l jN ; e j )) ≥ |Nα| ∑ j∈ J̃ θ j+| J̃ | ∑i∈Nα\Im θi

− | J̃ |cβ where J̃ is any subset of Nβ .

Lemma 8 If either I 1 = Nα or Jm = Nβ , then any individually rational Groves
mechanism runs a deficit.

Proof Suppose that I 1 = Nα . By Lemma 6we have that for each i ∈ Nα , π(liN ; ei ) ≤
π(l1N ; e1) + |Nα|(θ1 − θi ). Moreover, since by assumption (I 1, J 1) = (Nα,∅), we
have that for each i ∈ Nα , zi (Nα,∅) = π(l1N ; e1) + |Nα|(θ1 − θi ). Combining the
two statements we obtain that for each i ∈ Nα , π(liN ; ei ) ≤ zi (Nα,∅). By definition,
liN ∈ 	(ei ), therefore, for each i ∈ Nα , π(liN ; ei ) = zi (Nα,∅). In turn, this latter
fact implies that for each i ∈ Nα , π(liN ; e) − π(liN ; ei ) = |Nβ |θi . Moreover, since
lN ∈ 	(e), we have that for each i ∈ Nα , π(lN ; e) ≥ π(liN ; e). Therefore, combining
the last two steps we obtain

∑

i∈Nα

(π(lN ; e) − π(liN ; ei )) ≥ |Nβ |
∑

i∈Nα

θi . (7.3)
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Claim There exists an optimal assignment for em , (Im, Jm), such that m /∈ Jm .
Suppose, by way of contradiction, that at all the optimal assignments for the economy
em , m ∈ Jm . Then, by Lemma 1, at any such assignment we must have Jm =
Nβ . Therefore, zm(Nβ,∅) ≥ zm(∅, Nα), which is true only if |Nα|cα ≥ |Nβ |cβ .
Moreover, since I 1 = Nα , by applying the same reasoning as before, we have that
|Nα|cα ≤ |Nβ |cβ . Thus, |Nα|cα = |Nβ |cβ and therefore the solution Im = Nα ,
Jm = ∅ is also optimal, a contradiction.

We may therefore apply Lemma 7. It yields

∑

j∈Jm∪{m}
(z(Im, Jm ∪ {m}) − π(l jN ; e j ))

≥ |Nα|
∑

j∈(Jm∪{m})
θ j + |Jm ∪ {m}|

∑

i∈Nα\Im
θi − |Jm ∪ {m}|cβ. (7.4)

Adding (7.3) and (7.4) we obtain

∑

i∈Nα

(π(lN ; e) − π(liN ; ei )) +
∑

j∈Jm∪{m}
(z(Im, Jm ∪ {m}) − π(l jN ; e j ))

≥ |Nβ |
∑

i∈Nα

θi + |Nα|
∑

j∈(Jm∪{m})
θ j + |Jm ∪ {m}|

∑

i∈Nα\Im
θi − |Jm ∪ {m}|cβ.

(7.5)

Case 1 Let Im = Nα . By Lemma 6 we have that for each i ∈ Nβ , π(liN ; ei ) ≤
π(lmN ; em) + |Nα|(θm − θi ). Moreover, since by assumption (Im, Jm) = (Nα,∅), we
have that for each i ∈ Nβ , zi (Nα,∅) = π(lmN ; em) + |Nβ |(θm − θi ). Combining the
two statements we obtain that for each i ∈ Nβ , π(liN ; ei ) ≤ zi (Nα,∅). By definition,
liN ∈ 	(ei ), therefore, for each i ∈ Nβ , π(liN ; ei ) = zi (Nα,∅). In turn, this latter
fact implies that for each i ∈ Nβ , π(liN ; e) − π(liN ; ei ) = |Nα|θi . Moreover, since
lN ∈ 	(e), we have that for each i ∈ Nβ , π(lN ; e) ≥ π(liN ; e). Therefore, combining
the last two steps we obtain

∑

i∈Nβ

(π(lN ; e) − π(liN ; ei )) ≥ |Nα|
∑

i∈Nβ

θi . (7.6)

Combining (7.3) and (7.6) we obtain

|N |π(lN ; e) −
∑

i∈N
π(liN ; ei ) ≥ |Nβ |

∑

i∈Nα

θi + |Nα|
∑

i∈Nβ

θi . (7.7)

Clearly, |Nβ | ∑i∈Nα θi +|Nα| ∑i∈Nβ θi > π(lN ; e), so that inequality (7.7) becomes
inequality (7.1). This completes the proof for this case.

