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The Lyapunov stability theorem is applied to guarantee the convergence and stability of the
learning algorithm for several networks. Gradient descent learning algorithm and its developed
algorithms are one of the most useful learning algorithms in developing the networks. To
guarantee the stability and convergence of the learning process, the upper bound of the learning
rates should be investigated. Here, the Lyapunov stability theorem was developed and applied to
several networks in order to guaranty the stability of the learning algorithm.

1. Introduction

Science has evolved from an attempt to understand and predict the behavior of the universe
and the systems within it. Much of this owes to the development of suitable models, which
agree with the observations. These models are either in a symbolic form which the humans
use or in mathematical form that are found from physical laws. Most systems are causal,
which can be categorized as either static, where the output depends on the current inputs,
or dynamic, where the output depends on not only the current inputs but also past inputs
and outputs. Many systems also possess unobservable inputs, which cannot be measured,
but affect the system’s output, that is, time series systems. These inputs are known as
disturbances and aggravate the modeling process.

To cope with the complexity of dynamic systems, there have been significant
developments in the field of artificial neural network during last three decades which
have been applied for identification and modeling [1–5]. One major issue that instigates
for proposing these different types of networks is to predict the dynamic behavior of
many complex systems existing in nature. ANN is a powerful method in approximating a
nonlinear system and mapping between input and output data [1]. Recently, wavelet neural
networks (WNNs) have been introduced [6–10]. Such types of networks employ wavelets
as the activation function in a hidden layer. Because of the ability of the localized analysis
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of wavelets collectively in their frequency and time domains and the learning ability of
ANN, the WNN prompts a superior system model for complex and seismic applications.
The majority of the applications of wavelet function are limited to a small dimension [11]
although WNN can handle large-dimension problems as well [6]. Due to the dynamic
behavior of recurrent network, they are suitable in dealing with the modeling of dynamic
systems as compared with the static behavior of feed-forward network [12–19]. It has
already been shown that recurrent networks are less sensitive to noise with relatively smaller
network size and simpler structure. Their long-term prediction property makes them more
powerful in dealing with dynamic systems. Recurrent networks are less sensitive to noise
because the recurrent network could recognize and generate periodic waves in spite of the
existence of a large amount of noise. This means that the network is able to regenerate
the original periodic waves in the process of learning the teachers’ signals with noises [2].
For unknown dynamic systems, the recurrent network results in a smaller-sized network as
compared with the feed-forward network [12, 20]. For the time-series modeling, it generates
a simpler structure [15–23] and gives long-term predictions [22, 24]. The recurrent network
for system modeling learns and memorizes information in terms of embedded weights
[21].

Different methods have been introduced for learning the parameters onnetwork based
of the gradient descent. All learning methods like backpropagation-through-time [16, 17]
or real-time recurrent learning algorithm [18] can be applied in order to adjust parameters
of the feed-forward or recurrent networks. In [19], the quasi-Newton method was applied
to improve the rate of convergence. In [9, 23], using the Lyapunov stability theorem, a
mathematical way was introduced for calculating the upper bound of the learning rate
for recurrent and feed-forward wavelet neural network based on the network parameters.
Here, the Lyapunov stability theorem is developed and applied to several networks, and the
learning procedure of the proposed networks is considered.

2. Methodology

2.1. Gradient-Descent Algorithm

The Gradient-descent (GD) learning can be achieved by minimizing the performance index
J as follows:

J =
1

2 · P · y2
r

·
P∑

p=1

(
Y
(
p
) − Ŷ(p)

)2
, (2.1)

where yr = (maxPp=1Y (p)−minPp=1Y (p)), Ŷ is the output of the known network, Y is the actual
data, and P is the number of dataset. The reason for using a normalized mean square error is
that it provides a universal platform for modeling evaluation irrespective of the application
and target value specification while selecting an input to the model.

