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ABSTRACT: 

Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of 
the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of 
high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 
3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to 
compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly 
available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view 
commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, 
volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar 
and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize 
building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view 
stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities. 

* Corresponding author 

1. INTRODUCTION

Publicly available benchmark datasets and metric evaluation 
approaches have been instrumental in enabling and 
characterizing research to advance state of the art methods for 
remote sensing applications in urban 3D modeling. The ISPRS 
scientific research agenda reported in Chen et al. (2015) 
identified an ongoing need for benchmarking in 
photogrammetry (Commission II) and open geospatial science 
in spatial information science (Commission IV). Recent efforts 
toward this goal include work by Rottensteiner et al. (2014), 
Nex et al. (2015), Campos-Taberner et al. (2016), Koch et al. 
(2016), and Wang et al. (2016). Most publicly available 
benchmark datasets for 3D urban scene modeling have 
consisted of high resolution airborne imagery and lidar suitable 
for 3D modeling on a relatively modest scale. To enable 
research in global scale 3D mapping, Bosch et al. (2016) 
recently released benchmark data for multi-view commercial 
satellite imagery. While that work focused solely on 3D point 
cloud reconstruction from multi-view satellite imagery, the 
public benchmark data laid the groundwork for ongoing efforts 
to establish a more complete evaluation framework for 3D 
modeling of urban scenes. 

In this work, we define a metric evaluation pipeline 
implemented entirely in publicly available open source software 
to assess 3D models of complex urban scenes derived from 
multiple view imagery collected by commercial satellites. 
Sources of ground truth include airborne lidar and overhead 
imagery, and we demonstrate a workflow for producing 
accurate ground truth building shape files. Source imagery and 
ground truth data used for experiments have also been publicly 
released in the Multi-View Stereo 3D Mapping Challenge 
(MVS3DM) Benchmark (2017). 3D model evaluation metrics 
in our pipeline include horizontal and vertical accuracy and 
completeness (similar to metrics employed by Akca et al. 2010, 

Bosch et al. 2016, and Sampath et al. 2014), volumetric 
completeness and correctness (similar to work reported by 
McKeown et al. 2000), perceptual quality (based on the work of 
Lavoue et al. 2013), and model simplicity (a relative measure of 
triangle or geon count). These metrics are intended to expand 
upon the multiple view stereo analysis by Bosch et al. (2016) 
and enable a comprehensive automated performance evaluation 
of both geometric and perceptual value of 3D object models 
reconstructed from imagery as well as assessment of the 
modeling process at the point cloud reconstruction, semantic 
labeling, and mesh simplification or model fitting steps. We 
provide an initial demonstration of our pipeline with 3D models 
derived from digital surface models produced using publicly 
available multi-view stereo software based on the NASA Ames 
Stereo Pipeline (Shean et al. 2016), the Satellite Stereo Pipeline 
(de Franchis et al. 2014), and the RPC Stereo Processor (Qin 
2016). Refinements to this pipeline are in work to enable 
assessment of triangulated mesh models such as those in the 
Open Geospatial Consortium (OGC) Common Data Base 
(CDB) standard and solid and multi-surface models such as 
those defined in the CityGML standard (OGC Standards, 2017). 

2. SATELLITE IMAGERY BENCHMARK

Bosch et al. (2016) describe a public benchmark data set 
developed to support the 2016 IARPA Multi-View Stereo 3D 
Mapping (MVS3DM) challenge. The MVS3DM Benchmark 
(2017) was made available for download and public use to 
support research in MVS for commercial satellite imagery. 

2.1 MVS3DM Benchmark Data and Metrics 

The MVS3DM benchmark data set includes 50 DigitalGlobe 
WorldView-3 panchromatic (PAN) and visible and near-
infrared (VNIR) images of an approximately 100 square 
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kilometer area near San Fernando, Argentina and one short 
wave infrared (SWIR) image overlapping this area, as shown in 
Figure 1. The PAN image ground sample distance (GSD) is 
approximately 30cm, VNIR GSD is approximately 1.3m, and 
SWIR GSD is approximately 4m. Airborne lidar with 
approximately 20cm point spacing was provided as ground truth 
for a 20 square kilometer subset of the imaged area. Satellite 
imagery was provided courtesy of DigitalGlobe, and ground 
truth lidar data was provided courtesy of IARPA. 
 