Case 2 Let Im ⊂ Nα . Therefore, the set Nα\Im is not empty. At the optimal solution
corresponding to em , (Im, Jm), by resorting to Lemma 3, we obtain that for each i ∈
Nα\Im , θi+∑

j∈Nβ\Jm∪{m} θ j−cα ≤ 0.As θi ≥ 0,weget
∑

j∈Nβ\(Jm∪{m}) θ j−cα ≤ 0.
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By using this latter observation (7.5) becomes

∑

i∈Nα

(π(lN ; e) − π(liN ; ei )) +
∑

j∈Jm∪{m}
(z(Im, Jm ∪ {m}) − π(l jN ; e j )

≥ |Nβ |
∑

i∈Nα

θi + |Nα|
∑

j∈(Jm∪{m})
θ j + |Jm ∪ {m}|

∑

i∈Nα\Im
θi

− |Jm ∪ {m}|cβ + |Im |
∑

j∈Nβ\(Jm∪{m})
θ j − |Im |cα

= |Nβ |
∑

i∈Nα\Im
θi + z(Im, Jm ∪ {m}) ≥ z(Im, Jm ∪ {m}). (7.8)

Therefore, we obtain that

∑

i∈Nα

(π(lN ; e) − π(liN ; ei )) + |Jm |z(Im, Jm ∪ {m}) −
∑

j∈Jm∪{m}
π(l jN ; e j )) ≥ 0.

Since π(lN ; e) ≥ z(Im, Jm ∪ {m}), for each j ∈ N , π(lN ; e) ≥ π(l jN ; e j ) and
by assumption |Jm | ≤ |Nβ | − 1 we obtain that (|Nα| + |Nβ | − 1)π(lN ; e) −∑

i∈Nα π(liN ; ei ) − ∑
j∈Nβ π(l jN ; e j ) ≥ 0, or, put differently, inequality (7.1). This

completes the proof for this case.
The same argument may be employed to prove the statement when Jm = Nβ . 
�

Lemma 9 If 1 /∈ I 1, m /∈ Jm and either I 1 ∪ {1} ⊇ Im or Jm ∪ {m} ⊇ J 1 then any
Individually Rational Groves mechanism runs a deficit.

Proof Since 1 /∈ I 1 and m /∈ Jm then, by Lemma 7,

∑

i∈I 1∪{1}
(z(I 1 ∪ {1}, J 1) − π(liN ; ei )) +

∑

i∈J 1

(z(Im, Jm ∪ {m} − π(l jN ; e j )))

≥ |Nβ |
∑

i∈(I 1∪{1})
θi + |I 1 ∪ {1}|

∑

j∈Nβ\J 1
θ j − |I 1 ∪ {1}|cα

+ |Nα|
∑

j∈J 1

θ j + |J 1|
∑

j∈Nα\Im
θi − |J 1|cβ. (7.9)
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Since I 1 ∪ {1} ⊇ Im , then Nα \ Im ⊇ Nα \ (I 1 ∪ {1}). Thus |J 1| ∑ j∈Nα\Im θi ≥
|J 1| ∑Nα\(I 1∪{1}) θi . Therefore, we may rewrite (7.9) as follows,

∑

i∈I 1∪{1}
(z(I 1 ∪ {1}, J 1) − π(liN ; ei )) +

∑

i∈J 1

(z(Im, Jm ∪ {m}) − π(l jN ; e j ))

≥ |Nβ |
∑

i∈(I 1∪{1})
θi + |I 1 ∪ {1}|

∑

j∈Nβ\J 1
θ j − |I 1 ∪ {1}|cα

+ |Nα|
∑

j∈J 1

θ j + |J 1|
∑

j∈Nα\Im
θi − |J 1|cβ

≥ |Nβ |
∑

i∈(I 1∪{1})
θi + |I 1 ∪ {1}|

∑

j∈Nβ\J 1
θ j − |I 1 ∪ {1}|cα

+ |Nα|
∑

j∈J 1

θ j + |J 1|
∑

j∈Nα\(I 1∪{1})
θi − |J 1|cβ

= z(I 1 ∪ {1}, J 1). (7.10)

Now, since π(lN ; e) ≥ z(I 1 ∪{1}, J 1) and, for each j ∈ N , π(lN ; e) ≥ π(l jN ; e j ), we
obtain that (|Nα| + |Nβ | − 1)π(lN ; e) − ∑

i∈Nα π(liN ; ei ) − ∑
j∈Nβ π(l jN ; e j ) ≥ 0.

