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Abstract. Recently, D’Odorico and Fagherazzi (2003) pro-
posed “A probabilistic model of rainfall-triggered shallow
landslides in hollows” (Water Resour. Res., 39, 2003). Their
model describes the long-term evolution of colluvial deposits
through a probabilistic soil mass balance at a point. Further
building blocks of the model are: an infinite-slope stabil-
ity analysis; a steady-state kinematic wave model (KW) of
hollow groundwater hydrology; and a statistical model relat-
ing intensity, duration, and frequency of extreme precipita-
tion. Here we extend the work of D’Odorico and Fagher-
azzi (2003) by incorporating a more realistic description
of hollow hydrology (hillslope storage Boussinesq model,
HSB) such that this model can also be applied to more gen-
tle slopes and hollows with different plan shapes. We show
that results obtained using the KW and HSB models are sig-
nificantly different as in the KW model the diffusion term is
ignored. We generalize our results by examining the stability
of several hollow types with different plan shapes (different
convergence degree). For each hollow type, the minimum
value of the landslide-triggering saturated depth correspond-
ing to the triggering precipitation (critical recharge rate) is
computed for steep and gentle hollows. Long term analysis
of shallow landslides by the presented model illustrates that
all hollows show a quite different behavior from the stability
view point. In hollows with more convergence, landslide oc-
currence is limited by the supply of deposits (supply limited
regime) or rainfall events (event limited regime) while hol-
lows with low convergence degree are unconditionally stable
regardless of the soil thickness or rainfall intensity. Overall,
our results show that in addition to the effect of slope angle,
plan shape (convergence degree) also controls the subsurface
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flow and this process affects the probability distribution of
landslide occurrence in different hollows. Finally, we con-
clude that incorporating a more realistic description of hol-
low hydrology (instead of the KW model) in landslide prob-
ability models is necessary, especially for hollows with high
convergence degree which are more susceptible to landslid-
ing.

1 Introduction

The relationship between the return period of rainfall and
shallow landslides has attracted the interest of numerous re-
searchers (e.g. Dietrich and Dunne, 1978; Montgomery et
al., 1998; Iverson, 2000; Borga et al., 2002; D’Odorico et al.,
2005; Rosso et al., 2006) because rainfall is the most frequent
landslide-triggering factor in many regions in the world. In
steep soil-mantled landscapes, landslides tend to occur in to-
pographic hollows due to convergence of water and accumu-
lation of colluvial soils that leads to a cycle of periodic filling
and excavation by landsliding (Dietrich and Dunne, 1978).

Shallow landsliding is a stochastic process, and under-
standing what controls the return period is crucial for risk
assessment (Sidle et al., 1985; Iida, 1999; D’Odorico and
Fagherazzi, 2003). Observations of repeated landslides in
certain areas indicate that for some slopes and soil properties
there exists a threshold of soil thickness, beyond which fail-
ure must occur, provided the slope gradient is greater than
the angle of internal friction of the failure surface (Sidle and
Ochiai, 2006). Therefore, to estimate the long-term suscepti-
bility to shallow landsliding, a combined model of soil depth
development and rainstorm occurrence is needed, since both
of these factors control the recurrence interval of shallow
landsliding (Iida, 2004).
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Recently D’Odorico and Fagherazzi (2003) have pre-
sented a probabilistic model of rainfall-triggered shallow
landslides in hollows and showed that landslide frequency
is linked to the rainfall intensity-duration-frequency charac-
teristics of the region. They developed a stochastic model
that computes the temporal evolution of regolith thickness in
a hollow and hollow hydrologic response to rainfall based
on a steady-state kinematic wave model for subsurface flow.
In this research, we will use some elements of this model
(stochastic soil mass balance) to simulate the soil production
(colluvial deposits) and soil erosion (landslides) in time for
hollows with complex shapes. Although our model is sim-
ilar to that presented by D’Odorico and Fagherazzi (2003)
in that it is a probabilistic model of rainfall-induced shal-
low landslides, there is an important difference. Conver-
gent plan shapes or concave profile curvatures cause the
kinematic wave model to perform relatively poorly even in
steep slopes (Hilberts et al., 2004). Troch et al. (2003) ob-
served that hillslope plan shape rather than mean bedrock
slope angle determines the validity of the kinematic wave
approximation to describe the subsurface flow process along
complex hillslopes. Therefore, incorporating a more realis-
tic description of hollow hydrology in the stochastic land-
slide model is needed, as hollows are generally conver-
gent (e.g. Hack, 1965; Reneau and Dietrich, 1987) and hol-
lows with more convergence have more potential for land-
slide occurrence (e.g. Anderson et al., 1991).

