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ABSTRACT:

Image change detection has been extensively tackled in the literature in various domains, and in particular for remote sensing purposes.
Indeed, very high resolution geospatial images are nowadays ubiquitous and can be used to update existing 2D and 3D geographical
databases. Such databases can be projected into the image space, by a rasterization step. Therefore, they provide 2D label maps that
can be subsequently compared with classifications resulting for geospatial image processing. In this paper, we propose a classification-
based method to detect changes between label maps created from 2D land-cover databases and an more recent orthoimage, without
any prior assumptions about the databases composition. Our supervised method is based both on an efficient training set selection and
a hierarchical decision process, that follows the structure of topographical databases. This allows to take into account the intrinsic
heterogeneity of the objects and themes composing a database while limiting false detection rates, a standard limitation of existing
approaches. The designed framework is successfully applied on very high resolution images of Pléiades sensor and two distinct

national land-cover databases.

1 INTRODUCTION

2D topographic land-cover databases are now available over most
of the extent of many developed countries. Such databases are
mainly created by merging existing databases of various kinds
and sources. Classes of high interest that are not in such databases
are derived according to ground surveys, photo-interpretation of
very high resolution images, or development of automatic theme-
specific detection algorithms.

In France, the generation of the new global 2D land-cover/land-
use (LC/LU) database at a spatial resolution of 1 m has started
in 2013, on the initiative of several public institutions. It is or-
ganised in a hierarchical manner, similarly to Corine Land Cover,
so as to fit with a large number of users’ needs. Furthermore, it
aims to federate various existing databases both at national and
regional levels (buildings, roads, water areas, rivers, forests, agri-
culture etc.). After the generation of the initial state, two issues
remain challenging. First, the completeness and the geometrical
accuracy of all the classes included in these databases may vary
significantly and one has to detect discrepancies with respect to
the database specifications. Secondly, such a database needs to
be updated at least every year. Since most classes are the result of
human intervention, automatic change detection processes should
be set up and be valid for each of these labels.

The aim of this paper is to present a new method to solve both
issues equally, using geospatial images at the same resolution as
the LC/LU database, namely very high resolution satellite im-
ages, without any prior assumption about the database classes.
The recent launch of very high resolution (inferior to 1m) satellite
sensors, such as Pléiades or Worldview-2, allow to obtain a reg-
ular coverage of large areas in a very short period of time. How-
ever, despite the ability of such sensors to acquire stereoscopic
images, their scheduling and cost issues often limit the disposal
to a single image per period (monoscopic configuration). In this
paper, we will therefore focus on single images of sub-metric res-
olution, regularly acquired over the year, to automatically update
land-cover databases.

Change detection is a main subject of research in the image pro-
cessing domain, e.g., for video surveillance, infrastructure mon-

itoring or medical diagnostic (Radke et al., 2005; Goyette et al.,
2012). In remote sensing, a large body of literature has tackled
the problem, from many points of view. For instance, changes
can be detected between two images (Miller et al., 2005), or sev-
eral high or very high resolution images (time-series) (Robin et
al., 2010; Petitjean et al., 2012; Bovolo et al., 2013). Hussain et
al. (2013) provide a good overview and taxonomy of change de-
tection methods.

More specifically, detecting changes between a LC/LU database
(DB) and images more recent than the images or the observa-
tions that allowed to populate the DB is a main subject of interest
(Holland et al., 2006; Gianinetto, 2008; Champion et al., 2010).
For example, Margal et al. (2005) match objects of a DB with
image saliencies, in order to select good training sets for the su-
pervised classification of a multi-spectral image, using Support
Vector Machine and Logistic Discrimination methods. Walter
(2004) segments aerial images according to DB object outlines
and performs an object-based classification using a supervised
Maximum Likelihood classification, eventually compared with
the initial DB for change detection. More generally, one can no-
tice that existing methods focus on a very specific object type
(e.g., roads, buildings), and require the computation of 3D fea-
tures from stereoscopic images, in order to better discriminate
such objects (Nemmour and Chibani, 2006; Poulain et al., 2009;
Champion et al., 2010). Helmholz et al. (2012) integrate such
specific methods in a global semi-automatic workflow for detect-
ing changes between a 2D geographical DB and orthorectified
up-to-date images. Each object of the DB is verified by an auto-
matic image analysis operator, integrated into a knowledge-based
image interpretation system. This work is closely related to our
issues, but specific methods have to be developed for each kind
of label (also called theme) of the DB, and new classes would not
be directly supported. Thus, this method cannot be adopted here.
Finally, the analysis of the approaches mentioned above allows
us to conclude that:

> A supervised classifier should be adopted: this is the best way
to fit to the various kinds of themes of the DB and to the vari-
ability of the geographic areas. We can also learn the underlying
statistics of the data, instead of applying some rule-based model
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or unsupervised clustering approaches;

> As few changes exist between the DB and the image, the DB
can be kept as initial solution to select reliable training sets for
the classifier.

Such assumptions will be the basis of the solution proposed here.
Nevertheless, contrary to approaches developed so far, our method
targets to detect any change (new, modified, and deleted objects)
from any theme of the DB of interest. The robustness of the
change detection system will be mainly guaranteed by the selec-
tion of the training sets that best discriminate each object of the
DB from the rest of the image. Such a per-object consideration
will then be propagated into the hierarchical layout of the DB by
merging information at each DB level in order to strengthen the
process. Our method introduces several new relevant features:

> No restricting inputs. A single very high resolution (< 1 m)
satellite image is required, without stereoscopic configuration. To
deal with such a weak input, a very high number of features are
computed from the image, and we assume they will be sufficient
to learn the visual aspect of the different themes of the DB;

> Independence to the objects of interest. Our feature set and
training step are not designed for specific object types. Therefore,
our method can be applied on any 2D geographical database;

> The use of the hierarchical layout of the DB allows a bottom-
up analysis (object — theme — DB) and to obtain LC and change
maps consistent with the different objects populating each theme
of the DB.

An overview of our change detection methodology is first intro-
duced in Section 2.1. Then, the hierarchical approach is detailed
in Section 2.2. Results are presented for two different 2D topo-
graphic databases at two different levels of details in Section 3.
Finally, conclusions are drawn in Section 4.

2 METHODOLOGY

In this section, we first provide an overview of our methodology
and introduce some notations. Then, the three levels of our ap-
proach are detailed. Finally, technical choices are discussed.

2.1 Overview

2.1.1 Inspection principle 2D geographical databases (DB)
are structured in three different levels: a DB is composed of non-
overlapping themes, and themes are themselves composed of ob-
jects, that are in practice 2D polygons (cf. Figure 1a). Therefore,
this hierarchical layout exhibits three levels of possible examina-
tion: (1) the object level, (2) the theme level, and (3) the DB level.
The initial DB is resampled at a resolution consistent with both
the geometrical accuracy of its themes and the spatial resolution
of the satellite image. Here, 1 m is selected as the most appro-
priate scale of analysis. Since no overlapping themes exist in a
DB, a pixel of such a grid can include not more than one label,
corresponding to the theme of the object intersecting such pixel.

Our methodology is based on such hierarchical inspection, in a
“bottom-up” way. Our method first performs a classification per
each object of the database. Then, labels are merged at the theme
level, and the final decision is taken at the DB level (Figure 1b).

The object level inspection consists (1) in choosing, for each ob-
ject, a subset of pixels that best allows to discriminate the object
from the rest of the image (called here outside), and (2) in classi-
fying the full image into two labels (inside / outside). The subset
selection is based on the maximization of the recall a two-class
classification of the pixels of the object (Section 2.1.2). There-
after, the labelling process allows to obtain a probability map for
each object of each theme of the database.

All classifications computed at the object level are then merged
at the theme level, in order to obtain a single probability map per
theme. This map describes the probability of each pixel of the
image to belong to the current theme. Thanks to the object level
inspection, the several existing visual aspects of the theme are

kept and no specific ones are favored (e.g., ones of the largest ob-
jects).

Finally, a decision is taken at the DB level. A new label image is
first produced, that associates to each pixel one label of the ini-
tial DB. Secondly, a final probability change map is generated,
allowing to label each pixel of the DB image as changed or not
changed, and to detect confusion areas. This indicates where our
method cannot straightforwardly take a decision. The reduction
of those confusing areas will be the purpose of our next research.