The same argument may be employed to prove the statement when Jm ∪{m} ⊇ J 1.

�

Putting Lemmas 8 and 9 together we obtain that following result.

Lemma 10 If I 1∪{1} ⊇ Im or Jm∪{m} ⊇ J 1 then any Individually Rational Groves
mechanism runs a deficit.

Proof If i ∈ I 1 or m ∈ Jm , then the result follows from Lemma 8. Otherwise, all the
conditions of 9 are satisfied. 
�
Proof of Proposition 3 (a): Let cα ≤ cβ, |Nα| ≤ |Nβ | and assume that for some T >

0, |Nβ | ≥ ζ(T, e) + 1+ cα
T + cβ

T . Consider e1. There are three possibilities regarding
J 1. First, J 1 = ∅. By Lemma 10, the statement is true. Second, J 1 = Nβ . Since by
assumption |Nβ |cβ ≥ |Nα|cα this solution yields at most the same surplus as (Nα,∅).
Thus, by Lemma 8, the statement is true. Finally, 1 ≤ |J 1| < |Nβ |. This implies that
0 ≤ |I 1| < |Nα|. As on both sides at least one agent is not adopting a foreign platform,
from Lemma 3, it follows that

∑
k∈Nα\I 1 θk ≤ cβ and

∑
k∈Nβ\J 1 θk ≤ cα , or

∑

k∈Nα\I 1
θk +

∑

k∈Nβ\J 1
θk ≤ cα + cβ. (7.11)

Let, for each λ ∈ {α, β}, and each T > 0, ζ λ(T, e) = |{i ∈ Nλ | θi < T }|. By
construction, for each T > 0, ζ α(T, e) = ζ α(T, e1) + 1. Therefore, for each T > 0,

∑

k∈Nα\I 1
θk ≥ T

(|Nα\ I 1| − ζ α(T, e) − 1
)
. (7.12)
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Similarly, for each T > 0,

∑

k∈Nβ\J 1
θk ≥ T

(|Nβ \ J 1| − ζ β(T, e)
)
. (7.13)

Combining, (7.11), (7.12) and (7.13) and noting that for each T > 0, ζ(T, e) =
ζ α(T, e) + ζ β(T, e), we obtain

ζ(T, e) + 1 + cα

T
+ cβ

T
≥ |Nα\ I 1| + |Nβ \ J 1|. (7.14)

By recasting the previous equation we obtain

|I 1| + |J 1| ≥ |Nα| + |Nβ | − ζ(T, e) − cα

T
− cβ

T
− 1. (7.15)

By assumption, for some T > 0, |Nβ | ≥ ζ(T, e) − cα
T − cβ

T − 1, therefore

|I 1| + |J 1| ≥ |Nα|. (7.16)

By assumption, cα ≤ cβ , therefore

cα|I 1| + cβ |J 1| ≥ cα|I 1| + cα|J 1| ≥ cα|Nα|. (7.17)

Therefore, z1(Nα,∅) ≥ π(l1N ; e1) so that, by the definition of l1N , z
1(Nα,∅) =

π(l1N ; e1). By Lemma 8, the statement is true. 
�

Proof of Proposition 3 (b): Let cα ≤ cβ, |Nα| ≥ cβ
cα

|Nβ | and suppose that for some

T > 0, |Nα| ≥ cβ
cα

(
ζ(T, e) + 1

) + 2cβ
T . Consider em . There are three possibilities

regarding Im . First, Im = ∅. By Lemma 10 the statement is true. Second, Im = Nα .
Since, by assumption, cα|Nα| ≥ cβ |Nβ | this solution yields at most the same surplus
as (∅, Nβ). Thus, by Lemma 8, the statement is true. Finally, 1 ≤ |Im | < Nα .
This implies that 0 ≤ |Jm | < Nβ . As on both sides at least some agent is not
adopting the foreign platform, from Lemma 3 it follows that

∑
k∈Nα\Im θk ≤ cβ and∑

k∈Nβ\Jm θk ≤ cα , or, since by assumption cα ≤ cβ,

cα

∑

k∈Nα\Im
θk + cβ

∑

k∈Nβ\Jm
θk ≤ 2cαcβ. (7.18)

Let, for each λ ∈ {α, β}, and each T > 0, ζ λ(T, e) = |{i ∈ Nλ | θi < T }|. By
construction, for each T > 0, ζ β(T, e) = ζ β(T, e1) + 1. Therefore, for each T > 0,