To investigate the role of rain infiltration on landslide trig-
gering, some investigators (e.g. Iverson, 2000) have em-
ployed the Richards equation to assess the effects of tran-
sient rainfall on the timing, rate and location of landslides.
However, the Richards equation is highly complex and re-
quires the solution of large systems of equations even for
small problems (Paniconi et al., 2003). Troch et al. (2003)
introduced the hillslope-storage Boussinesq (HSB) model to
describe subsurface flow and saturation along geometrically
complex hillslopes. This model is formulated by express-
ing the continuity and Darcy equations in terms of soil stor-
age as the dependent variable. The resulting HSB model
shows that the dynamic response of complex hillslopes dur-
ing drainage and recharge events depends very much on the
slope angle, plan shape and profile curvature (Troch et al.,
2003; Hilberts et al., 2004; Berne et al., 2005; Hilberts et
al., 2007). The HSB model can be linearized and further re-
duced to an advection-diffusion equation for subsurface flow
in hillslopes with constant bedrock slopes and exponential
width functions (Berne et al., 2005).

To relax the KW assumptions, in this paper we substi-
tute the linearized steady-state HSB model in the work of
D’Odorico and Fagherazzi (2003) for complex hollows (hol-
lows with different length, slope angle and convergence de-
gree). In fact, using an exponential width function, hol-
lows with different convergence degrees are presented and
for each hollow the critical soil depth, the minimum value of
landslide-triggering saturated depth and the minimum rain-

fall intensity needed to trigger a landslide along the hollow
length are computed. Moreover, the temporal evolution of
colluvium thickness is studied through a stochastic soil mass
balance. By considering the soil production function and hy-
drologic conditions in the different hollows, the stability of
each hollow is analyzed by applying the infinite slope stabil-
ity method. The aim of the generalized model is to inves-
tigate the relation between rainfall characteristics (intensity
and duration), water table depth and slope stability of collu-
vial deposits in complex hollows.

2 Model formulation

2.1 Hollow geometry

Topography influences shallow landslide initiation through
both concentration of subsurface flow and the effect of slope
gradient on slope stability (Montgomery and Dietrich, 1994).
Slope failure often occurs in areas of convergent topogra-
phy where subsurface soil water flow paths give rise to ex-
cess pore-water pressures downslope (Anderson et al., 1991;
Wilkinson et al., 2002; Talebi et al., 2008). From the topog-
raphy view point, in most models of slope stability only the
slope angle is considered. Although slope gradient is an im-
portant factor in landslide initiation, other geometric charac-
teristics (such as profile curvature and plan shape) also con-
trol the hydrological process (Hilberts et al., 2004) and as
such affect hillslope stability (Talebi et al., 2007). The plan
shape defines topographic convergence, which is an impor-
tant control on subsurface flow concentration. Several in-
vestigations (e.g. Fernandes et al., 1994; Montgomery et al.,
1997; Tsuboyama et al., 2000; Troch et al., 2002; Hilberts
et al., 2004) have shown that hillslopes with convergent plan
shape tend to concentrate subsurface water into small areas
of the slope, thereby generating rapid pore water pressure in-
creases during rain storms.

We consider only hollows with moderate to steep slopes
and shallow, permeable soils overlying a straight bedrock
where subsurface storm flow is the dominant flow mecha-
nism. Shallow soils are most prone to rain-induced land-
slides. It is assumed that the plan shape of the hollow can
be described using an exponential width function:

w(x)=woe
ax

→A(x)=
w0

a

(
eaL

−eax
)

, (1)

wherew is the hollow width (deposits) along thex direc-
tion, x is the distance from the outlet of the hollow (par-
allel to the bedrock),wo is the hollow width at the out-
let, A(x) is the hollow area upstream ofx, L is the hollow
length anda is a plan shape parameter (see Fig. 1). Al-
lowing this plan shape parameter to assume either a positive,
zero, or negative value, one can define several basic geomet-
ric relief forms: a>0 for convergent,a<0 for divergent and
a=0 for parallel shapes. As hollows are generally conver-
gent (e.g. Hack, 1965; Reneau and Dietrich, 1987), we will
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assume a wide range of positive numbers for convergent hol-
lows.

As the purpose of this study is to investigate the effect of
hollow geometry and hydrology on landslide probability, we
employ the subsurface flow similarity parameter for complex
hollows proposed by Berne et al. (2005). This dimensionless
parameter, the hillslope Péclet number, is defined for subsur-
face flow as the ratio between the characteristic diffusive time
and the characteristic advective time, taken from the middle
of the hillslope:

Pe =

(
L

2pD

)
tanβ −

(
aL

2

)
, (2)

wherep is a linearization parameter,D is the soil depth and
β is the bedrock slope angle. As can be seen,Pe is a function
of three independent dimensionless groups:L/ (2pD), tanβ

andaL/2 ; L/ (2pD) represents the ratio of the half length
and the average depth of the aquifer (related to the hollow
hydrology), and tanβ andaL/2 define the hollow geometry
(see Berne et al., 2005).