2.1.2 Notations

Database A 2D geographical database is structured in several
themes {T}};ci1,np]>» N1 being the number of themes (Equa-
tion 1). Each theme Tj is itself composed of a set of objects
{07 }ien, N, 1> Nr; being the number of objects of the theme T}
(see Figure 1a and Equation 2).

pB= |J T, )
JE[L,NT]

viel,Ng, T,= |J Ol @)
i€[1,N7;]

Projection onto the image Each object OZ of the theme T} is
associated to a region R{ of the image, by a projection function
Z, given in Equation 3. Thus, each region Rg is a set of pixels
of the image. Thereafter, object OZ and its image projection RZ
will be noted equally, and the notation O{ will be used.

Vj € [1,Nr], Vie[l,Nr], R =Z(0]). ()

Moreover, when no ambiguity is possible, an object OZ and its
associated theme 7; will be noted O and T'. The projection of
all the objects composing a DB may not necessary cover the full
area of the region of interest €2: the rest of the area is denoted
background hereafter:

Q = P;(DB) U background.

Finally, each pixel of the image is initially labelled either by a
theme of the DB either by being in the background ({Bg}). The
label of a pixel p of the image [ is given by the function L as:

LDB I — {Tj}je[L.NT] U {Bg}

p — Lpg(p)

Classification Changes between the DB and the satellite image
are assumed to be limited so that DB can be used to learn the
visual aspect of existing objects, and therefore themes. Thus,
DB objects are used to train the classifier, introduced in Sec. 2.3.
Moreover, the training step is performed according to a subset
of pixels F, labelled in two classes {l1, 2}, with the function {
(Equation 4). {FE, 1} is called the training set, and can also be
noted (E1, E»), where By = {p € E, I(p) = 1} and E> =
{peE, l(p) =12}
I:E — {l,l2}
p — 1p)

From the training set { £, [}, the classification method allows to
define a classification function [, that is applied to the full image:

{l1,l2}
le(p)

A probability measure is derived from the classification, this mea-
sure is defined as the probability of each pixel of the image to be-
long to the class l1, P(l.(p) = l1), the probability to belong to I
being equal to 1 — P(l.(p) = l1). Finally, a map of probabilities
P(E,l) = P(E1, E») is defined as follows:

le: ]I —

P —
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Figure 1: (a) Database structure and (b) our hierarchical inspection methodology.

P(E,l) = P(E1,E2) i — [0, 1]
p — Pl(p)=h)

Thereafter, the recall of a classification [, with regard to a ground-
truth GT = {Eqar, lar} (a subset of pixels whose label is known
a priori), is defined as the number of pixels of Egr that are cor-
rectly labelled by I.:

Recall(le, GT) = Card(p € Ecgr,lc(p) = lar(p)).

2.2 The hierarchical process

The three levels of our inspection method are detailed thereafter.
2.2.1 Object level The object level inspection is based on a
supervised classifier that is fed with a set of image-based features,
described in Section 2.3. For each object, a specific classifier is
trained on the subset of pixels, taken inside the object, able to best
discriminate the object from the rest of the pixels of the image and
out of the current theme. The selection of such a training set also
allows to reduce registration issues between DB and images that
is often reported in the literature (Poulain et al., 2009).

Training set selection The purpose of this part is to chose two
pixels sets for appropriate training: one in the object O of the
theme T’ (SiO"* C 0), and one out of the current theme (Sg“t* -
I\Pr(T)). {S&", 55"} defines the full training set S5 These
two subsets are selected among several randomly generated sub-
sets, as the subsets that maximise the recall of the classification
(theme / out of theme). Such selection is performed in two steps:
(1) the selection of the best inside subset, and (2) the selection of
the best outside subset.

First, the inside subset is selected as follows: a subset of outside
pixels is randomly drawn within pixels out of the current object,
S&*t C I'\ Pr(T). Those pixels can belong to another theme or
to the background. Then, N;,, inside pixels are randomly drawn
within pixels of the current object:

{967 Yiem..v,,y CON.

One classification is obtained per each inside subset, paired with
the outside one, {1 }jem..N,,]- The recall of each classifier is

computed by using object pixels as ground-truth, GT = { P;(O), (}.