∑

k∈Nβ\Jm
θk ≥ T

(|Nβ \ Jm | − ζ β(T, e) − 1
)
. (7.19)
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Similarly, for each T > 0,

∑

k∈Nα\Im
θk ≥ T

(|Nα\ Im | − ζ α(T, e)
)
. (7.20)

Combining, (7.18), (7.19) and (7.20) we obtain

cαT
(|Nα\ Im | − ζ α(T, e)

) + cβT
(|Nβ \ Jm | − ζ β(T, e) − 1

) ≤ 2cαcβ, (7.21)

and after some algebraic manipulations,

cα|Nα| − cα

(
ζ α(T, e) + 1

) + cβ |Nβ | − cβζ β(T, e) ≤ 2
cαcβ

T
+ cα|Im | + cβ |Jm |

(7.22)

Noting that for each T > 0, ζ(T, e) = ζ α(T, e) + ζ β(T, e) and that, by assumption
cα ≤ cβ , the expression above becomes

cα|Nα| − cβ

(
ζ(T, e) + 1

) + cβ |Nβ | ≤ 2
cαcβ

T
+ cα|Im | + cβ |Jm | (7.23)

Finally, dividing both sides by cβ > 0 we obtain

|Nα| − cβ

cα

(
ζ(T, e) + 1

) − 2
cβ

T
+ cβ

cα

|Nβ | ≤ |Im | + cβ

cα

|Jm | (7.24)

By assumption, for some T > 0, |Nα| ≥ cβ
cα

(
ζ(T, e) + 1

) + 2cβ
T , therefore

cβ

cα

|Nβ | ≤ |Im | + cβ

cα

|Jm |, or cβ |Nβ | ≤ cα|Im | + cβ |Jm |. (7.25)

Therefore, zm(∅, Nβ) ≥ π(lmN ; em) so that, by the definition of lmN , z
m(∅, Nβ) =

π(lmN ; em). By Lemma 8, the statement is true. 
�

Appendix 2: Proof of Proposition 5

Lemma 11 If a mechanism ϕ satisfies Strategy-Proofness, Symmetry and Assign-
ment Efficiency, then there exists some function f : R+ → R, such that for each
e = (θ1, θ2, c) ∈ E2, with (lN , tN ) = ϕ(e),

t1 =
{

v2(lN ; θ2) + f (θ2) if θ2 ≤ c,
f (θ2) if θ2 > c.

and

t2 =
{

v1(lN ; θ1) + f (θ1) if θ1 ≤ c,
f (θ1) − c if θ1 > c.

123



30 E. Athanasiou et al.

Proof The domain of preference profiles is convex (and hence smoothly connected).
Once more we appeal to Holmström’s characterization Holmström (1979). A mecha-
nismϕ satisfies Strategy Proofness andAssignment Efficiency if and only if there exists
some function hi : R+ → R such that for each e = (θN , c) ∈ E , with (lN , tN ) = ϕ(e),
we have lN ∈ 	(e), and, for each i ∈ N ,

ti = vN\{i}(lN ; θN\{i}) − hi (θN\{i})

Setting

hi (θN\{i}) =
{− fi (θN\{i}) if θN\{i} ≤ c,

vN\{i}(lN ; θN\{i}) − fi (θN\{i}) if θN\{i} > c,

we obtain, for each i ∈ N ,

ti =
{

vN\{i}(lN ; θN\{i}) + fi (θN\{i}) if θN\{i} ≤ c,
fi (θN\{i}) if θN\{i} > c.

(7.26)

Let θ ∈ [0, c
2 ) and (lN , tN ) = ϕ

(
(θ, θ), c

)
. By Assignment Efficiency, lN = (0, 0).

Hence, using (7.26), we obtain u1
(
ϕ(lN , tN )

) = f1(θ) and u2
(
ϕ(lN , tN )

) = f2(θ).
By Symmetry, u1

(
ϕ(lN , tN )

) = u2
(
ϕ(lN , tN )

)
. Hence,

for each θ ∈ [0, c
2
), f1(θ) = f2(θ). (7.27)

Let θ ∈ [ c2 , c] and (lN , tN ) = ϕ
(
(θ, θ), c

)
. By Assignment Efficiency, lN =

(1, 0). Hence, using (7.26), we obtain u1
(
ϕ(lN , tN )

) = θ − c + [θ + f1(θ)] and
u2

(
ϕ(lN , tN )

) = θ + [θ − c+ f2(θ)]. By Symmetry, u1
(
ϕ(lN , tN )

) = u2
(
ϕ(lN , tN )

)
.