In the batch-learning scheme employing the P -data set, achange in any parameter is
covered by the following equation:

Δυ
(
q
)
=

P∑

p=1

Δpυ
(
q
)
, (2.2)



ISRN Applied Mathematics 3

and the parametric update equation is

υ
(
q + 1

)
= υ

(
q
)
+
∂J

∂υ
. (2.3)

2.2. Lyapunov Method in Analysis of Stability

Consider a dynamic system, which satisfies

ẋ = f(x, t), x(t0) = x0, x ∈ R. (2.4)

The equilibrium point x∗ = 0 is stable (in the sense of Lyapunov) at t = t0 if for any
ε > 0 there exists a δ(t0, ε) > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε, ∀t ≥ t0. (2.5)

Lyapunov Stability Theorem

Let V (x, t) be a nonnegative function with the derivative V̇ along the trajectories of the
system. Then

(i) The origin of the system is locally stable (in the sense of Lyapunov) if V (x, t) is
locally positive definite and −V̇ (x, t) ≤ 0 is locally in x and for all t;

(ii) The origin of the system is globally uniformly asymptotically stable if V (x, t) is
positive definite and excrescent and −V̇ (x, t) is positive definite.

To approve stability analysis of the networks based on GD learning algorithm, we can
define discreet function as

V (k) = E(k) =
1
2
· [e(k)]2. (2.6)

Change of Lyapunov function is

ΔV (k) = V (k + 1) − V (k) =
1
2
·
[
e2(k + 1) − e2(k)

]
. (2.7)

from

e(k + 1) = e(k) + Δe(k) =⇒ e2(k + 1) = e2(k) + Δ2e(k) + 2 · e(k) ·Δe(k). (2.8)

Then

ΔV (k) = Δe(k) ·
[
e(k) +

1
2
·Δe(k)

]
. (2.9)
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Difference of error is

Δe(k) = e(k + 1) − e(k) ≈
[
∂e(k)
∂υ

]T
·Δυ, (2.10)

where υ is the learning parameter and e(k) = ŷ(k) − y(k) is error between output of plant
and present output of network

Δυ = −η · ∂J
∂υ

. (2.11)

By using (2.10) and (2.1) and putting them in (2.3),

ΔV (k) =
[
∂e(k)
∂υ

]T
·Δυ ·

{
e(k) +

1
2
·
[
∂e(k)
∂υ

]T
·Δυ

}
,

ΔV (k) =
[
∂e(k)
∂υ

]T
·
(
−η · ∂E(k)

∂υ

)
·
{
e(k) +

1
2
·
[
∂e(k)
∂υ

]T
·
(
−η · ∂E(k)

∂υ

)}
,

ΔV (k) =
[
∂e(k)
∂υ

]T
· (−η) · 1

P · y2
r

· e(k) · ∂ŷ(k)
∂υ

·
{
e(k) +

1
2
·
[
∂e(k)
∂υ

]T
· (−η) · 1

P · y2
r

· e(k) · ∂ŷ(k)
∂υ

}
,

ΔV (k) = e2(k) ·
{
−
[
∂ŷ(k)
∂υ

]T
· η · 1

P · y2
r

· ∂ŷ(k)
∂υ

+
1
2
·
[
∂ŷ(k)
∂υ

]T

·
[
∂ŷ(k)
∂υ

]T
· η2 · 1

(
P · y2

r

)2 ·
(
∂ŷ(k)
∂υ

)2}

ΔV (k) = −e2(k) · 1
2
· η

P · y2
r

·
(
∂ŷ(k)
∂υ

)2

·
{
2 − η

P · y2
r

·
(
∂ŷ(k)
∂υ

)2}
,

(2.12)

where yr = (maxPp=1y(p) −minPp=1y(p)).
Therefore

ΔV (k) = −λ · e2(k), (2.13)

where λ = (1/2) · (η/(P · y2
r )) · (∂ŷ(k)/∂υ)2 · {2 − (η/(P · y2

r )) · (∂ŷ(k)/∂υ)2}.
From the Lyapunov stability theorem, the stability is guaranteed if V (k) is positive

and V (k) is negative. From (2.6), V (k) is already positive. The condition of stability depends
on V (k) being negative. Therefore, λ > 0 is considered for all models.
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Because (1/2) ·(η/(P ·y2
r )) ·(∂ŷ(k)/∂υ)2 > 0, then the convergence condition is limited

to

2 − η

P · y2
r

·
(
∂ŷ(k)
∂υ

)2

> 0 =⇒ η

P · y2
r

·
(
∂ŷ(k)
∂υ

)2

< 2 =⇒ η <

(
2 · P · y2

r

)

(
∂ŷ(k)/∂υ

)2 . (2.14)

The maximum learning rate η changes in a fixed range. Since 2 · P · y2
r does not depend on

the model, the value of ηMax guarantees that the convergence can be found by minimizing the
term of |∂ŷ(k)/∂υI |. Therefore,

0 < η < ηMax, (2.15)

where ηMax = (2 · P · y2
r )/Max (∂ŷ(k)/∂υ)2.