2.2 Hollow stability

Planar infinite slope analysis has been widely applied to the
determination of natural slope stability, particularly where
the thickness of the soil mantle is small compared with the
slope length and where landslides are due to the failure of a
soil mantle that overlies a sloping drainage barrier (Borga et
al., 2002). Iida (1999) used the same approach in his stochas-
tic hydro-geomorphological model for shallow landsliding
due to rainstorms. He states that the two-layer model of soil
(regolith) and bedrock, which assumes a potential landslid-
ing (soil) layer, is suitable for the slope stability analysis in
case of shallow landsliding. In this study the slope stabil-
ity model is based on a Mohr-Coulomb failure law applied
to an infinite planar slope. The failure condition can be ex-
pressed as (e.g. Montgometry and Dietrich, 1994; D’Odorico
and Fagherazzi, 2003):

γsatD sinβ = ct + (γsatD cosβ − γwh cosβ) tanφ (3)

whereγsat andγw are the specific weights of saturated soil
and water respectively,β is the bedrock slope angle,φ is the
soil repose angle,ct is the soil cohesion andh is the saturated
water depth, with bothh and D (deposit thickness) being
measured perpendicularly to the bedrock.

By solving Eq. (3) for h, the minimum value of
landslide-triggering saturated depth (hcr) can be obtained as
(D’Odorico and Fagherazzi, 2003):

hcr =
γsat

γw

D

(
1 −

tanβ

tanφ

)
+

ct

γw tanφ cosβ
(4)

When the soil depth (D) is equal tohcr , the critical soil depth
or immunity depth (Dcr) is given as follows (e.g. Iida, 1999;
D’Odorico and Fagherazzi, 2003):

Dcr =
ct

γw tanφ cosβ + γsatcosβ (tanβ − tanφ)
(5)
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Fig. 1. Three-dimensional view of a convergent hollow on top of a
straight bedrock profile (modified from D’Odorico and Fagherazzi,
2003).

As long asD<Dcr , no shallow landslide will occur as the
depthh of the saturated layer cannot reach the critical value
hcr , even following an intense rainstorm. For this reason the
period during whichD<Dcr may be named “immunity pe-
riod” (Iida, 1999; D’Odorico and Fagherazzi, 2003). In gen-
tle slopes (in contrast to steep slopes), an increase in collu-
vium thickness increases stability. Hence, for gentle slopes
the likelihood of landslide occurrence is maximum when
D=Dcr and decreases for larger values ofD (e.g. Iida, 1999;
D’Odorico and Fagherazzi, 2003). For steep slopes the oc-
currence of a rainstorm can lead to landsliding as soon as the
soil depth starts to exceed the critical depth.

The hydrogeomorphological significance of these equa-
tions is as follows:

– WhenD<Dcr , no shallow landsliding occurs and the
slope is stable (independent of rainfall).

– WhenD>Dcr , the water table depth (h) can exceedhcr

during a rainstorm, potentially leading to shallow land-
sliding.

In the case of relatively steep slopes (β>φ), hcr decreases
linearly (i.e. stability decreases) with an increase of soil
depthD (see Eq. (4). The soil depthDmax for which shallow
landsliding can occur without saturated throughflow (corre-
sponding tohcr=0) is (Iida, 1999):

Dmax =
ct

γsatcosβ (tanβ − tanφ)
(6)

In practice,Dmax is never reached because the soil depth in-
creases slowly with time (see Sect. 2.5) and periodic rain-
storms will produce at least some saturated subsurface flow
and consequently destabilization at thicknesses less than
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Table 1. Hydrological and geotechnical model parameters (Published data from Montgomery et al., 1997).

Parameter name Symbol Units Value in this paper

Saturated hydraulic conductivity ks m d−1 65
Effective porosity f – 0.30
Soil cohesion ct kN m−2 11.0
Soil repose angle φ ◦ 33
Saturated unit weight of soil γsat kN m−3 20.0
Unit weight of water γw kN m−3 9.81
Diffusivity coefficient Dc m2 yr−1 0.0032
Side slope angle α ◦ arctan(tanβ/0.8)

Table 2. Geometric characteristics of four hollows used in this study (Published data from Montgomery et al., 1997; D’Odorico and
Fagherazzi, 2003).L anda are determined from Eq. (1),Dcr from Eq. (5) andTim from Eq. (32).

Parameter Symbol Units 1 2 3 4

Drainage area A m2 3700 860 7500 4500
Bedrock slope angle β ◦ 43 43 30 30
Outlet width w0 m 12 6 12 12
Length L m 77 37 110 85
Convergence degree a m−1 0.030 0.061 0.026 0.029
Immunity depth Dcr m 1.25 1.25 2.58 2.58
Immunity period Tim yr 682 682 6389 6389

Dmax. Therefore, according to this model, shallow lands-
liding occurs when the soil depthD ranges betweenDcr

andDmax. Note that in the case of relatively gentle slopes
(β<φ), hcr increases linearly (i.e. stability increases) with an
increase ofD, hence no upper limit to the soil depth (Dmax)

exists. This means that for gentle slopes, the likelihood of
landslide occurrence is maximum whenD=Dcr .

2.3 Hollow hydrology

Hillslope hydrological response has traditionally been stud-
ied by means of hydraulic groundwater theory (Troch et al.,
2003). In many regions, groundwater flow is the main source
of streamflow between rainfall events. The basic macro-
scopic equation describing the movement of water in the soil
is known as the three-dimensional Richards’ equation. It is
highly complex and requires the solution of relatively large
systems of equations even for small problems (Paniconi et
al., 2003).