 

 
Figure 1 Polygons indicating benchmark data coverage are 
shown in Google Earth. 
 
 
Metric evaluation software used for the MVS3DM is also 
distributed with the benchmark dataset. The metric analysis 
methodology was informed by prior public stereo comparisons 
by Seitz et al. (2006) and others. Lidar and MVS point clouds 
are registered to remove any X, Y, and Z offsets and then 
gridded for direct comparison of Z values. Accuracy is 
measured by the median Z error and Root Mean Squared Error 
(RMSE), and completeness is measured by the percentage of 
points in the MVS point cloud with less than 1m error 
compared to lidar. Initial results are reported in Bosch et al. 
(2016), and the contest rankings are available on the web site at 
http://www.jhuapl.edu/satellite-benchmark.html. 
 
2.2 MVS Solutions 

Winning solutions from the contest were based on the Satellite 
Stereo Pipeline (S2P) (de Franchis et al. 2014), the RPC Stereo 
Processor (RSP) (Qin 2016), and the NASA Ames Stereo 
Pipeline (ASP) (Shean et al. 2016). The highest ranking 
solutions are listed on the MVS3DM Benchmark (2017) web 
page along with links for open source software downloads for 
the ASP and S2P solutions and a link for more information 
about the RSP solution and its use for research purposes. Each 
of these solutions employed variations of the Semi-Global 
Matching (SGM) method of Hirschmuller (2008). The Johns 
Hopkins Applied Physics Laboratory (JHU/APL) also 
developed an example MVS solution based on the SIFT Flow 
method of Liu et al. (2011) for comparison. For our current 
analysis, we consider point clouds produced by S2P, RSP, 
JHU/APL, and Sebastian Drouyer’s solution based on ASP 
(ASP-SDRDIS) for one of the test areas from the contest which 
includes a range of urban structures, as shown in Figure 2.  
 

 
Figure 2 MVS and lidar point clouds are rendered as digital 
surface models and compared with Google Earth imagery. 
 
 

3. GROUND TRUTH PIPELINE 

We have begun development of a semi-automated ground truth 
pipeline designed to quickly generate building footprints over 
large areas where known building polygons do not already 
exist. The pipeline currently makes use of high-resolution 3D 
lidar data for automated labeling of buildings and a high 
resolution orthorectified image to facilitate manual review and 
refinement of building polygons.  
 
The area shown in Figure 2 and used in section 4 to 
demonstrate our metric analysis pipeline covers approximately 
0.3 square kilometers. However, we intend to eventually 
perform analyses over much larger areas, so the proposed 
ground truth development methods are intended to scale 
gracefully to hundreds of square kilometers, though there is 
work remaining to be done to enable that capability. 
 
3.1 Automated Semantic Labeling 

The first step of our ground truth process for assessing MVS 
point clouds and 3D models is to automatically label ground, 
building, and vegetation in higher-fidelity lidar point clouds. 
Commercial tools such as Blue Marble’s Global Mapper 
LiDAR Module offer this capability. The rapidlasso GmbH 
LAStools (Isenburg, 2016) offers a batch scriptable capability 
that may be freely used for research and that may be used for 
government and commercial purposes with licensing. Since we 
plan to use our pipeline for government purposes, we have 
developed our own classification algorithm and released it as 
open source software for public use. 
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We first produce minimum and maximum height images from a 
dense lidar point cloud, and subsequent filtering, segmentation, 
and classification steps are performed on those images. Since 
multiple-return lidar reports ground heights as well as canopy 
heights over foliage and other vegetation, we first classify 
vegetation using the minimum and maximum height images. We 
then extract candidate building boundary edges using gradients 
in the minimum image, group any connected edges into 
candidate objects, fill and label those objects, and finally 
remove small objects to produce a ground-level Digital Terrain 
Model (DTM) and a raster image indicating ground, building, 
vegetation, and unknown. Processing 14 million lidar points for 
the area shown in Figure 2 took approximately 15 seconds on a 
laptop PC. Processing a larger data set with 600 million points 
completed successfully in 25 minutes on the same laptop PC 
with 32 GB of RAM. This scales sufficiently well to enable 
approximate ground truth production on the order of hundreds 
of square kilometers without the need for tiling. 
 