Hence,

for each θ ∈ [ c
2
, c], f1(θ) = f2(θ). (7.28)

Let θ ∈ (c,+∞) and (lN , tN ) = ϕ
(
(θ, θ), c

)
. By Assignment Efficiency, lN = (1, 0).

Hence, using (7.26),we obtainu1
(
ϕ(lN , tN )

) = θ−c+ f1(θ) andu2
(
ϕ(lN , tN )

) = θ+
f2(θ). By Symmetry, u1

(
ϕ(lN , tN )

) = u2
(
ϕ(lN , tN )

)
. Hence, for each θ ∈ (c,+∞),

f1(θ) = f2(θ) + c.

for each θ ∈ (c,+∞), f1(θ) = f2(θ) + c. (7.29)

Setting for each θ ∈ R+, f (θ) = f1(θ) and combining (7.26), (7.27), (7.28), (7.29),
we obtain the desired result. 
�

Let �
g
2 ⊂ �2 denote the set of Symmetrical and Feasible Groves mechanisms.

Appealing to Lemma 11 we may associate with any ϕ ∈ �
g
2 some function f :

R+ → R. In addition, we may express the sum of transfers prescribed by any ϕ ∈ �
g
2 ,

at each profile, in terms of this function f . For each e = (
(θ1, θ2), c

) ∈ E , with
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(lN , tN ) = ϕ(e), we have

t1+t2 = S f (θ1, θ2)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (θ2) + f (θ1) if θ1 + θ2 ≤ c,
f (θ2) + θ2 + f (θ1) + θ1 − c if θ1 + θ2 > c and θ1, θ2 ≤ c,
f (θ2) + θ2 + f (θ1) − c if θ1 > c and θ2 ≤ c,
f (θ2) + f (θ1) + θ1 − c if θ1 ≤ c and θ2 > c,
f (θ2) + f (θ1) − c if θ1 > c and θ2 > c.

Lemma 12 Let ϕ ∈ �
g
2 be a Groves mechanism associated with some function f :

R+ → R. If ϕ is Second Best Efficient, then for each c > 0, each θ ′, θ ′′ ∈ [0, c], with
θ ′ < θ ′′,

f (θ ′′) + θ ′′ ≥ f (θ ′) + θ ′

Proof Suppose not. Let there exist θ ′, θ ′′ ∈ [0, c], with θ ′ < θ ′′, and ε > 0 such that

f (θ ′′) + θ ′′ + ε = f (θ ′) + θ ′. (7.30)

Consequently, f (θ ′) − [ f (θ ′′) + ε] = θ ′′ − θ ′. Since, by assumption, θ ′′ − θ ′ > 0,
we obtain

f (θ ′) > f (θ ′′) + ε (7.31)

Define g : R+ → R to be such that g(θ) = f (θ), for each θ ∈ R+ \ {θ ′′}, and
g(θ ′′) = f (θ ′′) + ε. By Feasibility, for each (θ1, θ2) ∈ R

2+, S f (θ1, θ2) ≤ 0. Hence
using (7.30) and (7.31), we obtain for each θ1 ∈ R+, Sg(θ1, θ ′′). ≤ S f (θ1, θ

′) ≤ 0.
Similarly, for each θ2 ∈ R+, Sg(θ ′′, θ2) ≤ S f (θ ′, θ2) ≤ 0. By construction, for each
(θ1, θ2) ∈ R

2+ such that θ1 �= θ ′′ and θ2 �= θ ′′, Sg(θ1, θ2) = S f (θ1, θ2). Therefore, for
each (θ1, θ2) ∈ R

2+, Sg(θ1, θ2) ≤ 0. Let ϕ′ be some Symmetrical Groves mechanism
that agrees with ϕ on the assignment on all economies and, moreover, is associated
with g. The mechanism ϕ′ satisfies Feasibility and, thus, ϕ′ ∈ �

g
2 .

Finally, by construction, ϕ′ Pareto dominates ϕ at each profile (θ1, θ2) ∈ {(θ1, θ2) ∈
R
2+ : either θ1 = θ ′′ or θ2 = θ ′′ or both}, while ϕ′ coincides with ϕ otherwise.

Hence, ϕ′ Pareto dominates ϕ, a contradiction. 
�
Lemma 13 Let ϕ ∈ �

g
2 be a Groves mechanism associated with some function f :

R+ → R. If ϕ is Second Best Efficient then, for each θ > c, f (θ) = c
2 .