To incorporate the hydrological process in hillslope stabil-
ity analysis, many researchers (e.g. Montgomery and Diet-
rich, 1994; Wu and Sidle, 1995; D’Odorico and Fagherazzi,
2003) have used kinematic wave hydrology (KW). However,
when water table gradients are high and bedrock slopes are
relatively small, diffusive effects become important. In such
hillslopes (e.g. convergent and gentle hillslopes) the KW

model shows a relatively poor match to the Richards’ model
(Hilberts et al., 2004). Therefore, we propose to relax the
KW assumption in hillslope stability analysis.

Troch et al. (2003) reformulated the continuity and Darcy
equations in terms of storage along the hillslope, which leads
to the hillslope storage Boussinesq (HSB) equation for sub-
surface flow in hillslopes. Extending Brutsaert’s (1994) anal-
ysis, they linearized this equation as:

∂S

∂t
= K

∂2S

∂x2
+ U

∂S

∂x
+ Nw (7)

with K=
kspD cosβ

f
andU=

ks sinβ
f

−aK, whereS is the sub-
surface saturated storage,N is the recharge to the ground
water table,ks is the saturated hydraulic conductivity andf

is the drainable porosity (note that the value ofp is deter-
mined iteratively as we assumepD to be equal to the aver-

age water table height
L∫
0

S(x)dx/(Af ) whereA is the hollow

drainage area). The assumptions are that the recharge rate
of subsurface flow is equal to the rainfall intensity and that
water flows parallel to bedrock. Comparison between the
hillslope-storage Boussinesq and Richards’ equation models
for various scenarios and hillslope configurations shows that
the HSB model is able to capture the general features of the
storage and outflow responses of complex hillslopes (Pani-
coni et al., 2003; Hilberts et al., 2004). Berne et al. (2005)
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Table 3. Characteristics of hollows based on the kinematic wave assumption.

Parameter Symbol Units 1 2 3 4

Time of concentration Tc hr 12.5 6.0 24.3 18.8
Critical rainfall intensity Rcr mm hr−1 7.5 16.1 5.6 9.3
Return period of triggering rainfall Tr yr 98 1581 216 6623
Slope stability regime – – Supply-limited Event-limited Supply-limited Event-limited to

unconditionally stable

Table 4. Characteristics of hollows based on the HSB model.

Parameter Symbol Units 1 2 3 4

Péclet number Pe – 170 74.2 91.7 55.8
Linearization parameter p – 0.168 0.184 0.132 0.167
Time of concentration Tc hr 13.5 6.4 24.7 19.2
x-coordinate whereh = hmax xm m 1.10 1.02 2.46 2.85
Critical rainfall intensity Rcr mm hr−1 7.8 17.6 6.1 10.5
Return period of triggering rainfall Tr yr 191 5948 481 32342
Slope stability regime – – Supply-limited Event-limited Supply-limited Unconditionally stable

derived the steady-state solution of Eq. (7), with a zero-
storage downstream boundary condition and a zero-flux up-
stream boundary condition, for a given rechargeN as:

S(x)=
Nw0

a

[
eaL

U

(
1−e−

U
K

x
)

+
1

(Ka+U)

(
e−

U
K

x
−eax

)]
(8)

For parallel hillslopes (a=0), this reduces to:

S(x) =
Nw0

U

[(
K

U
+ L

) (
1 − e−

U
K

x
)

− x

]
(9)

According to the definition of the storageS, the mean
groundwater table height (over the hillslope width) is:

h(x) =
S(x)

f w(x)
=

Ne−ax

af
×

[
eaL

U

(
1 − e−

U
K

x
)

+
1

(Ka + U)

(
e−

U
K

x
− eax

)]
(10)

Again, for parallel hillslopes this reduces to:

h(x) =
N

f U

[(
K

U
+ L

) (
1 − e−

U
K

x
)

− x

]
(11)

The x-coordinatexm where the mean groundwater table
height is maximum (the critical point for slope stability), can
be obtained by solvingh

′
(xm)=0 (see Berne et al., 2005):

xm =
K

U
ln

[
1 +

U

Ka

(
1 − e−aL

)]
(12)

which for parallel hillslopes reduces toxm=
K
U

ln
(
1+

UL
K

)
.

Now, by substituting the Eq. (12) into Eqs. (10) or (11),
we can obtain the maximum groundwater table depth in each
hillslope (which is critical for landslide occurrence):

h(xm)=
N

f a(aK + U)

{
eaL

[
1+

U

aK

(
1−e−aL

)]−
aK
U

−1

}
(13)

which for parallel hillslopes reduces to:

h(xm) =
N

f U

[
L −

K

U
ln

(
1 +

UL

K

)]
(14)

Equatingh(xm) andhcr , the critical rainfall intensity for trig-
gering landslides (Rcr) can now be calculated as:

Rcr =
hcrf a (aK + U){

eaL
[
1 +

U
aK

(
1 − e−aL

)]− aK
U − 1

} (15)

which for parallel hillslopes (a=0) reduces to:

Rcr =
f Uhcr

L −
K
U

ln
(
1 +

UL
K

) (16)

Note that Eqs. (15) and (16) illustrate howRcr (the minimum
rainfall intensity needed to trigger a landslide) is a function
of the deposit thickness (Dcr).