Figure 3 shows the building labels produced by our automated 
method compared with those produced using Global Mapper 
and LAStools. Ground truth labels produced with the manual 
editing process to be discussed in section 3.2 are also shown. 
While all of these results include errors, our automated method 
produces labels as accurately as the best available alternative. 
 
 

 
Figure 3 Automated lidar building classification results from 
open source JHU/APL software compare favorably to well-
established methods. 
 
 
Additional post-processing is applied to the building label raster 
image to remove any remaining small objects, produce building 
footprint polygons, and simplify those polygons to remove 
unnecessary vertices. Finally, a binary confidence image is 
produced to indicate pixels for which the building label cannot 
be determined with certainty. This is not currently used in our 
analysis, but we expect it to be useful for scaling to larger areas 
for which detailed manual editing may not be practical. Those 
pixels would then not be included in accuracy assessment. 
 

 
3.2 Manual Editing 

The second step in our ground truth process is manual review of 
building footprint polygons and editing to correct any obvious 
mistakes. We initially used ArcGIS for this. While that 
application worked well, it quickly became clear that a custom 
interface designed specifically for our task would be simpler 
and more efficient, so we developed a MATLAB tool for that 
purpose. 
 

Figure 4 JHU/APL manual editing tool for building polygons 
includes a drawing window (top left), a context window (top 
right), and a polygon attribute table (bottom). 
 
 
Figure 4 shows our manual review and editing tool for building 
footprint polygons. The top-left window displays a zoomed in 
view of an orthorectified image and the building outline 
polygons. Polygons and vertices can easily be created, deleted, 
or edited using keyboard shortcuts, mouse-enabled menus, and 
buttons that appear in the center of the figure. Each polygon can 
be individually labeled with a category from a customizable list. 
The keyboard is used to navigate around the larger image which 
is shown in the top-right window, and in the top-left window 
the user can zoom in for increased detail and out for context. 
The top-right context window is color coded to indicate which 
portions of the image have already been viewed. The bottom 
window shows an attribute table for the building polygons, 
including category label, review status, polygon bounds, and 
any user notes. 
 
Manual editing can be very time consuming. Automated 
instance-level segmentation of very closely spaced or physically 
connected buildings, even in high resolution lidar point clouds, 
may not be a practical expectation. Even human visual 
interpretation can be suspect in such dense urban scenes. For 
our purposes, we have focused on correcting obvious defects 
along building boundaries and removing trees incorrectly 
labeled as building. For this example which includes many 
closely spaced and connected buildings, manual editing was 
completed in two hours. We believe that additional 
improvements to our automated labeling software will reduce 
the time required for manual editing such that, for example, one 
square kilometer areas may be manually edited in a reasonable 
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amount of time without extensive manual effort or online crowd 
sourcing such as Amazon’s Mechanical Turk. Still, we believe 
the confidence mask concept discussed in section 3.1 will be 
important for scaling up to hundreds of square kilometers. 
 

4. METRIC ANALYSIS PIPELINE 

The metric analysis pipeline currently assesses 3D point clouds, 
dense Digital Surface Model (DSM) meshes derived from those 
point clouds using the maximum Z values, and raster images 
with semantic labels indicating the locations of buildings. This 
pipeline will eventually be revised to assess individual 3D 
building models including facades as well as other static 
structures in urban scenes. The data considered here does not 
include those features. 
 
4.1 MVS Point Clouds for Initial Analysis 

For demonstrating the metric analysis pipeline, we produce 3D 
point clouds using the four MVS solutions discussed in section 
3.2. For each, we use the recommended parameters and the ten 
image pairs selected by the winning S2P solution from the 
IARPA Multi-View Stereo 3D Mapping challenge. Figure 5 
shows a close up view of a tall housing complex from the same 
dataset as shown in Figure 2. Visual inspection of the MVS 
solutions at this scale provides insight into the strengths and 
weaknesses of each of the solutions which the metrics should 
capture. For instance, the example solution developed by 
JHU/APL which does not employ SGM constraints has 
significantly more Z noise than the other solutions. The S2P 
solution includes a method to replace rejected unreliable points 
or data voids with ground height which introduces artifacts with 
large Z errors on some roof tops. This also replaces many of the 
trees near the buildings with ground height which results in a 
clearer separation of some buildings from background for 
segmentation. Finally, some of the roof tops are visibly dilated 
in the ASP-SDRDIS and RSP solutions which reduces 
horizontal mensuration accuracy. These visual observations also 
manifest in metrics discussed below. 
 