The inside subset with the best recall is selected according to:
in" = arg max Recall(Il"? | GT).
FE[L..Nip]
Secondly, the outside subset is selected in the same way. Nout
outside subsets are randomly drawn, and the corresponding clas-

sifiers {lzmj }i€[.. Nou,) are trained:
out;
(55" Y jett. Nowe) C (I\ Pr(T)) N,

out* = arg max  Recall(1:"", GT).

JE[L..Nout]

Finally, the training set is defined as the union of the best inside
subset S&' and the best outside one SF** .
S =857 U St “)

Classification The optimal training subset S5, associated to
the object O is then used to perform a classification and to re-
trieve a probability map Po:

Po =P(So) =P(50,506 )

2.2.2 Theme level The probability maps Po, computed for
each object O of a given theme 7', are merged in order to obtain
a single probability map per theme P”:

PT = Fusion({Po, O €T}). Q)

For now, three merging methods have been tested, the minimal,
the maximal and the weighted mean value. In this paper, the mean
weighted by the size of the objects is used, in order to give more
confidence in the larger objects, that are less likely to change.
However, merging probability maps with Bayes rules is planed.

2.2.3 Database level For each pixel, the set of probabilities
to belong to each theme {PT}TG pB is used to obtain the final
label, corresponding to one of the theme, and a confidence map
of such a labelling. Then, a final change map is computed by
merging (1) the difference between the initial DB and the new
classification, and (2) the confidence map.

Labelling and confidence map The final labelling L¢, is ob-
tained by keeping, for each pixel, the theme with the highest prob-
ability value. It is defined as follows:

Le,: I — [1.N7]
— arg max P
b %e [1..N7] ()

A confidence value C is associated with the classification L¢, . It
allows not to limit the system to a binary decision and to enhance
confusion areas, i.e., areas where no straightforward decision can
be taken. In practice, the maximal value of the probabilities of
each theme provides a reliable measure of the confidence in the
previous labelling:

[0,1]

Cmaz : I —

TLcl (p) (

p — P P)

However, if two themes have both a high probability value, the
maximum value is indeed high but the confidence should be low.
Thus, a marging measure is preferred. It is defined as the dif-
ference between the two highest probability values, related to
L01 and LCQZ

(0,1]
TLe, ()
p o P a(p) -

Cma'rgin oI >

Pl (p),
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where L¢, (p) is the theme with the second highest probability
value in p.

Probability change map A change map A is obtained by com-
paring new labels with the initial DB. Thus, each pixel can take,
either the value -1 (change), either the value 1 (no change):

-1 siLe(p) # Lpp(p)
Vpel, A(p) = Lot
y w={ 71 i Zme
This change map A is then weighted by the confidence measure,
in order to derive a final probability change map II such as:

Vpel, Ti(p) = A(p)*C(p).

This map is composed of three classes: certain change, certain
no-change, and uncertain (i.e., confusion areas, see Equation 6).
For that purpose, two thresholds S; and S> are introduced. They
should be tuned according to the quality result and the percentage
of false alarms that is tolerated.

certain change if I(p) < S1
Vp e I, certain no-change if II(p) > So (6)
uncertain otherwise

Such labelling allows to focus an operator either on change areas,
either on confusion areas.

2.3 Technical choices

2.3.1 Classifier The classification method must be adapted to
the different themes of the analysed DB. Thus, a supervised clas-
sification is chosen. Moreover, such a method should (1) handle
a very large numbers of features (>200), (2) have a high gener-
alisation ability, and (3) be fast enough to perform as many clas-
sifications as required. Consequently, a Support Vector Machine
(SVM) method was chosen (Foody et al., 2006), with a standard
Gaussian kernel (k(z1,22) = C * 6_7\\11_12\\2’ where (21, z2)
are two feature vector). A grid search method was applied to
select the best hyper-parameters (C, ) that maximise the cross-
validation accuracy. Each SVM provides a binary classification,
coupled with a probability estimate per theme (Wu et al., 2004).
2.3.2 Features Our methodology is based on the fact that the
various visual aspects of each theme of the DB can be retrieved.
Since the most relevant features for a specific theme cannot be
known beforehand, and since we aim to deal with any kind of
theme, a large number of features computed from the different
channels of the image is therefore required. The quality of our
workflow is highly dependent on those features. A large body of
literature has dealt with geospatial image-based feature extraction
(Lefebvre et al., 2008; Lienou and Campedel, 2009; Tokarczyk et
al., 2012). Features can be (1) spectral (resulting from the combi-
nation of the input spectral channels of the image), (2) geometri-
cal (i.e., low-level primitives such as lines or keypoints), and (3)
textural (describing the image behaviour in the neighbourhood of
each pixel).