To compare with the linearized HSB model, we also derive
the steady-state solution of Eq. (7) for a given recharge N
under the KW assumption(K=0)as:

S(x) =
Nw0

Ua

(
eaL

− eax
)

⇒ h(x) =

S(x)

f w(x)
=

N

Uaf

(
ea(L−x)

− 1
)

(17)
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As xm=0 (in the KW case), then:

h(xm) =
N

Uaf

(
eaL

− 1
)

(18)

Now, the critical rainfall intensity for triggering landslides
(Rcr) can be calculated as:

Rcr =
Uaf hcr

eaL − 1
(19)

Note that for parallel hillslopes (a=0), these equations re-
duce to:

S(x) =
Nw0

U
(L − x) ⇒ h(x) =

N

Uf
(L − x) , (20)

h(xm) =
NL

Uf
(21)

and

Rcr =
Uf hcr

L
=

hcrks sinβ

L
(22)

D’Odorico and Fagherazzi (2003) have assumed the critical
rainfall intensity to be equal toRcr=hcrksw0 sinβ/A for all
hollow shapes, based on the KW assumption. As can be seen,
this equation is similar to Eq. (21), which has been derived
here based on the KW assumption and for parallel hollows.
As we will show, the results of the KW and HSB models for
hollow hydrology differ significantly (especially for hollows
with a high convergence degree) and this affects landslide
probability.

The analysis of landslide frequency also requires the esti-
mation of the duration of the triggering rainfall. For this pur-
pose, D’Odorico and Fagherazzi (2003) applied the rational
method (e.g. Chow et al., 1988) to the subsurface flow in hol-
lows to determine the most critical storm duration for a given
return period. The rational method assumes that the time of
concentration (Tc) is the most critical storm duration. Thus
the maximum saturated depth generated by storms of a given
frequency is due to events of durationTc. Here, we update
the way in which the time of concentration is calculated to
make it fully consistent with the linearized steady-state HSB
model. Hence, the concentration time can be expressed as:

Tc =

L∫
xm

S(x)

Q(x)
dx (23)

with

Q(x) =

{
Nw0

a

(
eaL

− eax
)
(a 6= 0)

Nw0 (L − x) (a = 0)
(24)

In the KW limit this reduces toTc=L/U , which for parallel
hillslopes can be written asTc=Lf/ (ks sinβ). D’Odorico
and Fagherazzi (2003) expressed the concentration time as
Tc=C

√
A/ (ks sinβ), whereC is a dimensionless coefficient

accounting for other factors affecting the concentration time

andA is the hollow contributing area. This suggests that an
equivalent hollow length can be estimated asL=C

√
A/f .

According to the exponential width function, Eq. (1), the
contributing area isA=w0

(
eaL

− 1
)
/a. This provides an

implicit equation to estimate the degree of convergence of an
equivalent exponential hollow from given values ofA, wo,
andL.

2.4 Return period of the triggering rainfall

Rainfall is considered to be the most important factor in trig-
gering slope failure. To accomplish a hazard analysis of the
landslide phenomenon, a probability analysis of intense rain-
fall occurrence for different return periods is needed. The
objective of rainfall frequency analysis is to estimate the
amount of rainfall falling at a given point for a specified du-
ration and return period. The frequency of extreme rainfall
is usually defined by reference to the annual maximum se-
ries, which comprises the largest values observed in each
year. The Gumbel distribution has been the most common
probabilistic model used in modelling hydrological extremes
(Brutsaert, 2005). Since landslides are triggered by extreme
rainfalls, following D’Odorico and Fagherazzi (2003), we
use a Gumbel distribution to express the dependence between
annual maximum rainfall intensity for events of durationTc

and return periodTr as follows:

1

Tr

= λ = 1 − exp

[
− exp

(
−

R(Tc) − u

v

)]
(25)

whereTr is the return period,R(Tc) is the annual maximum
rainfall intensity of durationTc, u andv are the parameters
of the Gumbel distribution andλ is the probability that the
maximum intensity exceedsR(Tc) in a given year. As our
model is applied to a parameter set (for four realistic hollows)
derived from published data from the Oregon Coastal range
(e.g. Montgomery et al., 1997; Torres et al., 1998; Stock and
Dietrich, 2003; D’Odorico and Fagherazzi, 2003), based on
rainfall data available for the same region (Montgomery et
al., 1997) the relation betweenu, v andTc is found to be
u/v=2.6 andv=4.75T −0.6

c . From the value ofTc in a hollow,
the parametersu andv are computed and the return period
of the critical rainfall intensity will be determined. Note that
λ=1/Tr is a function of the soil depth due to the dependence
between the intensity of the triggering precipitation,Rcr , and
Dcr (see Eqs. 15, 16, 19, and 22).

2.5 Temporal evolution of deposit thickness

The temporal evolution of colluvial deposits in hollows can
be characterized by a continuous process of deposit accre-
tion, and a discontinuous random process of denudation
caused by rainfall-triggered landslides, which scour to the
bedrock large portions of the hollow (D’Odorico and Fagher-
azzi, 2003). The temporal evolution of colluvium thickness
can thus be studied through a stochastic soil mass balance,
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accounting for the supply of debris from the adjacent slopes
and for random denudation due to landsliding. The descrip-
tion of the probabilistic soil mass balance model we apply
in this study largely follows that of D’Odorico and Fagher-
azzi (2003).