4.2 3D Point Cloud Registration 

Before metric evaluation, each MVS point cloud is registered to 
the lidar ground truth data using a coarse-to-fine search to 
determine X, Y, and Z translation offsets. These offsets can 
provide an indication of absolute accuracy when measured in 
aggregate, but since our analysis is limited to a small localized 
area, we do not report anecdotal estimates of absolute accuracy. 
 
4.3 MVS Accuracy and Completeness 

We begin with the 3D point cloud metrics reported in Bosch et 
al. (2016) for assessing point clouds submitted for the IARPA 
Multi-View Stereo 3D Mapping challenge. Median Z error and 
Root Mean Squared Error (RMSE) are reported compared to a 
lidar ground truth DSM. Completeness is reported as the 
percentage of points in the MVS point cloud with less than 1m 
Z error compared to ground truth. Results are presented in 
Table 1. Observe that JHU/APL median Z error is significantly 
larger than the others, consistent with visual inspection in 
Figure 5. Also observe that the Z RMSE for S2P is larger than 
the others due to the large Z outliers caused by both trees and 
small portions of buildings being replaced with ground height. 
However, S2P also achieves the highest completeness metric 
which is consistent with overall visual inspection compared to 
lidar in Figure 2. 

 
Figure 5 MVS and lidar point clouds are rendered as digital 
surface models and compared with Google Earth imagery. This 
close up view clearly shows some of the strengths and 
weaknesses of each of the MVS solutions. 
 
 

Table 1 Stereo accuracy and completeness metrics for MVS 
solutions (completeness threshold is 1m) 

Metric S2P JHU/APL ASP 
SDRDIS RSP 

Median Z 
Error (m) 0.37 0.47 0.39 0.35 

Z RMSE (m) 2.59 2.20 2.31 2.27 
Completeness 
(error < 1m) 73.2% 64.1% 68.7% 69.4% 

 
 
4.4 Relative Horizontal Accuracy 

The accuracy and completeness metrics commonly used for 
assessing stereo methods are easy to compute reliably and 
provide a high level automated assessment of 3D data quality 
that roughly agrees with visual inspection. However, these 
metrics conflate all sources of error and generally do not 
provide a good indication of relative accuracy. Directly 
measuring relative horizontal accuracy requires a priori 
knowledge of known scene features. In our pipeline, we employ 
vector products of buildings to assess relative horizontal 
accuracy. These vector products may be obtained from public 
sources such as Open Street Maps (OSM) or derived from lidar 
using the labeling algorithm described in section 3. OSM vector 
products require further registration while lidar derived vector 
products do not since the point clouds are already registered to 
lidar as discussed in section 4.1. 
 
For measuring relative horizontal accuracy, gradients are 
computed in the DSM image and the peaks are retained and 
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further filtered to form an edge image for comparison with 
building polygons sampled at the DSM Ground Sample 
Distance (GSD). Each sampled point from a building polygon is 
matched with its nearest edge point in the DSM edge image as 
shown in Figure 6. To account for any residual misalignment, 
this process is repeated iteratively for each building and the 
building polygon is translated to minimize the average absolute 
distance. The horizontal Root Mean Squared Error (RMSE) is 
then computed for the remaining nearest distances for all 
building polygons in a scene. Relative horizontal accuracies for 
lidar and MVS solutions are shown in Table 2. Observe again 
that roof tops in the ASP-SDRDIS and RSP solutions extend 
well beyond their true extents. This is clearly indicated in the 
relative horizontal accuracy metric. 
 
 

 
Figure 6 Horizontal accuracy is determined by measuring 
distances between sampled points on building polygons and 
nearest edge points. 
 