Proof Suppose first, by way of contradiction, that for some θ̃ > c, f (θ̃) > c
2 . By

Lemma 11, letting (lN , tN ) = ϕ
(
(θ̃ , θ̃ ), c

)
, S f (θ̃ , θ̃ ) = 2 f (θ̃) − c. By assumption,

f (θ̃) > c
2 , therefore S

f (θ̃ , θ̃ ) > 0, which contradicts Feasibility.
Suppose then that for some θ̃ > c, f (θ̃) < c

2 . In particular, let f (θ̃) = c
2 − ε, for

some ε > 0. Consider first profile (θ, θ̃ ), for some θ ∈ [0, c]. By Lemma 11, letting
(lN , tN ) = ϕ

(
(θ, θ̃ ), c

)
, S f (θ, θ̃ ) = c

2 − ε + f (θ) + θ − c. By Lemma 12,

S f (θ, θ̃ ) = c

2
− ε + f (θ) + θ − c ≤ c

2
− ε − c + [ f (c) + c] = c

2
− ε + f (c).
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Note that, by Feasibility, f (c) ≤ − c
2 . Hence,

S f (θ, θ̃ ) ≤ c

2
− ε + f (c) ≤ c

2
− ε − c

2
= −ε < 0.

Consider, finally, the profile (θ, θ̃ ), for some θ ∈ (c,+∞). Letting again (lN , tN ) =
ϕ
(
(θ, θ̃ ), c

)
, and appealing to Lemma 11, we obtain S f (θ, θ̃ ) = c

2 − ε + f (θ) − c.
We have already established earlier in the proof that f (θ) ≤ c

2 . Hence, S
f (θ, θ̃ ) ≤

c
2 − ε + c

2 − c = −ε < 0. Hence, for each θ ∈ R+, t1 + t2 < 0, which contradicts
Condition A, a necessary condition for Second-Best Efficiency. 
�
Lemma 14 Let ϕ ∈ �

g
2 be a Groves mechanism associated with some function f :

R+ → R. For each θ ∈ ( c2 , c], f (θ) ≤ c
2 − θ .

By Lemma 11, S f (θ, θ) = 2 f (θ) + 2θ − c. By Feasibility, S f (θ, θ) ≤ 0. Hence,
f (θ) ≤ c

2 − θ . 
�
Lemma 15 Let ϕ ∈ �

g
2 be a Groves mechanism associated with some function f :

R+ → R. If ϕ is Second Best Efficient then, for each θ ∈ [0, c
2 ], f (θ) = 0.

Proof Suppose, by way of contradiction, that there exists some θ̃ ∈ [0, c
2 ] such that

f (θ̃) �= 0. If f (θ̃) > 0 we would obtain S f (θ̃ , θ̃ ) = 2 f (θ̃) > 0, a violation of
Feasibility. Therefore, it must be f (θ̃) < 0.

Step 1 Let θ ∈ (c,+∞). By Lemma 11, using the fact that θ̃ ∈ [0, c
2 ] and θ ∈

(c,+∞), we obtain

S f (θ̃ , θ) = f (θ) + f (θ̃) + θ̃ − c.

By Lemma 13, using the fact that θ ∈ (c,+∞),

S f (θ̃ , θ) = c

2
+ f (θ̃) + θ̃ − c = − c

2
+ θ̃ + f (θ̃).

By assumption, f (θ̃) < 0 and − c
2 + θ̃ ≤ 0, hence

for each θ ∈ (c,+∞), S f (θ̃ , θ) < 0.

Step 2 Let θ ∈ ( c2 , c]. By Lemma 11, using the fact that θ̃ ∈ [0, c
2 ] and θ ∈ ( c2 , c],

we obtain

S f (θ̃ , θ) = f (θ) + θ + f (θ̃) + θ̃ − c.

By Lemma 14, substituting for f (θ), we obtain

S f (θ̃ , θ) ≤ f (θ̃) + θ̃ − c

2
.
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By assumption, f (θ̃) < 0 and θ̃ ∈ [0, c
2 ], hence

for each θ ∈ (
c

2
, c], S f (θ̃ , θ) < 0.

Step 3 Let θ ∈ [0, c
2 ]. By Lemma 11, using the fact that θ̃ , θ ∈ [0, c

2 ], we obtain

S f (θ̃ , θ) = f (θ) + f (θ̃)

and, in particular S f (θ, θ) = 2 f (θ). By Feasibility, S f (θ, θ) ≤ 0. Hence, f (θ) ≤ 0.
This latter fact, combined with the assumption that f (θ̃) < 0, yields

for each θ ∈ [0, c
2
], S f (θ̃ , θ) < 0.