Many studies analyzed the soil production and landscape
evolution to investigate the spatial and temporal patterns of
soil thickness (e.g. Kirkby, 1985; Dietrich et al., 1986; Heim-
sath et al., 1997; Heimsath et al., 2001). Based on the con-
servation of mass equation for a tipped triangular trough and
slope-dependent transport, Dietrich et al. (1986) presented an
expression for the rate of colluvium accumulation in hollows.
They showed that the rate of accumulation is a function of the
side-slope gradient and the difference between the side-slope
and hollow gradient. For a hollow composed of a tipped tri-
angular trough and two planar side slopes, the accretion of
colluvial deposits can be obtained as (Dietrich et al., 1986):

D = [2 Dc cosβ
(
tan2 α − tan2 β

)
t ]0.5 , (26)

whereDc is the soil creep diffusivity,α is the angle between
the side slopes and a horizontal plane andt is time. Dietrich
et al. (1986) also showed that basin form, consisting of noses,
side slopes, and a hollow appears to be well represented by
the geometry of a tipped triangular trough and typically the
ratio of hollow slope to side slope is about 0.8. If we assume
thatα andβ do not vary substantially with time, then Eq. (24)
can be expressed as (D’Odorico and Fagherazzi, 2003):

D =
√

Mt; M = 2Dc cosβ
(
tan2 α − tan2 β

)
(27)

with M being independent of time. The differentiation of
Eq. (25) with respect to time leads to:

dD

dt
= l(D) =

M

2D
(28)

showing that the rate of colluvium accretion decreases with
the depth,D, of the deposit (D’Odorico and Fagherazzi,
2003). Now, the overall temporal evolution of the deposit
thickness (D) can be expressed as:

dD

dt
= l(D) − J (D, t) (29)

wherel(D) is a depth-dependent function of net colluvium
accretion expressed by Eq. (28) andJ (D, t) is the rate of soil
removed by debris flow and shallow landslides. The latter
is modelled as a stochastic Poisson process (D’Odorico and
Fagherazzi, 2003):

J (D, t) = ζ(D)
∑

i

δ (t − ti) (30)

where

ζ(D) =

{
0; 0 ≤ D ≤ Dcr

D; D > Dcr
(31)

In this equationδ represents a Dirac-δfunction and the se-
quencet is such that the interarrival time of the triggering
precipitation,τ=ti+1−ti , is an exponentially distributed ran-
dom variable. As a result, the temporal variability of col-
luvium thickness is controlled by the rates of colluvium ac-
cretion and erosion (i.e., landslides), and both of them de-
pend on the actual state (i.e., deposit thickness) of the sys-
tem. Note that the time needed to accumulate a colluvium
thicknessD=Dcr (Tim) is computed as:

Tim = D2
cr/

[
2Dc cosβ

(
tan2 α − tan2 β

)]
(32)

2.6 Numerical simulation of landslide occurrence

To simulate the dynamics of complex hollows, the following
steps are performed:

– The deposit thickness of a simulated hollow isD=0 at
t=0.

– The linearization parameter (p) is determined itera-
tively aspD is assumed to be equal to the average water
table depth in each hollow (h) andh is calculated using
S (saturated storage, Eqs. (8) and (9)). Note thatN is
also computed iteratively by substitutingDcr (instead
of hcr) in Eqs. (15) and (16).

– The time of concentration (Tc) of each hollow is deter-
mined by Eq. (23).

– Gumbel rainfall parameters (u andv) are estimated for
extreme precipitation of durationTc.

– The minimum saturated depth (hcr) able to trigger a
landslide is calculated from Eq. (4).

– The critical rainfall intensity (Rcr) corresponding tohcr

is computed from Eqs. (15) and (16).

– The probability thatR is exceeded in a given year is
estimated by Eq. (25).

– A random number to determine if a landslide occurs is
drawn; if a triggering storm occurs, the landslide scours
the hollow entirely.

– The deposit thicknessD increases by transport from up-
hill based on Eq. (28). Note that in this model, a land-
slide occurs whenDmax>D≥Dcr .

The presented model, which is an extension of that of
D’Odorico and Fagherazzi (2003), simulates the long term
evolution of soil depth. The extension lies in the fact that the
probability distribution of scar depth, landslide return period
and colluvium thickness is calculated for complex hollows
based on a more realistic description of hollow hydrology
(the linearized HSB model). As the aim of this paper is to in-
vestigate the effect of geometry and hydrology of hollows on
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Fig. 2. Long term simulation of deposit thickness for the four hol-
lows in Table 1 (from first to fourth row, respectively). Left column:
KW; right column: HSB model.

landslide probability, we compare the different approaches
of hollow hydrology (KW and HSB models) in hollows with
different geometries.