3. Experimental Results

In this section, the proposed stability analysis is applied for some networks. The selected
networks are neurofuzzy (ANFIA) [25, 26], Wavelet neurofuzzy, and recurrent wavelet
network.

3.1. Example 1: Convergence Theorems of the TSK Neurofuzzy Model

TSKmodel has a linear or nonlinear relationship of inputs wm(X) in the output space. The
rules of TSK model are in the following way:

Rm : if x is Am then y is wm(X). (3.1)

A linear form of wm(X) in (3.1) is as follows:

wm(X) = wm
0 +wm

1 x1 + · · · +wm
n xn. (3.2)

By taking the Gaussian membership function and an equal number of fuzzy sets to the rules
with respect to the inputs, the firing strength of rules (3.1) can be written as

μAm(x) =
n∏

i=1

exp

(
−
(
xi − xmi
σmi

)2
)
, (3.3)

where xmi and σmi are the center and standard deviation of the Gaussian membership
functions, respectively. By applying the T-norm (product operator) of the membership
functions of the premise parts of the rule and the weighted average gravity method for de-
fuzzification, the output of the TSK model can be defined as

Ŷ =
∑M

m=1 μAm(x) ·wm(x)
∑M

m=1 μAm(x)
. (3.4)
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Theorem 3.1. The asymptotic learning convergence of TSK neurofuzzy is guaranteed if the learning
rate for different learning parameters follows the upper bound as will be mentioned below:

0 < ηw < 2 · P · y2r ,

0 < ησ <
2 · P · y2

r

maxm|w(X)|2 · (2/σ3
min

)2 ,

0 < ηx <
2 · P · y2

r

maxm|w(X)|2 · (2/σ2
min

)2 .

(3.5)

Proof. In equation (2.15) for neurofuzzy models can be written as

0 < ηυ <
2 · P · y2

r∣∣∣∂ŶNF/∂υ
∣∣∣
2

max

. (3.6)

Because βm = μAm(X)/
∑M

m=1 μAm(X) ≤ 1 for allm and since local models have same variables,
that is, X, therefore, from (3.7), (3.5) easily can be derived

∂ŶNF

∂wm0
= βm,

∂ŶNF

∂wmi
= xi · βm,

∂ŶNF

∂xmi
= wm

(
X′) · βm

μAm
· (1 − βm

) · 2 · (xi − xmi)
σ2
mi

,

∂ŶNF

∂σmi
= wm

(
X′) · βm

μAm
· (1 − βm

) · 2 · (xi − xmi)
2

σ3
mi

.

(3.7)

3.2. Example 2: Convergence Theorems of Recurrent Wavelet Neuron Models

Each neuron model in the proposed recurrent neuron models is summation or multiplication
of Sigmoid Activation Function (SAF) and Wavelet Activation Function (WAF) as shown
in Figure 1. Morlet wavelet function is considered in the recurrent models. In the series of
developing different recurrent networks and neuron models, the proposed neurons’ model is
used in a one-hidden-layer feed-forward neural network as shown in Figure 2.

The output of feed-forward network is given in the following equation:

ŶWNN =
L∑

l=1

Wl · yl, (3.8)
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Figure 1: Summation/product recurrent sigmoid-wavelet neuron model.
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Figure 2: Feed-forward neural network.

where yl is the output of S-W neurons,Wl is the weights between hidden neuron and output
neurons, and L is the number of hidden neuron,

yj(k) = yθj (k) + y
ψ

j (k). (3.9)

The functions yθj and y
ψ

j are output of SAF andWAF for jth S-W neuron, in the hidden

layer, respectively. The functions yθj and y
ψ

j are expressed as follow.

yθj (k) = θ

(
n∑

i=1

C
j

Si
· xi(k)

)
,

y
ψ

j (k) = ψ

(
n∑

i=1

C
j

Wi
· xi(k)

)
.

(3.10)

xi is ith input. CS and CW are weights to input signal for SAF and WAF, in each hidden
neuron, respectively.
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To prove convergence of the recurrent networks, these facts are needed:

Fact 1: let g(y) = ye(−y
2). Then |g(y)| < 1, for all y ∈ R.