With a sub-metric image, a multi-scale observation may be use-
ful. Indeed, a small neighbourhood will probably provide more
homogeneous textures and best describes fine textures (e.g., for-
est or fields), while large neighbourhood allows to better estimate
complex textures as vineyard or aligned buildings, (Campedel et
al., 2005).

2.4 Training point selection

The number of training points is tuned to 200 (100 inside and 100
outside), and the numbers of random selections IV;,, and Ny, is
set to 10. However, a quantitative study will be carried out to
know the real sensitiveness of such parameters with respect to
the themes, and the area of interest.

3 RESULTS ON LAND COVER DATASETS

Our method was first assessed on simulated data in order to be
independent of the input feature set and ground-truth issues. In
(Gressin et al., 2013), we demonstrated that our methodology was

not sensitive to various kinds of change, the ratio of change and
the varying visual aspect of objects within a specific theme. In
this paper, our method was applied on real 2D geographic DB and
satellite images. One area of interest acquired with a satellite im-
age is first described. Then, change detection results performed
for two different DB are provided.

3.1 Area of interest

Our dataset covers a surface of 760km? in the Southern-West part
of France. One acquisition of the Pleiades sensor in August 2012
is available. This acquisition is composed of two images: one
panchromatic 0.5 m ortho-image, used to compute textural fea-
tures and one four channels 2 m ortho-image, for spectral ones.
Three geographic DB are available on this area: the first one cor-
responds to the agricultural activities (crops, pastures, ..., called
Field afterwards), the second one to forests (tree species, hedges
etc.), and the third one to buildings. From these DB, two scenar-
ios were generated. First, a DB with three very specific and de-
tailed themes is proposed (called hereafter detailed DB): the Dou-
glas fir closest forest class, the bread wheat class, and the build-
ing class. The two first themes represent two specific sub-themes
of the two most populated themes of the area: Field and For-
est. They were selected to assess the relevance of our method to
the classification of unknown” classes (compared to the building
class that has been analysed through many approaches). More-
over, our method allows to not separate building class into several
roof material dependent subclasses as it traditionally carried out.
Change detection results on this DB are shown in Section 3.3.
Secondly, a more global, inhomogeneous, and therefore challeng-
ing land-cover DB is generated (called global DB). All classes of
the Field and Forest databases are merged into two themes, re-
spectively. Therefore, the Field and Forest themes are composed
of objects of varying visual aspects and sizes. Results on this DB
are shown in Sec 3.4.

3.2 Computed features

First, spectral features were computed: they were derived from
the red, green, blue and near-infrared channels available (e.g.,
NDVI, SAVI etc.), and were computed using the Orfeo-ToolBox
library (Inglada and Christophe, 2009). Those twelve features
are mainly useful to discriminate vegetation and water bodies.
Then, one textural feature, namely the entropy of the histogram
of gradient directions, was introduced in order to bring informa-
tion about the structure of the texture around each pixel vicinity.
It allows to best discriminate irregularly textured objects (such as
forests) from featureless objects (as fields) (Trias-Sanz, 2006).Fi-
nally, dense SIFT descriptors are computed, in a regular pixel grid
of the image (every 4 pixels), with a Gaussian filter of ¢ = 1.2
(van de Sande et al., 2010) which is the default value of the algo-
rithm. Then, a Principal Component Analysis is performed so as
to extract the ten (empirical value) eigenvectors associated to the
ten highest eigenvalues, so as to keep only the most discrimina-
tive information.