The model is applied to a parameter set (for four hollows)
derived from published data from the Oregon Coastal range
(e.g. Montgomery et al., 1997; Torres et al., 1998; Stock
and Dietrich, 2003; D’Odorico and Fagherazzi, 2003). To
apply the exponential width function to these four hollows
(which are convergent, see Fig. 2, Montgomery et al., 1997),
Eq. (1) is fitted using the total contributing areas (A), the
outlet width (wo) and the dimensionless coefficient affect-
ing concentration time (C coefficient in Eq. 6, D’Odorico
and Fagherazzi, 2003), as was explained previously after
Eq. (23). The hollow length assuming exponential geome-
try is estimated byL=C

√
A/f . Now, from the equivalent

hollow length (L), the plan shape parameter (a) is calculated
using the Eq. (2). Finally, by computingpD (see Eq. 1) in
each hollow (iteratively), the subsurface saturated storage is
obtained by the HSB model (Eqs. 8 and 9).

Table 1 lists the values of the hydrological and geotechni-
cal variables used to perform stability analyses in the differ-
ent hollows and Table 2 shows the geometric characteristics
of these four hollows. To generalize the obtained results, we
also apply the model for a wide range of hollows with differ-
ent geometric characteristics and different hydrology condi-
tions (different Ṕeclet numbers).

3 Results and discussion

Based on Eq. (5), the critical soil depth (Dcr) for the two
steep hollows (β>φ) is found to be 1.25 m and for the two
gentle hollows (β<φ) 2.58 m (see Table 2). Tables 3 and 4
show the results of the landslide probability analysis for the
KW and the HSB model, respectively. They illustrate how
the hydrological properties and stability of hollows change
as a function of hollow geometry. As can be seen, the values
of the concentration time (Tc) are slightly longer for the HSB
model than for the KW model. This is because in the KW
model the diffusion term is ignored (K=0 in Eq. 7). As a
result, other parameters (Rcr andTr) for all hollows are also
larger for the HSB model. This affects the stability regime,
especially in gentle and convergent hollows (see Table 4).

Based on the obtained results (Tables 3 and 4), the immu-
nity period (Tim, i.e. the time needed to accumulate a collu-
vium thicknessD=Dcr) of hollows 1 and 3 are significantly
longer than the return period of the triggering rainfall (Tr).
This means that landslide occurrence is limited by the supply
of debris from the adjacent slopes, rather than by the occur-
rence of triggering rainfall. As soon as the soil depth reaches
Dcr , a landslide will occur shortly. D’Odorico and Fagher-
azzi (2003) denote this regime as “supply limited”, indicating
that the landslide return period depends first and foremost on
soil production. On the other hand, in hollow 2 (whereTim is
the same as for hollow 1), a higher rainfall intensity is needed
to trigger landslides (Tim<Tr). In that case landslides occur
when an extreme rainfall intensity is able to produce the crit-
ical saturated depth (hcr) required for landslide occurrence.
This is called the event-limited regime. Hence, it can be con-
cluded that hollow geometry is an important control on sub-
surface flow response (Troch et al., 2003; Hilbert et al., 2004)
and this process affects slope stability (Talebi et al., 2007).

Figure 2 shows long term simulations of deposit thickness
evolution in the four hollows (from top to bottom) and illus-
trates how shallow landsliding occurs when the soil thick-
ness (D) ranges betweenDcr andDmax. In this figure, left
and right columns show the time series of deposit thickness
for the KW and HSB models, respectively. As can be seen,
the landslide probability analysis for the HSB model (using a
more realistic description of hollow hydrology) shows signif-
icant differences with respect to the results of the KW model
(especially in gentle and convergent hollows, Fig. 2, last
row). Comparison of the results reported in Tables 3 and 4
with Fig. 2 also illustrate that the KW model looses its ability
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Fig. 3. Probability distribution of scar depth (colluvium thickness
when a landslide occurs) for hollows 1, 2 and 3, respectively. Left
column: KW; right column: HSB model.

in gentle hollows, such as in hollow no. 4, where the stability
regime has also been changed. Figure 2 also indicates how, as
a function of the hollow geometry from steep slopes (top) to
gentle slopes (bottom), the landslide probability is changed
as well. For instance in hollow 4 (whereTr�Tim), landslides
never occur and the system can be termed “unconditionally-
stable”.

Figure 3 illustrates the probability distribution of collu-
vium thickness when a landslide occurs as simulated by the
KW model (left column) and the HSB model (right column)
(Dslide). Note that hollow 4 lies in the unconditionally-stable
regime, hence the distribution ofDslide can only be presented
for the three remaining hollows. These histograms show that
not only the different hollows have different distributions of
scar depth, but also the results of the KW and HSB mod-
els are significantly different. The average (m) and standard
deviation (sd) of the histograms in each row show these dif-
ferences clearly. As can be seen, the probability distribution
of Dslide is concentrated close to the immunity depth (Dcr)

for the supply-limited case, whereas it is concentrated at sig-
nificantly larger depths for the event-limited cases.
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Fig. 4. Probability distribution of landslide return period for hol-
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Figures 4 and 5 indicate how the probability distribu-
tions of the interarrival of the landslide-producing rain events
(Tslide) and the corresponding rainfall intensities (Rslide) vary
for the different hollows. As in the previous figure, the left
and right columns show the results of the KW model and the
HSB model, respectively. These results show that in hollow 1
(which has less convergence and a larger area),Tslide is close
to Tim (supply limited regime), while in hollow 2 (which has
more convergence and a smaller area),Tslide moves in the di-
rection ofTr (event limited regime). Comparison of the left
and right columns in Fig. 5 also indicates that the values of
Rslide (the rainfall intensity generating a landslide) are sig-
nificantly different for the KW and HSB models. This is be-
cause the computation of the concentration time of the HSB
model (Eq. 23) includes the effect of diffusion.