From Steps 1 to 3 we obtain that for each θ ∈ R+, S f (θ̃ , θ) < 0. This constitutes
a violation of Condition A, a necessary condition for Second-Best Efficiency. 
�
Lemma 16 Let ϕ ∈ �

g
2 be a Groves mechanism associated with some function f :

R+ → R. If ϕ is Second Best Efficient then, for each θ ∈ ( c2 , c], f (θ) = c
2 − θ .

Proof Suppose, by way of contradiction, that there exist some θ̃ ∈ ( c2 , c] such that
f (θ̃) �= c

2 − θ̃ . Lemma 14 rules out f (θ̃) > c
2 − θ̃ . Therefore, it must be f (θ̃) < c

2 − θ̃ .

Step 1 Let θ ∈ (c,+∞). By Lemma 11, using the fact that θ̃ ∈ ( c2 , c] and θ ∈
(c,+∞), we obtain

S f (θ̃ , θ) = f (θ) + f (θ̃) + θ̃ − c.

ByLemma 13, using the fact that θ ∈ (c,+∞) and substituting for f (θ), this becomes

S f (θ̃ , θ) = f (θ̃) + θ̃ − c

2
.

By assumption, f (θ̃) < c
2 − θ̃ , hence

for each θ ∈ (c,+∞), S f (θ̃ , θ) < 0.

Step 2 Let θ ∈ [0, c] and θ̃ + θ ≤ c. By Lemma 11,

S f (θ̃ , θ) = f (θ) + f (θ̃).

Since θ̃ + θ ≤ c and θ̃ ∈ ( c2 , c] it must be θ < c
2 . Therefore, by Lemma 15, f (θ) = 0.

Consequently, S f (θ̃ , θ) = f (θ̃). By assumption, f (θ̃) < c
2 − θ̃ and θ̃ > c

2 . Hence,

if θ̃ + θ ≤ c, then for each θ ∈ [0, c], S f (θ̃ , θ) < 0.

123



34 E. Athanasiou et al.

Step 3 Let θ ∈ [0, c] and θ̃ + θ > c. By Lemma 11,

S f (θ̃ , θ) = f (θ) + θ + f (θ̃) + θ̃ − c.

By assumption, f (θ̃) < c
2 − θ̃ . Hence, substituting for f (θ̃) we obtain

S f (θ̃ , θ) < θ + f (θ) − c

2
.

Since θ ∈ [0, c], by Lemma 12, f (c) + c ≥ f (θ) + θ . Substituting for f (θ) + θ we
obtain S f (θ̃ , θ) < c

2 + f (c). By Lemma 14, f (c) ≤ − c
2 , so that

if θ̃ + θ > c, then for each θ ∈ [0, c], S f (θ̃ , θ) < 0.

From Steps 1 to 3 we obtain that for each θ ∈ R+, S f (θ̃ , θ) < 0. This constitutes a
violation of Condition A, a necessary condition for Second-Best Efficiency. 
�

The previous Lemmas prove that for each e ∈ E2 a second-best mechanism ϕ ∈ �
g
2

is associated to a function f such that

f (θ) =
⎧
⎨

⎩

0 if θ ≤ c
2

c
2 − θ if c

2 < θ ≤ c
c
2 if θ > c

,

namely, it coincides with the SBMmechanism. The preceding results prove the only if
part of Proposition 5. Let us then prove that the SBM is indeed Second Best Efficient.

Lemma 17 If a mechanism ϕ is Strategy-Proof, then for each profile
(
(θ1, θ2), c

) ∈ E
there exists (p1, p2) ≤ (θ1, θ2) such that for each i ∈ {1, 2},
• if li = 0, letting

(
lN (x), tN (x)

) = ϕ
(
(x, θN\{i}), c

)
, then for each x ≤ θi , li (x)

= li = 0 and ti (x) = ti (0),
• if li = 1, letting

(
lN (x), tN (x)

) = ϕ
(
(x, θN\{i}), c

)
, then for each x ≥ pi , li (x) =

li = 1 and ti (x) = −pi + ti (0).

This Lemma is implicit in Holmström (1979). An explicit proof can be found in
Nisan (2007). We omit the proof.

Lemma 18 If a mechanism ϕ′ ∈ �2 Pareto dominates the SBM, then ϕ′ ∈ �2 coin-
cides with the SBM at profiles (θ1, θ2) ∈ R

2+ such that either θ1, θ2 ≥ c
2 or θ1, θ2 ≤ c

2 .