 

Table 2 Relative accuracy measured for lidar and MVS 

Metric Lidar JHU 
APL 

ASP 
SDRDIS S2P RSP 

Horizontal 
RMSE (m) 0.38 0.80 2.36 1.11 1.73 

 
 
4.5 Semantic Labeling Metrics 

To begin to assess 3D modeling of buildings in urban scenes, 
we employ common metrics to evaluate 2D semantic labels 
indicating the presence of buildings in a scene, as summarized 
in Table 3. Ground truth semantic labels are derived from lidar 
as described in section 3. The MVS solutions used to initially 

demonstrate the metric evaluation pipeline do not include 
semantic labels, so we derived building labels with the same 
algorithm used for lidar. While this is not expected to work 
especially well, the results shown in Table 4 and Figure 7 offer 
insight into the challenges associated with labeling MVS point 
clouds of differing levels of fidelity. Interestingly, even the 
simple point cloud classification algorithm that only considers 
geometry produces reasonable labels for the S2P point cloud 
which has clearly defined building edges for this test data set 
and which does not include many of the trees. Consideration of 
additional cues from the image bands along with geometry 
would better enable separation of manmade structures from 
nearby foliage and improve the labeling performance for all of 
the MVS point clouds. Labeling results shown are not intended 
to indicate the utility of any particular MVS algorithm for this 
purpose, since those cues have not been considered. 
 
 

Table 3 Semantic labeling metrics (TP = True Positive,  
FN = False Negative, FP = False Positive) 

Metric Definition Goal 
Recall / 

Completeness TP/(TP+FN) Higher 

Precision / 
Correctness TP/(TP+FP) Higher 

F Score TP/(TP+0.5(FN+FP)) Higher 

Jaccard Index TP/(TP+(FN+FP)) Higher 

Branching Factor FP/TP Lower 

Miss Factor FN/TP Lower 

 
 

Table 4 2D building labeling metrics for MVS solutions 

Metric S2P JHU/APL ASP 
SDRDIS RSP 

Completeness 0.79 0.93 0.65 0.91 
Correctness 0.86 0.60 0.66 0.60 

F Score 0.82 0.72 0.66 0.73 
Jaccard Index 0.70 0.57 0.49 0.57 

Branching 
Factor 0.17 0.68 0.51 0.66 

Miss Factor 0.27 0.07 0.53 0.10 
 
 
4.6 Volumetric Accuracy 

To assess 3D volumetric accuracy, we employ the same metrics 
used for 2D semantic labeling. Instead of calculating statistics 
for 2D pixels, the statistics are calculated for 3D voxels of size 
equivalent to the source image GSD, or 30cm for these data 
sets. Voxel occupancy is determined by the DSM height values 
and associated DTM ground height. Results for the MVS point 
clouds are shown in Table 5 and Figure 8, again with the 
buildings labeled using the simple algorithm described in 
section 3. 
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Figure 7 2D building labeling accuracy is shown for MVS 
point clouds (Green=TP, Yellow=FP, Red=FN, and Blue=TN). 
 
 

Table 5 3D building volumetric accuracy for MVS solutions 

Metric S2P JHU/APL ASP 
SDRDIS RSP 

Completeness 0.82 0.92 0.83 0.93 
Correctness 0.84 0.63 0.67 0.61 

F Score 0.83 0.75 0.74 0.74 
Jaccard Index 0.71 0.60 0.59 0.58 

Branching 
Factor 0.19 0.59 0.49 0.64 

Miss Factor 0.21 0.09 0.21 0.08 
 

 

 
Figure 8 3D building height accuracy is shown for labeled 
MVS point clouds (height color scale is shown in meters). 
 

 
4.7 Curvature and Roughness Metrics 

The perceptual quality of a 3D model depends not only on 
positional accuracy but also fidelity of shape. Even small 
inaccuracies in position can have a noticeable effect on the 
appearance of a model when rendered with direct lighting or a 
texture map. Lavoue et al. (2013) have assessed computational 
measures of curvature and roughness similarity and reported 
that mean curvature and geometric Laplacian metrics correlate 
well with visual perception metrics. We have implemented the 
same measures in our pipeline and observed a similar agreement 
between these two metrics and visual inspection of surface 
smoothness, as shown in Table 6. These metrics may offer an 
indication of perceptual quality. Observe the elevated values for 
S2P due to void fill and for JHU/APL due to excessive Z noise. 
 