Figure 6 shows the probability distribution of colluvium
thickness for the different hollows corresponding to the KW
(left column) and the HSB model (right column). As can be
seen, as soon as the soil depth reaches the immunity depth,
landslides begin to occur. Hollow 2 (second row in Fig. 6)
shows a significant difference between the KW and HSB
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Fig. 5. Probability distribution of the landslide triggering rainfall
intensity for hollows 1, 2 and 3, respectively. Left column: KW;
right column: HSB model.

models. This is because in hollow 2 (which lies in the event-
limited regime), the value ofTr /Tim for the KW model is
less than for the HSB model, indicating that landslides occur
a longer time afterDcr for the HSB model. Hence, including
a diffusion term in the steady-state hydrological model has a
noticeable influence on the landslide probability.

In order to quantify the effect of variations of hollow geo-
metrical parameters (e.g.D, L, A, a andβ) and hollow hy-
drological parameters (e.g.S, h andp) and to generalize the
results obtained, different landslide regimes have been inves-
tigated for a wide range of hollow geometrical and hydrologi-
cal parameters for gentle and steep slopes (see Fig. 7). As can
be seen, by changing the length (L), slope (β) and shape (a)
of several hollows, a wide range of Péclet numbers (Eq. 2, di-
mensionless parameter for hollow geometry and hydrology),
corresponding to the immunity period (Tim) and return pe-
riod of triggering rainfall (Tr) has been obtained. In particu-
lar, we have investigated the relationship between the Péclet
number of a large number of hollows and the ratio ofTr /Tim.
Based on our model, different regimes can occur, which de-
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pend on the ratio betweenTr andTim (see Table 4). Figure 7
summarizes the results of this paper and shows how the pre-
sented model allows to identify different landslide regimes as
a function of hollow geometry, hydrology and climatology.
Therefore, the Ṕeclet number (Pe) as the index of geome-
try and hydrology,Tim as the index of temporal variability of
colluvium thickness andTr as the index of climatology can
be used to investigate the probability distribution of shallow
landslides in the different hollows. It should be noted, how-
ever, that the Ṕeclet number seems to only have a secondary
effect on the return time of landsliding, the most important
parameter presumably being the concentration time.

4 Conclusions

The aim of this paper was to investigate the effect of hollow
geometry and hydrology on the probability distribution of
landslides in complex hollows (hollows with different length,
slope and convergence degree). For that purpose and to relax
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the KW assumptions, we substituted a more realistic descrip-
tion of hollow hydrology (the linearized steady-state HSB
model) in the work of D’Odorico and Fagherazzi (2003). The
obtained model constitutes a probabilistic model of rainfall-
induced shallow landsliding in complex hollows and allows
to investigate the relation between the return period of rain-
fall, deposit thickness and landslide occurrence. The main
assumptions of the presented model are:

– infinite planar slope stability analysis;

– steady-state hydrology;

– statistical model relating depth-duration-frequency of
extreme precipitation based on Gumbel extreme value
distribution;

– growth of colluvial deposits in hollow only due to trans-
port of soil from uphill, not from physical weathering of
underlying bedrock;

– and landslides scour hollow to bedrock.

Note that similar assumptions regarding hillslope hydrol-
ogy and stability have been employed by other researchers
(e.g. Montgomery et al., 1998; Iida, 1999; D’Odorico and
Fagherazzi, 2003; Rosso et al., 2006).

The following conclusions can be drawn from our rainfall-
induced landslide stability analysis in response to deposit
thickness evolution in complex hollows:

(i) Although shallow landslides in hollows are mainly trig-
gered by high rainfall intensities, deposit thickness also
plays an important role in stability.

(ii) With other site variables constant, shallow landslides
usually occur when the soil depth (deposit thickness) is
betweenDcr andDmax (as has been confirmed by other
researchers, e.g. Iida, 1999; D’Odorico and Fagherazzi,
2003). In fact, shallow landslides always occur shortly
afterDcr has been reached.

(iii) Given a deposit thickness, for each hollow there exists
a critical rainfall intensity leading to the highest water
table and subsequent landslide occurrence.

(iv) In general, when the convergence degree of hollows in-
creases, the time period between land slides (Tslide) de-
creases. This means that hollows with a higher conver-
gence degree are generally more susceptible to landslid-
ing.

(v) Finally, it can be concluded that incorporating a more
realistic description of hollow hydrology (instead of the
KW model) in landslide probability models is neces-
sary, especially for hollows with a high convergence de-
gree (which are more susceptible to land sliding).
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