Fact 2: let f(y) = y2e(−y
2). Then |f(y)| < 1, for all y ∈ R.

Fact 3: let θ(y) = 1/(1 + e−y)be a sigmoid function. Then |θ(y)| < 1, for all y ∈ R

Fact 4: let ψa,b(y) = e−((y−b)/a)
2
cos(5((y − b)/a)) be a Morlet wavelet function. Then

|ψa,b(y)| < 1, for all y, a, b ∈ R.

(a) Summation Sigmoid-Recurrent Wavelet

Suppose Z =
∑n

i=1 C
j

Si
· xi(k) and S =

∑n
i=1 C

j

Wi
· xi(k) +Qj

W · yjψ(k − 1).
From the facts 3 and 4: For parameterW in all models

∂ŷ

∂Wj
= yj <

∣∣∣yjψ + yj
θ

∣∣∣ < 1 + 1 = 2. (3.11)

Therefore 0 < ηW < (2 · P · y2
r )/2

2 = (P · y2
r )/2.

Differential of output of the model for another learning parameter is

∂ŷ(k)

∂C
j

Wi

= xi(k) ·Wj · ψ ′
(

n∑

i=1

C
j

Wi
· xi(k) +Qj

W · yjψ(k − 1)

)

< 1 · 1 ·
∣∣∣∣
−2
a

· S − b
a

· e−((S−b)/a)2 · cos
(
5
S − b
a

)
− e−((S−b)/a)2 · 5

a
· sin

(
5
S − b
a

)∣∣∣∣

<

{
2

amin
· 1 · 1 + 5

amin
· 1
}
< 7.

(3.12)

Therefore, 0 < ηCW < (2 · P · y2
r )/7

2 = (2 · P · y2
r )/49

∂ŷ(k)

∂C
j

Si

= xi(k) ·Wi · θ′
(

n∑

i=1

C
j

Si
· xi(k)

)

< 1 · 1 · θ(z) · (1 − θ(z)) < 1 · 1 = 1.

(3.13)

Therefore 0 < ηCS < (2 · P · y2
r )/1

2 = 2 · P · y2
r

∂ŷ(k)

∂Q
j

W

=Wj · yjψ(k − 1) · ψ ′
(

n∑

i=1

C
j

Wi
· xi(k) +Qj

W · yjψ(k − 1)

)

< 1 · 1 ·
∣∣∣∣
−2
a

· S − b
a

· e−((S−b)/a)2 · cos
(
5
S − b
a

)
− e−((S−b)/a)2 · 5

a
· sin

(
5
S − b
a

)∣∣∣∣

<

{
2

amin
· 1 · 1 + 5

amin
· 1
}
< 7.

(3.14)

Therefore, 0 < ηQW < (2 · P · y2
r )/7

2 = (2 · P · y2
r )/49.
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(b) Multiplication Sigmoid-Recurrent Wavelet

From facts 3 and 4 suppose Z =
∑n

i=1 C
j

Si
· xi(k) and S =

∑n
i=1 C

j

Wi
· xi(k) +Qj

W · yjψ(k − 1).
For parameterW in all networks:

∂ŷ

∂Wj
= yj = y

j
ψ · yj

θ
< 1 · 1 < 1. (3.15)

Therefore, 0 < ηW < (2 · P · y2
r )/1 < 2 · P · y2

r

∂ŷ(k)

∂C
j

Wi

= xi(k) ·Wj · θ
(

n∑

i=1

C
j

Si
· xi(k)

)
· ψ ′

(
n∑

i=1

C
j

Wi
· xi(k) +Qj

W · yjψ(k − 1)

)

< 1 · 1 · 1 ·
∣∣∣∣
−2
a

· S − b
a

· e−((S−b)/a)2 · cos
(
5
S − b
a

)
− e−((S−b)/a)2 · 5

a
· sin

(
5
S − b
a

)∣∣∣∣

<

{
2

amin
· 1 · 1 + 5

amin
· 1
}
< 7.

(3.16)

Therefore, 0 < ηCW < (2 · P · y2
r )/(7)

2 = (2 · P · y2
r )/49

∂ŷ(k)

∂C
j

Si

= xi(k) ·Wj · θ′
(

n∑

i=1

C
j

Si
· xi(k)

)
· ψ

(
n∑

i=1

C
j

Wi
· xi(k) +Qj

W · yjψ(k − 1)

)

< 1 · 1 · θ(Z) · (1 − θ(Z)) · 1 < 1 · 1 < 1.