Proof This follows straightforwardly from the fact that the SBMprescribes an efficient
assignment and a vector of transfers that sums up to zero at those profiles. 
�
Lemma 19 There does not exist a mechanism ϕ′ ∈ �2 that Pareto dominates the
SBM.
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By way of contradiction, suppose that some ϕ′ ∈ �2 Pareto dominates the SBM.
By Lemma 18 if ϕ′ Pareto dominates SBM it must be so for some profile (θ1, θ2) ∈
[0, c

2 ) × ( c2 ,+∞). By Symmetry that will suffice, and we do not need to concern
ourselves with (θ1, θ2) ∈ ( c2 ,+∞) × [0, c

2 )). Define for each c > 0, each θ1 ∈ [0, c
2 )

and each x ≥ 0,

(
lθ1N (x), tθ1N (x)

) = ϕ′((θ1, x), c
)
.

Step 1 Suppose that there exists ẽ = (
(θ̃1, θ̃2), c

) ∈ [0, c
2 ) × ( c2 ,+∞) × R+, with

θ̃1 + θ̃2 > c, such that
(
(0, 0)), t̃N

) = ϕ′(e). By Strategy-Proofness and Lemma

17, t̃2 = t θ̃12 (0). By Lemma 18, t θ̃12 (0) = 0, the transfer the SBM prescribes at any
economy

(
(θ̃1, 0), c

) ∈ E , with θ̃1 ∈ [0, c
2 ). Hence, we obtain

u2
(
ϕsbm(ẽ)

)
> u2

(
ϕ′(ẽ)

) = 0.

This contradicts the fact that ϕ′ Pareto dominates the SBM.

Step 2 Suppose that there exists ẽ = (
(θ̃1, θ̃2), c

) ∈ [0, c
2 ) × ( c2 ,+∞) × R+, with

θ̃1 + θ̃2 > c, such that
(
(1, 0)), tN

) = ϕ′(ẽ). By Lemma 17 there exists p ∈ [0, θ̃2]
such that

• if x < p, then l θ̃1N (x) = (0, 0) and t θ̃12 (x) = t θ̃12 (0), and

• if x ≥ p, then l θ̃1N (x) = (1, 0) and t θ̃12 (x) = −p + t θ̃12 (0).

By Lemma 18, using the same argument as in Step 1, t θ̃12 (0) = 0. If p > c − θ̃1, at
any profile (θ̃1, θ

′
2), with θ ′

2 > θ̃2,

u2
(
ϕsbm(

(θ̃1, θ
′
2), c

)) = θ ′
2 + θ̃1 − c > u2 =

(
ϕ′((θ̃1, θ ′

2), c
)) = θ ′

2 − p.

This contradicts the fact that ϕ′ Pareto dominates the SBM.
Suppose then that p < c − θ̃1. By Lemma 17, there exists some economy e′′ =(
(θ̃1, θ

′′
2 ), c

) ∈ [0, c
2 )× (p, c− θ̃1)×R+, such that

(
(1, 0), t ′′N

) = ϕ′(e′′). By Lemma
18 and Strategy-Proofness, we obtain t ′′1 = c

2 . Therefore,

u1
(
ϕ′((θ̃1, θ ′′

2 ), c
)) = θ̃1 − c

2
.

Moreover,

u1
(
ϕsbm(

(θ̃1, θ
′′
2 ), c

)) = c

2
− θ ′′

2 .

By construction, θ̃1 + θ ′′
2 < c. A simple algebraic manipulation over this inequality

yields

θ̃1 − c

2
<

c

2
− θ ′′

2 ,

123



36 E. Athanasiou et al.

which implies that

u1
(
ϕsbm(

(θ̃1, θ
′′
2 ), c

))
> u1

(
ϕ′((θ̃1, θ ′′

2 ), c
))

.

This contradicts the fact that ϕ′ Pareto dominates the SBM.
Step 3. Suppose that there exists ẽ = (

(θ̃1, θ̃2), c
) ∈ [0, c

2 ) × ( c2 ,+∞) × R+, with
θ̃1 + θ̃2 > c, such that

(
(0, 1)), tN

) = ϕ′(e). Applying the same reasoning as before,
for some p ≥ c

2 and some c+ ≥ c, we have u2
(
ϕ′(ẽ)

) = θ̃2 − c+ − p. We obtain

u2
(
ϕsbm(

ẽ)
) = θ̃1 + θ̃2 − c > u2

(
ϕ′(e)

)
.

This contradicts the fact that ϕ′ Pareto dominates the SBM.
Combining steps 1–3, the proof is complete. 
�
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