 
4.8 Model Simplicity 

Dense 3D meshes are impractical for real-time rendering and 
transmission over limited bandwidth communications channels. 
Practical 3D modeling methods reduce geometric complexity by 
simplifying a dense mesh to reduce triangle count while 
attempting to preserve accuracy. We measure a model’s triangle 
simplicity as the fraction of triangles in a 3D mesh of a scene or 
object and the number of triangles in a mesh sampled at the 
source imagery pixel Ground Sample Distance (GSD). 
Similarly, this measure can be generalized to assess geon 
simplicity for Constructive Solid Geometry (CSG) methods, 
though we have not yet begun to assess those. The current 
pipeline assesses simplified triangulated meshes using a 
subdivision algorithm for direct comparison with a dense 
ground truth mesh. 
 
 
Table 6 Curvature and roughness difference metrics compared 

to lidar for MVS solutions 

Metric S2P JHU/APL ASP 
SDRDIS RSP 

Mean 
Curvature 0.77 0.67 0.47 0.56 

Geometric 
Laplacian 0.15 0.12 0.11 0.11 

 
 

5. DISCUSSION 

The ground truth and metric analysis pipelines described here 
are initial steps toward a comprehensive evaluation capability 
for 3D modeling of urban scenes based on commercial satellite 
imagery. The automated labeling software and metric analysis 
pipeline software have been released for public use with a 
permissive open source license. For details, please see 
http://www.jhuapl.edu/pubgeo.html. We hope that these tools 
along with publicly released benchmark datasets will be useful 
for establishing minimum baselines for expected algorithm and 
software performance to encourage and enable new research 
that greatly advances the state of the art. As we continue to 
refine these tools and apply them to assessing state of the art 3D 
modeling capabilities, we solicit feedback, criticism, and 
recommendations from the broad community of researchers for 
which they are intended. 
 
Initial analysis results presented in this work demonstrate the 
value of a broad range of complementary metrics to more fully 
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characterize algorithm performance and provide quantitative 
indicators of potential defects that may require additional 
attention, either by an end-user to guide manual editing for 3D 
model production or by a developer to guide algorithm 
refinements for producing more consistently accurate results. 
The MVS solutions released as open source software for the 
MVS3DM contest offer a unique opportunity for a broad 
community of researchers to easily begin to experiment with 
algorithm improvements. We hope that these metric analysis 
tools can assist in those efforts. 
 

6. FUTURE WORK 

The inputs to the current metric analysis pipeline include an 
MVS point cloud and a raster image indicating building labels. 
While the point clouds are converted to DSM triangulated 
meshes for the current analysis, we expect to evaluate more 
complex 3D scene models in the future. For instance, the 
Common Data Base (CDB) standard defines a GeoTIFF DTM 
layer and OpenFlight triangulated mesh building models. 
Similarly, the CityGML standard defines a DTM and solid and 
multi-surface building models. As we begin to assess models 
produced to meet these standards, we will refine the software 
accordingly. 
 
The 3D metrics in the current pipeline are limited to assessing 
the 2.5D surfaces readily identifiable in most commercial 
satellite imagery. When imaged from more oblique viewpoints, 
either from space or more commonly from airborne sensors, 
building facades can also be observed sufficiently for 3D 
reconstruction. We plan to refine our pipeline to include true 
3D volumetric assessment compared to high-resolution multi-
look airborne lidar (e.g., Roth et al. 2007) and terrestrial lidar 
(e.g., Nex et al. 2015 and Wang et al. 2016) for assessment of 
dense 3D reconstruction for complex building facades. 
 
Non-building urban structures such as bridges and complex 
elevated road networks are not currently included in our metric 
analysis. This will be addressed in future work as we begin to 
assess urban areas that include these features. 
 
The metrics defined in this work are also limited to evaluating 
geometric accuracy only. We are currently also developing 
ground truth and metric analysis capabilities to also enable 
assessment of building material classification. 
 
Finally, the current building labeling metrics do not require 
semantic instance labels for very closely spaced or connected 
buildings. While it is not at all clear that separate labels and 
models for those buildings are required or even desirable for 
many purposes, there are applications for which labeling of 
individual connected roof structures would be desirable. In 
future work, we will incorporate instance labels into the ground 
truth and metric analysis methodologies. We expect these 
analyses to be targeted to urban areas of very limited size due to 
the added burden and time of manually editing instance labels. 
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