3.3 Detailed DB results

Classification results for three specific themes are discussed here.
Figures 2a and 2b focus on two areas of interest. These three
examples allow to assess the performance of the training set se-
lection and the classification steps. Since no ground-truth exists
on this area, no quantitative study has been performed. How-
ever, a qualitative study was carried out and satisfactory classifi-
cation results are obtained. One can notice that the three different
themes are well labelled. Douglas fir is correctly discriminated
from the other forest types, even though some confusion remains
in shadow areas. Therefore, our method is able to deal with new
objects and disappearing ones (Figures 2c and 2d). As for the
Douglas fir theme, the bread wheat theme is also correctly dis-
criminated from other fields (Figures 2e and f). A partly disap-
peared object introduced some confusion, but did not prevent the
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(¢) Douglas fir DB (AOI 1)

(b) AOI 2 (d) Douglas fir results

; wior 5w B
(e) Bread wheat DB (AOI

(f) Bread wheat results
Probability to belong to the current theme: (O I 1.

(h) Building results

Figure 2: (a) and (b) The two specific areas of interest (AOI 1 and 2) of the Pléiades image. DB and the probability result at theme level
for: (c) and (d) the douglas fir theme (AOI 1), (e) and (f) the bread wheat theme (AOI 1), (g) and (h) the building theme (AOI 2). No

DB fusion has been performed here.

method from founding new objects. Finally, the classification for
the building theme is the most confusing. Indeed, our method is
able to detect almost all existing and new buildings. However, the
classification fails to discriminate building from road, park lots,
and dry parts of some fields, due to a restricted feature set (Fig-
ures 2g and h).

These results do not take into account the DB fusion process, that
would allow to reduce confusion between the existing themes of
the DB.

3.4 Global DB result

Finally, our change detection method was applied on the global
DB scenario. This DB is composed of two themes, namely Field
and Forest. The Forest theme is composed of 50 objects of vari-
able sizes from 5 different forest themes, and the Field theme
gathers 190 objects from 20 different themes. Figure 3a and 3e
show the area of interest and the final probability change map, re-
spectively. One can notice extended red areas, corresponding to
real changes on the ground, here new fields as well as forest dis-
appearance or decrease. White areas are confusing areas, mainly
objects that are not in the initial DB, like building, roads or other
anthropic surfaces. These issues may be easily solved by intro-
ducing more themes in our initial DB.

Changes can also be studied theme by theme. Thus, Figure 3
shows the Forest theme (b), the classification result after fusion
at the DB level (c), and the differences between the DB and the
classification (d). This change map enhances new areas (in blue)
and disappeared areas (in red). Most disappearance correspond
to clearings, not included in the DB. Blue areas are new forest
areas, extended forest areas, as well as hedges and copses that are
again not in the DB. Indeed, only objects larger that a minimal
size are included in the DB. If necessary, the knowledge of such
specification would allow us to filter such objects.

Moreover, Figure 3 also shows for the Field DB (f), the classifi-
cation result after fusion at the DB level (g), and the differences
between both of them (h). This map shows many new fields (la-
belled in blue) as well as removed ones (in red). Many field
borders are labelled as disappeared. This is due to the coarse
delineation of Field objects during the initial image photointer-
pretation process.

Finally, similarly to the Detailed DB scenario, no ground-truth
is available and no qualitative assessment was possible. How-
ever, visual inspection showed satisfactory results, allowing to
correctly detect the main changes between the DB and the image.

4 CONCLUSION

In this paper, we proposed a classification-based method that al-
lowed to obtain satisfactory change maps between unknown 2D
land-cover databases and a more recent satellite image. Our hi-
erarchical method was based on a carefully designed per-object
training set selection and a generic decision fusion, guided by
the database layout. As this process is independent of both the
database specifications and the input image, it can be applied on
a large number of real cases. Our classification and per-theme fu-
sion processes were first assessed on three specific and challeng-
ing themes. Despite a restricted number of features, our train-
ing set selection allowed to deal with object disappearance, and
correctly found new objects. Then, the change detection method-
ology was applied on one land cover database composed of two
very general themes (Field and Forest). We managed to find most
changed areas. However, our method failed to discriminate some
objects (as building from roads, or parking). Consequently, in
future works, improvements of the method will focus on (1) the
introduction of a large number of features, coupled with a feature
selection step at the theme level and (2) a final regularization step
at the DB level of the classifications obtained at the theme level.
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