(3.17)

Therefore, 0 < ηCS < (2 · P · y2
r )/(1)

2 = 2 · P · y2
r

∂ŷ(k)

∂Q
j

W

=Wj · yjψ(k − 1) · θ
(

n∑

i=1

C
j

Si
· xi(k)

)
· ψ ′

(
n∑

i=1

C
j

Wi
· xi(k) +Qj

W · yjψ(k − 1)

)

< 1 · 1 · 1 ·
∣∣∣∣
−2
a

· S − b
a

· e−((S−b)/a)2 · cos
(
5
S − b
a

)
− e−((S−b)/a)2 · 5

a
· sin

(
5
S − b
a

)∣∣∣∣

<

{
2

amin
· 1 · 1 + 5

amin
· 1
}
< 7.

(3.18)

Therefore, 0 < ηQW < (2 · P · y2
r )/(7)

2 = (2 · P · y2
r )/49

3.3. Example 3: Convergence Theorems of the Wavelet
Nuro-Fuzzy (WNF) Model

The consequent part of each fuzzy rule corresponds to a sub-WNN consisting of wavelet with
the specified dilation value, where, in the TSK fuzzy model, a linear function of inputs is used
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whilewm(X) = ŶWNNm . Figure 1 shows the proposed WNNmodel which uses a combination
of sigmoid and wavelet activation functions as a hidden neuron (Figure 2 without recurrent
part) in the consequent part of each fuzzy rule.

Theorem 3.2. The asymptotic learning convergence is guaranteed if the learning rate for different
learning parameters follows the upper bound as will be mentioned below:

0 < ησ <
2 · P · y2

r∣∣∣ŶWNN

∣∣∣
2

max
· (2/σ3

min

)2 ,

0 < ηx <
2 · P · y2

r∣∣∣ŶWNN

∣∣∣
2

max
· (2/σ2

min

)2
,

0 < ηw <
2 · P · y2

r∣∣∣∂ŶWNN/∂w
∣∣∣
2

max

,

0 < ηCS <
2 · P · y2

r∣∣∣∂ŶWNN/∂CS

∣∣∣
2

max

,

0 < ηCW <
2 · P · y2

r∣∣∣∂ŶWNN/∂CW

∣∣∣
2

max

,

(3.19)

where ηw, ηCN , or ηCW and ησ or ηx are the parameters’ learning rates of the consequent and
the premise parts of the fuzzy rules. CS and CW are weights to inputs, signal for sigmoid and
wavelet activation functions of local WNNs, in each hidden neuron, respectively. xm and σm
are the center and standard deviation of the Gaussian membership functions of rule number
m in WNF model, respectively.

Proof. In equation (2.15) for WNF models can be written as

0 < ηυ <
2 · P · y2

r∣∣∣∂ŶWNF/∂υ
∣∣∣
2

max

,

∂ŶWNF

∂w
= βm · ∂ŶWNNm

∂w
,

∂ŶWNF

∂CN
= βm · ∂ŶWNNm

∂CN
,

∂ŶWNF

∂CW
= βm · ∂ŶWNNm

∂CW
.

(3.20)

Because βm = μAm(X)/
∑M

m=1 μAm(X) ≤ 1 for allm, therefore (3.13) to (3.15) are easily derived.
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From (2.15) and (3.4) for parameters σ or x,there is

∂ŶWNF

∂σ
= ŶWNNm · βm

μAm
· (1 − βm

) · 2 · (xi − xmi)
2

σ3
mi

= ŶWNNm
·
(
1 − βm

)

∑M
m=1 μAm

· 2 · (xi − xmi)
2

σ3
mi

,

∂ŶWNF

∂x
= ŶWNNm · βm

μAm
· (1 − βm

) · 2 · (xi − xmi)
σ2
mi

= ŶWNNm ·
(
1 − βm

)

∑M
m=1 μAm

· 2 · (xi − xmi)
σ2
mi

(3.21)

and therefore (3.19) arederived.

4. Conclusion

In this paper, a developed Lyapunov stability theorem was applied to guarantee the con-
vergence of the gradient-descent learning algorithm in network training. The experimental
examples showed that the upper bound of the learning parameter could be easily considered
using this theorem. So, an adaptive learning algorithm can guaranty the fast and stable
learning procedure.
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